Branch data Line data Source code
1 : : // Copyright (c) 2019-present The Bitcoin Core developers
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : #ifndef BITCOIN_SCRIPT_MINISCRIPT_H
6 : : #define BITCOIN_SCRIPT_MINISCRIPT_H
7 : :
8 : : #include <algorithm>
9 : : #include <compare>
10 : : #include <cstdint>
11 : : #include <cstdlib>
12 : : #include <iterator>
13 : : #include <memory>
14 : : #include <optional>
15 : : #include <set>
16 : : #include <stdexcept>
17 : : #include <tuple>
18 : : #include <utility>
19 : : #include <vector>
20 : :
21 : : #include <consensus/consensus.h>
22 : : #include <policy/policy.h>
23 : : #include <script/interpreter.h>
24 : : #include <script/parsing.h>
25 : : #include <script/script.h>
26 : : #include <serialize.h>
27 : : #include <span.h>
28 : : #include <util/check.h>
29 : : #include <util/strencodings.h>
30 : : #include <util/string.h>
31 : : #include <util/vector.h>
32 : :
33 : : namespace miniscript {
34 : :
35 : : /** This type encapsulates the miniscript type system properties.
36 : : *
37 : : * Every miniscript expression is one of 4 basic types, and additionally has
38 : : * a number of boolean type properties.
39 : : *
40 : : * The basic types are:
41 : : * - "B" Base:
42 : : * - Takes its inputs from the top of the stack.
43 : : * - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack.
44 : : * - When dissatisfied, pushes a 0 onto the stack.
45 : : * - This is used for most expressions, and required for the top level one.
46 : : * - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY.
47 : : * - "V" Verify:
48 : : * - Takes its inputs from the top of the stack.
49 : : * - When satisfied, pushes nothing.
50 : : * - Cannot be dissatisfied.
51 : : * - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode
52 : : * of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY,
53 : : * OP_NUMEQUAL and OP_EQUAL), or by combining a V fragment under some conditions.
54 : : * - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY
55 : : * - "K" Key:
56 : : * - Takes its inputs from the top of the stack.
57 : : * - Becomes a B when followed by OP_CHECKSIG.
58 : : * - Always pushes a public key onto the stack, for which a signature is to be
59 : : * provided to satisfy the expression.
60 : : * - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY
61 : : * - "W" Wrapped:
62 : : * - Takes its input from one below the top of the stack.
63 : : * - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below.
64 : : * - When dissatisfied, pushes 0 op top of the stack or one below.
65 : : * - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK".
66 : : * - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG
67 : : *
68 : : * There are type properties that help reasoning about correctness:
69 : : * - "z" Zero-arg:
70 : : * - Is known to always consume exactly 0 stack elements.
71 : : * - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY
72 : : * - "o" One-arg:
73 : : * - Is known to always consume exactly 1 stack element.
74 : : * - Conflicts with property 'z'
75 : : * - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL
76 : : * - "n" Nonzero:
77 : : * - For every way this expression can be satisfied, a satisfaction exists that never needs
78 : : * a zero top stack element.
79 : : * - Conflicts with property 'z' and with type 'W'.
80 : : * - "d" Dissatisfiable:
81 : : * - There is an easy way to construct a dissatisfaction for this expression.
82 : : * - Conflicts with type 'V'.
83 : : * - "u" Unit:
84 : : * - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero).
85 : : * - Conflicts with type 'V'.
86 : : *
87 : : * Additional type properties help reasoning about nonmalleability:
88 : : * - "e" Expression:
89 : : * - This implies property 'd', but the dissatisfaction is nonmalleable.
90 : : * - This generally requires 'e' for all subexpressions which are invoked for that
91 : : * dissatisfaction, and property 'f' for the unexecuted subexpressions in that case.
92 : : * - Conflicts with type 'V'.
93 : : * - "f" Forced:
94 : : * - Dissatisfactions (if any) for this expression always involve at least one signature.
95 : : * - Is always true for type 'V'.
96 : : * - "s" Safe:
97 : : * - Satisfactions for this expression always involve at least one signature.
98 : : * - "m" Nonmalleable:
99 : : * - For every way this expression can be satisfied (which may be none),
100 : : * a nonmalleable satisfaction exists.
101 : : * - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions
102 : : * which are dissatisfied when satisfying the parent.
103 : : *
104 : : * One type property is an implementation detail:
105 : : * - "x" Expensive verify:
106 : : * - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG.
107 : : * - Not having this property means that it can be converted to a V at no cost (by switching to the
108 : : * -VERIFY version of the last opcode).
109 : : *
110 : : * Five more type properties for representing timelock information. Spend paths
111 : : * in miniscripts containing conflicting timelocks and heightlocks cannot be spent together.
112 : : * This helps users detect if miniscript does not match the semantic behaviour the
113 : : * user expects.
114 : : * - "g" Whether the branch contains a relative time timelock
115 : : * - "h" Whether the branch contains a relative height timelock
116 : : * - "i" Whether the branch contains an absolute time timelock
117 : : * - "j" Whether the branch contains an absolute height timelock
118 : : * - "k"
119 : : * - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock
120 : : * of the same type.
121 : : * - If the miniscript does not have the "k" property, the miniscript template will not match
122 : : * the user expectation of the corresponding spending policy.
123 : : * For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also
124 : : * valid in places where an X, a Y, a Z, an XY, ... is expected.
125 : : */
126 : : class Type {
127 : : //! Internal bitmap of properties (see ""_mst operator for details).
128 : : uint32_t m_flags;
129 : :
130 : : //! Internal constructor.
131 : 6267130 : explicit constexpr Type(uint32_t flags) noexcept : m_flags(flags) {}
132 : :
133 : : public:
134 : : //! Construction function used by the ""_mst operator.
135 : : static consteval Type Make(uint32_t flags) noexcept { return Type(flags); }
136 : :
137 : : //! Compute the type with the union of properties.
138 [ + + + + : 6293727 : constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
+ + + + +
+ + + +
+ ]
139 : :
140 : : //! Compute the type with the intersection of properties.
141 [ + - + - : 49762 : constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
+ + + - +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + ]
142 : :
143 : : //! Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
144 [ + - + - : 186745324 : constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
+ - + - +
+ + + + -
+ + + - +
+ + - + +
+ - + + +
+ + + + +
+ + + + -
+ + + + +
- + - - +
+ - + + +
+ - + - +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + -
+ - - + +
+ - - + -
- + + + -
+ + + + +
+ + + + +
+ + + + +
+ + + + +
- + + + +
- + + + +
- + - - +
+ + - + +
- + + + +
- + + + +
+ - + + +
- + + + -
+ + + - +
+ + - + +
+ - + + +
- + + + -
+ + + - +
+ + - + +
+ - + + +
- + + +
- ]
145 : :
146 : : //! Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
147 : : constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
148 : :
149 : : //! Equality operator.
150 : 5660093 : constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
151 : :
152 : : //! The empty type if x is false, itself otherwise.
153 [ + + + + : 91928 : constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
+ + + + +
- + - + +
+ + + - +
- + - + +
+ + + - +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ - + -
+ ]
154 : : };
155 : :
156 : : //! Literal operator to construct Type objects.
157 : : inline consteval Type operator""_mst(const char* c, size_t l)
158 : : {
159 : : Type typ{Type::Make(0)};
160 : :
161 : : for (const char *p = c; p < c + l; p++) {
162 : : typ = typ | Type::Make(
163 : : *p == 'B' ? 1 << 0 : // Base type
164 : : *p == 'V' ? 1 << 1 : // Verify type
165 : : *p == 'K' ? 1 << 2 : // Key type
166 : : *p == 'W' ? 1 << 3 : // Wrapped type
167 : : *p == 'z' ? 1 << 4 : // Zero-arg property
168 : : *p == 'o' ? 1 << 5 : // One-arg property
169 : : *p == 'n' ? 1 << 6 : // Nonzero arg property
170 : : *p == 'd' ? 1 << 7 : // Dissatisfiable property
171 : : *p == 'u' ? 1 << 8 : // Unit property
172 : : *p == 'e' ? 1 << 9 : // Expression property
173 : : *p == 'f' ? 1 << 10 : // Forced property
174 : : *p == 's' ? 1 << 11 : // Safe property
175 : : *p == 'm' ? 1 << 12 : // Nonmalleable property
176 : : *p == 'x' ? 1 << 13 : // Expensive verify
177 : : *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time)
178 : : *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
179 : : *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time)
180 : : *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height)
181 : : *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
182 : : (throw std::logic_error("Unknown character in _mst literal"), 0)
183 : : );
184 : : }
185 : :
186 : : return typ;
187 : : }
188 : :
189 : : using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
190 : :
191 : : template<typename Key> struct Node;
192 : : template<typename Key> using NodeRef = std::unique_ptr<const Node<Key>>;
193 : :
194 : : //! Construct a miniscript node as a unique_ptr.
195 : : template<typename Key, typename... Args>
196 : 5969786 : NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_unique<const Node<Key>>(std::forward<Args>(args)...); }
197 : :
198 : : //! The different node types in miniscript.
199 : : enum class Fragment {
200 : : JUST_0, //!< OP_0
201 : : JUST_1, //!< OP_1
202 : : PK_K, //!< [key]
203 : : PK_H, //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY
204 : : OLDER, //!< [n] OP_CHECKSEQUENCEVERIFY
205 : : AFTER, //!< [n] OP_CHECKLOCKTIMEVERIFY
206 : : SHA256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL
207 : : HASH256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL
208 : : RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL
209 : : HASH160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL
210 : : WRAP_A, //!< OP_TOALTSTACK [X] OP_FROMALTSTACK
211 : : WRAP_S, //!< OP_SWAP [X]
212 : : WRAP_C, //!< [X] OP_CHECKSIG
213 : : WRAP_D, //!< OP_DUP OP_IF [X] OP_ENDIF
214 : : WRAP_V, //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X)
215 : : WRAP_J, //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF
216 : : WRAP_N, //!< [X] OP_0NOTEQUAL
217 : : AND_V, //!< [X] [Y]
218 : : AND_B, //!< [X] [Y] OP_BOOLAND
219 : : OR_B, //!< [X] [Y] OP_BOOLOR
220 : : OR_C, //!< [X] OP_NOTIF [Y] OP_ENDIF
221 : : OR_D, //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
222 : : OR_I, //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF
223 : : ANDOR, //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
224 : : THRESH, //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL
225 : : MULTI, //!< [k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context)
226 : : MULTI_A, //!< [key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx)
227 : : // AND_N(X,Y) is represented as ANDOR(X,Y,0)
228 : : // WRAP_T(X) is represented as AND_V(X,1)
229 : : // WRAP_L(X) is represented as OR_I(0,X)
230 : : // WRAP_U(X) is represented as OR_I(X,0)
231 : : };
232 : :
233 : : enum class Availability {
234 : : NO,
235 : : YES,
236 : : MAYBE,
237 : : };
238 : :
239 : : enum class MiniscriptContext {
240 : : P2WSH,
241 : : TAPSCRIPT,
242 : : };
243 : :
244 : : /** Whether the context Tapscript, ensuring the only other possibility is P2WSH. */
245 : 12187251 : constexpr bool IsTapscript(MiniscriptContext ms_ctx)
246 : : {
247 [ + - + ]: 12187251 : switch (ms_ctx) {
248 : : case MiniscriptContext::P2WSH: return false;
249 : 12132420 : case MiniscriptContext::TAPSCRIPT: return true;
250 : : }
251 : 0 : assert(false);
252 : : }
253 : :
254 : : namespace internal {
255 : :
256 : : //! The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with a sighash type byte.)
257 : : static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65};
258 : :
259 : : //! version + nLockTime
260 : : constexpr uint32_t TX_OVERHEAD{4 + 4};
261 : : //! prevout + nSequence + scriptSig
262 : : constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1};
263 : : //! nValue + script len + OP_0 + pushdata 32.
264 : : constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33};
265 : : //! Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout + segwit marker
266 : : constexpr uint32_t TX_BODY_LEEWAY_WEIGHT{(TX_OVERHEAD + GetSizeOfCompactSize(1) + TXIN_BYTES_NO_WITNESS + GetSizeOfCompactSize(1) + P2WSH_TXOUT_BYTES) * WITNESS_SCALE_FACTOR + 2};
267 : : //! Maximum possible stack size to spend a Taproot output (excluding the script itself).
268 : : constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE{GetSizeOfCompactSize(MAX_STACK_SIZE) + (GetSizeOfCompactSize(MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) + MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) * MAX_STACK_SIZE + GetSizeOfCompactSize(TAPROOT_CONTROL_MAX_SIZE) + TAPROOT_CONTROL_MAX_SIZE};
269 : : /** The maximum size of a script depending on the context. */
270 : 5656582 : constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
271 : : {
272 [ + + + + : 5656582 : if (IsTapscript(ms_ctx)) {
+ + ][ + -
- + + - -
+ ]
273 : : // Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly
274 : : // bounded by the maximum standard size of a spending transaction. Let the maximum script
275 : : // size conservatively be small enough such that even a maximum sized witness and a reasonably
276 : : // sized spending transaction can spend an output paying to this script without running into
277 : : // the maximum standard tx size limit.
278 : : constexpr auto max_size{MAX_STANDARD_TX_WEIGHT - TX_BODY_LEEWAY_WEIGHT - MAX_TAPSCRIPT_SAT_SIZE};
279 : : return max_size - GetSizeOfCompactSize(max_size);
280 : : }
281 : 24956 : return MAX_STANDARD_P2WSH_SCRIPT_SIZE;
282 : : }
283 : :
284 : : //! Helper function for Node::CalcType.
285 : : Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
286 : :
287 : : //! Helper function for Node::CalcScriptLen.
288 : : size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
289 : :
290 : : //! A helper sanitizer/checker for the output of CalcType.
291 : : Type SanitizeType(Type x);
292 : :
293 : : //! An object representing a sequence of witness stack elements.
294 : 116810288 : struct InputStack {
295 : : /** Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
296 : : * The MAYBE value is used for size estimation, when keys/preimages may actually be unavailable,
297 : : * but may be available at signing time. This makes the InputStack structure and signing logic,
298 : : * filled with dummy signatures/preimages usable for witness size estimation.
299 : : */
300 : : Availability available = Availability::YES;
301 : : //! Whether this stack contains a digital signature.
302 : : bool has_sig = false;
303 : : //! Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
304 : : bool malleable = false;
305 : : //! Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
306 : : //! Note that this flag does not affect the satisfaction algorithm; it is only used for sanity checking.
307 : : bool non_canon = false;
308 : : //! Serialized witness size.
309 : : size_t size = 0;
310 : : //! Data elements.
311 : : std::vector<std::vector<unsigned char>> stack;
312 : : //! Construct an empty stack (valid).
313 : : InputStack() = default;
314 : : //! Construct a valid single-element stack (with an element up to 75 bytes).
315 : 497233 : InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
316 : : //! Change availability
317 : : InputStack& SetAvailable(Availability avail);
318 : : //! Mark this input stack as having a signature.
319 : : InputStack& SetWithSig();
320 : : //! Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
321 : : InputStack& SetNonCanon();
322 : : //! Mark this input stack as malleable.
323 : : InputStack& SetMalleable(bool x = true);
324 : : //! Concatenate two input stacks.
325 : : friend InputStack operator+(InputStack a, InputStack b);
326 : : //! Choose between two potential input stacks.
327 : : friend InputStack operator|(InputStack a, InputStack b);
328 : : };
329 : :
330 : : /** A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in numeric context). */
331 : : static const auto ZERO = InputStack(std::vector<unsigned char>());
332 : : /** A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challenges). */
333 : : static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
334 : : /** A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric context). */
335 : : static const auto ONE = InputStack(Vector((unsigned char)1));
336 : : /** The empty stack. */
337 : : static const auto EMPTY = InputStack();
338 : : /** A stack representing the lack of any (dis)satisfactions. */
339 : : static const auto INVALID = InputStack().SetAvailable(Availability::NO);
340 : :
341 : : //! A pair of a satisfaction and a dissatisfaction InputStack.
342 : 20219987 : struct InputResult {
343 : : InputStack nsat, sat;
344 : :
345 : : template<typename A, typename B>
346 [ + - - - : 834559 : InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
+ - + - -
- + - ][ +
- + - +
- ]
347 : : };
348 : :
349 : : //! Class whose objects represent the maximum of a list of integers.
350 : : template<typename I>
351 : : struct MaxInt {
352 : : const bool valid;
353 : : const I value;
354 : :
355 : 38858 : MaxInt() : valid(false), value(0) {}
356 : 83383 : MaxInt(I val) : valid(true), value(val) {}
357 : :
358 : 56820 : friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
359 [ + + + + ]: 56820 : if (!a.valid || !b.valid) return {};
360 : 42136 : return a.value + b.value;
361 : : }
362 : :
363 : 10080 : friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
364 [ + + ]: 10080 : if (!a.valid) return b;
365 [ + + ]: 8828 : if (!b.valid) return a;
366 [ + + ]: 14682 : return std::max(a.value, b.value);
367 : : }
368 : : };
369 : :
370 : : struct Ops {
371 : : //! Non-push opcodes.
372 : : uint32_t count;
373 : : //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
374 : : MaxInt<uint32_t> sat;
375 : : //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
376 : : MaxInt<uint32_t> dsat;
377 : :
378 : 6276112 : Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
379 : : };
380 : :
381 : : /** A data structure to help the calculation of stack size limits.
382 : : *
383 : : * Conceptually, every SatInfo object corresponds to a (possibly empty) set of script execution
384 : : * traces (sequences of opcodes).
385 : : * - SatInfo{} corresponds to the empty set.
386 : : * - SatInfo{n, e} corresponds to a single trace whose net effect is removing n elements from the
387 : : * stack (may be negative for a net increase), and reaches a maximum of e stack elements more
388 : : * than it ends with.
389 : : * - operator| is the union operation: (a | b) corresponds to the union of the traces in a and the
390 : : * traces in b.
391 : : * - operator+ is the concatenation operator: (a + b) corresponds to the set of traces formed by
392 : : * concatenating any trace in a with any trace in b.
393 : : *
394 : : * Its fields are:
395 : : * - valid is true if the set is non-empty.
396 : : * - netdiff (if valid) is the largest difference between stack size at the beginning and at the
397 : : * end of the script across all traces in the set.
398 : : * - exec (if valid) is the largest difference between stack size anywhere during execution and at
399 : : * the end of the script, across all traces in the set (note that this is not necessarily due
400 : : * to the same trace as the one that resulted in the value for netdiff).
401 : : *
402 : : * This allows us to build up stack size limits for any script efficiently, by starting from the
403 : : * individual opcodes miniscripts correspond to, using concatenation to construct scripts, and
404 : : * using the union operation to choose between execution branches. Since any top-level script
405 : : * satisfaction ends with a single stack element, we know that for a full script:
406 : : * - netdiff+1 is the maximal initial stack size (relevant for P2WSH stack limits).
407 : : * - exec+1 is the maximal stack size reached during execution (relevant for P2TR stack limits).
408 : : *
409 : : * Mathematically, SatInfo forms a semiring:
410 : : * - operator| is the semiring addition operator, with identity SatInfo{}, and which is commutative
411 : : * and associative.
412 : : * - operator+ is the semiring multiplication operator, with identity SatInfo{0}, and which is
413 : : * associative.
414 : : * - operator+ is distributive over operator|, so (a + (b | c)) = (a+b | a+c). This means we do not
415 : : * need to actually materialize all possible full execution traces over the whole script (which
416 : : * may be exponential in the length of the script); instead we can use the union operation at the
417 : : * individual subexpression level, and concatenate the result with subexpressions before and
418 : : * after it.
419 : : * - It is not a commutative semiring, because a+b can differ from b+a. For example, "OP_1 OP_DROP"
420 : : * has exec=1, while "OP_DROP OP_1" has exec=0.
421 : : */
422 : : struct SatInfo {
423 : : //! Whether a canonical satisfaction/dissatisfaction is possible at all.
424 : : const bool valid;
425 : : //! How much higher the stack size at start of execution can be compared to at the end.
426 : : const int32_t netdiff;
427 : : //! Mow much higher the stack size can be during execution compared to at the end.
428 : : const int32_t exec;
429 : :
430 : : /** Empty script set. */
431 : 24870 : constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {}
432 : :
433 : : /** Script set with a single script in it, with specified netdiff and exec. */
434 : 55311 : constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept :
435 : 55311 : valid{true}, netdiff{in_netdiff}, exec{in_exec} {}
436 : :
437 : : /** Script set union. */
438 : 5040 : constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept
439 : : {
440 : : // Union with an empty set is itself.
441 [ + + ]: 5040 : if (!a.valid) return b;
442 [ + + ]: 4416 : if (!b.valid) return a;
443 : : // Otherwise the netdiff and exec of the union is the maximum of the individual values.
444 [ + + + + ]: 10425 : return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)};
445 : : }
446 : :
447 : : /** Script set concatenation. */
448 : 63327 : constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept
449 : : {
450 : : // Concatenation with an empty set yields an empty set.
451 [ + + + + ]: 63327 : if (!a.valid || !b.valid) return {};
452 : : // Otherwise, the maximum stack size difference for the combined scripts is the sum of the
453 : : // netdiffs, and the maximum stack size difference anywhere is either b.exec (if the
454 : : // maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a).
455 [ + + ]: 72343 : return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)};
456 : : }
457 : :
458 : : /** The empty script. */
459 : : static constexpr SatInfo Empty() noexcept { return {0, 0}; }
460 : : /** A script consisting of a single push opcode. */
461 : : static constexpr SatInfo Push() noexcept { return {-1, 0}; }
462 : : /** A script consisting of a single hash opcode. */
463 : : static constexpr SatInfo Hash() noexcept { return {0, 0}; }
464 : : /** A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY). */
465 : : static constexpr SatInfo Nop() noexcept { return {0, 0}; }
466 : : /** A script consisting of just OP_IF or OP_NOTIF. Note that OP_ELSE and OP_ENDIF have no stack effect. */
467 : : static constexpr SatInfo If() noexcept { return {1, 1}; }
468 : : /** A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD). */
469 : : static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; }
470 : :
471 : : // Scripts for specific individual opcodes.
472 : : static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; }
473 : : static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; }
474 : : static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; }
475 : : static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; }
476 : : static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; }
477 : : static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; }
478 : : static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; }
479 : : static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; }
480 : : };
481 : :
482 : : struct StackSize {
483 : : const SatInfo sat, dsat;
484 : :
485 : 1117 : constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {};
486 : 1029 : constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {};
487 : : };
488 : :
489 : : struct WitnessSize {
490 : : //! Maximum witness size to satisfy;
491 : : MaxInt<uint32_t> sat;
492 : : //! Maximum witness size to dissatisfy;
493 : : MaxInt<uint32_t> dsat;
494 : :
495 : 11572 : WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
496 : : };
497 : :
498 : : struct NoDupCheck {};
499 : :
500 : : } // namespace internal
501 : :
502 : : //! A node in a miniscript expression.
503 : : template<typename Key>
504 : : struct Node {
505 : : //! What node type this node is.
506 : : const Fragment fragment;
507 : : //! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
508 : : const uint32_t k = 0;
509 : : //! The keys used by this expression (only for PK_K/PK_H/MULTI)
510 : : const std::vector<Key> keys;
511 : : //! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
512 : : const std::vector<unsigned char> data;
513 : : //! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH)
514 : : mutable std::vector<NodeRef<Key>> subs;
515 : : //! The Script context for this node. Either P2WSH or Tapscript.
516 : : const MiniscriptContext m_script_ctx;
517 : :
518 : : /* Destroy the shared pointers iteratively to avoid a stack-overflow due to recursive calls
519 : : * to the subs' destructors. */
520 : 6300631 : ~Node() {
521 [ + + ]: 12596125 : while (!subs.empty()) {
522 : 6295494 : auto node = std::move(subs.back());
523 : 6295494 : subs.pop_back();
524 [ + + ]: 12586005 : while (!node->subs.empty()) {
525 : 6290511 : subs.push_back(std::move(node->subs.back()));
526 : 6290511 : node->subs.pop_back();
527 : : }
528 : : }
529 : 6300631 : }
530 : :
531 : 149 : NodeRef<Key> Clone() const
532 : : {
533 : : // Use TreeEval() to avoid a stack-overflow due to recursion
534 : 330845 : auto upfn = [](const Node& node, std::span<NodeRef<Key>> children) {
535 : 330845 : std::vector<NodeRef<Key>> new_subs;
536 [ + + ]: 661541 : for (auto child = children.begin(); child != children.end(); ++child) {
537 [ + - ]: 330696 : new_subs.emplace_back(std::move(*child));
538 : : }
539 : : // std::make_unique (and therefore MakeNodeRef) doesn't work on private constructors
540 [ + - + - : 661690 : return std::unique_ptr<Node>{new Node{internal::NoDupCheck{}, node.m_script_ctx, node.fragment, std::move(new_subs), node.keys, node.data, node.k}};
+ - + - ]
541 : 330845 : };
542 [ + - + - ]: 149 : return TreeEval<NodeRef<Key>>(upfn);
543 : : }
544 : :
545 : : private:
546 : : //! Cached ops counts.
547 : : const internal::Ops ops;
548 : : //! Cached stack size bounds.
549 : : const internal::StackSize ss;
550 : : //! Cached witness size bounds.
551 : : const internal::WitnessSize ws;
552 : : //! Cached expression type (computed by CalcType and fed through SanitizeType).
553 : : const Type typ;
554 : : //! Cached script length (computed by CalcScriptLen).
555 : : const size_t scriptlen;
556 : : //! Whether a public key appears more than once in this node. This value is initialized
557 : : //! by all constructors except the NoDupCheck ones. The NoDupCheck ones skip the
558 : : //! computation, requiring it to be done manually by invoking DuplicateKeyCheck().
559 : : //! DuplicateKeyCheck(), or a non-NoDupCheck constructor, will compute has_duplicate_keys
560 : : //! for all subnodes as well.
561 : : mutable std::optional<bool> has_duplicate_keys;
562 : :
563 : : // Constructor which takes all of the data that a Node could possibly contain.
564 : : // This is kept private as no valid fragment has all of these arguments.
565 : : // Only used by Clone()
566 : 330845 : Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, std::vector<unsigned char> arg, uint32_t val)
567 [ + - + - : 330845 : : fragment(nt), k(val), keys(key), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ - + - +
- ]
568 : :
569 : : //! Compute the length of the script for this miniscript (including children).
570 : 6300631 : size_t CalcScriptLen() const {
571 : 6300631 : size_t subsize = 0;
572 [ + + ]: 12596125 : for (const auto& sub : subs) {
573 : 6295494 : subsize += sub->ScriptSize();
574 : : }
575 : : static constexpr auto NONE_MST{""_mst};
576 [ + + ]: 6300631 : Type sub0type = subs.size() > 0 ? subs[0]->GetType() : NONE_MST;
577 : 6300631 : return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx);
578 : : }
579 : :
580 : : /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
581 : : *
582 : : * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
583 : : * result can be thought of as first using downfn to compute a "state" for each node,
584 : : * from the root down to the leaves. Then upfn is used to compute a "result" for each
585 : : * node, from the leaves back up to the root, which is then returned. In the actual
586 : : * implementation, both functions are invoked in an interleaved fashion, performing a
587 : : * depth-first traversal of the tree.
588 : : *
589 : : * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
590 : : * - root is the state of the root node, of type State.
591 : : * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
592 : : * node, its state, and an index of one of its children, computes the state of that
593 : : * child. It can modify the state. Children of a given node will have downfn()
594 : : * called in order.
595 : : * - upfn is a callable (State&&, const Node&, std::span<Result>) -> std::optional<Result>,
596 : : * which given a node, its state, and a span of the results of its children,
597 : : * computes the result of the node. If std::nullopt is returned by upfn,
598 : : * TreeEvalMaybe() immediately returns std::nullopt.
599 : : * The return value of TreeEvalMaybe is the result of the root node.
600 : : *
601 : : * Result type cannot be bool due to the std::vector<bool> specialization.
602 : : */
603 : : template<typename Result, typename State, typename DownFn, typename UpFn>
604 : 13326 : std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
605 : : {
606 : : /** Entries of the explicit stack tracked in this algorithm. */
607 : : struct StackElem
608 : : {
609 : : const Node& node; //!< The node being evaluated.
610 : : size_t expanded; //!< How many children of this node have been expanded.
611 : : State state; //!< The state for that node.
612 : :
613 : 17550063 : StackElem(const Node& node_, size_t exp_, State&& state_) :
614 : 17550063 : node(node_), expanded(exp_), state(std::move(state_)) {}
615 : : };
616 : : /* Stack of tree nodes being explored. */
617 : 13326 : std::vector<StackElem> stack;
618 : : /* Results of subtrees so far. Their order and mapping to tree nodes
619 : : * is implicitly defined by stack. */
620 : 13326 : std::vector<Result> results;
621 [ + - ]: 13326 : stack.emplace_back(*this, 0, std::move(root_state));
622 : :
623 : : /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
624 : : * State variables are omitted for simplicity.
625 : : *
626 : : * First: stack=[(A,0)] results=[]
627 : : * stack=[(A,1),(B,0)] results=[]
628 : : * stack=[(A,1)] results=[B]
629 : : * stack=[(A,2),(C,0)] results=[B]
630 : : * stack=[(A,2),(C,1),(D,0)] results=[B]
631 : : * stack=[(A,2),(C,1)] results=[B,D]
632 : : * stack=[(A,2),(C,2),(E,0)] results=[B,D]
633 : : * stack=[(A,2),(C,2)] results=[B,D,E]
634 : : * stack=[(A,2)] results=[B,C]
635 : : * stack=[(A,3),(F,0)] results=[B,C]
636 : : * stack=[(A,3)] results=[B,C,F]
637 : : * Final: stack=[] results=[A]
638 : : */
639 [ + + ]: 52624487 : while (stack.size()) {
640 : 35086729 : const Node& node = stack.back().node;
641 [ + + ]: 35086729 : if (stack.back().expanded < node.subs.size()) {
642 : : /* We encounter a tree node with at least one unexpanded child.
643 : : * Expand it. By the time we hit this node again, the result of
644 : : * that child (and all earlier children) will be at the end of `results`. */
645 : 17536737 : size_t child_index = stack.back().expanded++;
646 : 19222006 : State child_state = downfn(stack.back().state, node, child_index);
647 [ + - ]: 17536737 : stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
648 : 17536737 : continue;
649 : 17536737 : }
650 : : // Invoke upfn with the last node.subs.size() elements of results as input.
651 [ - + ]: 17549992 : assert(results.size() >= node.subs.size());
652 [ - + ]: 17549992 : std::optional<Result> result{upfn(std::move(stack.back().state), node,
653 [ + - ]: 17549992 : std::span<Result>{results}.last(node.subs.size()))};
654 : : // If evaluation returns std::nullopt, abort immediately.
655 [ + + ]: 17549992 : if (!result) return {};
[ - + - - ]
656 : : // Replace the last node.subs.size() elements of results with the new result.
657 [ + - ]: 17549959 : results.erase(results.end() - node.subs.size(), results.end());
658 [ + - ]: 17549959 : results.push_back(std::move(*result));
[ + - + - ]
659 [ + - ]: 17549959 : stack.pop_back();
660 : : }
661 : : // The final remaining results element is the root result, return it.
662 [ - + ]: 13293 : assert(results.size() >= 1);
663 [ + - ]: 13293 : CHECK_NONFATAL(results.size() == 1);
664 : 13293 : return std::move(results[0]);
665 : 13326 : }
666 : :
667 : : /** Like TreeEvalMaybe, but without downfn or State type.
668 : : * upfn takes (const Node&, std::span<Result>) and returns std::optional<Result>. */
669 : : template<typename Result, typename UpFn>
670 : : std::optional<Result> TreeEvalMaybe(UpFn upfn) const
671 : : {
672 : : struct DummyState {};
673 : : return TreeEvalMaybe<Result>(DummyState{},
674 : : [](DummyState, const Node&, size_t) { return DummyState{}; },
675 : : [&upfn](DummyState, const Node& node, std::span<Result> subs) {
676 : : return upfn(node, subs);
677 : : }
678 : : );
679 : : }
680 : :
681 : : /** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */
682 : : template<typename Result, typename State, typename DownFn, typename UpFn>
683 : 1668 : Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
684 : : {
685 : : // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
686 : : // unconditionally dereference the result (it cannot be std::nullopt).
687 : 1668 : return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
688 : : std::forward<DownFn>(downfn),
689 : 1686937 : [&upfn](State&& state, const Node& node, std::span<Result> subs) {
690 : 1686937 : Result res{upfn(std::move(state), node, subs)};
691 : 1686937 : return std::optional<Result>(std::move(res));
692 : 1686937 : }
693 : 1668 : ));
694 : : }
695 : :
696 : : /** Like TreeEval, but without downfn or State type.
697 : : * upfn takes (const Node&, std::span<Result>) and returns Result. */
698 : : template<typename Result, typename UpFn>
699 : 10827 : Result TreeEval(UpFn upfn) const
700 : : {
701 : : struct DummyState {};
702 : 10827 : return std::move(*TreeEvalMaybe<Result>(DummyState{},
703 : : [](DummyState, const Node&, size_t) { return DummyState{}; },
704 : 12888893 : [&upfn](DummyState, const Node& node, std::span<Result> subs) {
705 : 12888893 : Result res{upfn(node, subs)};
706 : 12532521 : return std::optional<Result>(std::move(res));
707 : 11867679 : }
708 [ + - ]: 10827 : ));
709 : : }
710 : :
711 : : /** Compare two miniscript subtrees, using a non-recursive algorithm. */
712 : : friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
713 : : {
714 : : std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
715 : : queue.emplace_back(node1, node2);
716 : : while (!queue.empty()) {
717 : : const auto& [a, b] = queue.back();
718 : : queue.pop_back();
719 : : if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
720 : : if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
721 : : if (a.subs.size() < b.subs.size()) return -1;
722 : : if (b.subs.size() < a.subs.size()) return 1;
723 : : size_t n = a.subs.size();
724 : : for (size_t i = 0; i < n; ++i) {
725 : : queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]);
726 : : }
727 : : }
728 : : return 0;
729 : : }
730 : :
731 : : //! Compute the type for this miniscript.
732 : 6300631 : Type CalcType() const {
733 : : using namespace internal;
734 : :
735 : : // THRESH has a variable number of subexpressions
736 : 6300631 : std::vector<Type> sub_types;
737 [ + + ]: 6300631 : if (fragment == Fragment::THRESH) {
738 [ + - + + ]: 2048 : for (const auto& sub : subs) sub_types.push_back(sub->GetType());
739 : : }
740 : : // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
741 : : static constexpr auto NONE_MST{""_mst};
742 [ + + ]: 6300631 : Type x = subs.size() > 0 ? subs[0]->GetType() : NONE_MST;
743 [ + + ]: 6300631 : Type y = subs.size() > 1 ? subs[1]->GetType() : NONE_MST;
744 [ + + ]: 6300631 : Type z = subs.size() > 2 ? subs[2]->GetType() : NONE_MST;
745 : :
746 [ + - + - ]: 6300631 : return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx));
747 : 6300631 : }
748 : :
749 : : public:
750 : : template<typename Ctx>
751 : 1668 : CScript ToScript(const Ctx& ctx) const
752 : : {
753 : : // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
754 : : // The State is a boolean: whether or not the node's script expansion is followed
755 : : // by an OP_VERIFY (which may need to be combined with the last script opcode).
756 : 1685269 : auto downfn = [](bool verify, const Node& node, size_t index) {
757 : : // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
758 [ + + ]: 1685269 : if (node.fragment == Fragment::WRAP_V) return true;
759 : : // The subexpression of WRAP_S, and the last subexpression of AND_V
760 : : // inherit the followed-by-OP_VERIFY property from the parent.
761 [ + + + + ]: 1684163 : if (node.fragment == Fragment::WRAP_S ||
762 [ + + ]: 3352 : (node.fragment == Fragment::AND_V && index == 1)) return verify;
763 : : return false;
764 : : };
765 : : // The upward function computes for a node, given its followed-by-OP_VERIFY status
766 : : // and the CScripts of its child nodes, the CScript of the node.
767 : 1668 : const bool is_tapscript{IsTapscript(m_script_ctx)};
768 : 1688605 : auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, std::span<CScript> subs) -> CScript {
769 [ + + + + : 1686937 : switch (node.fragment) {
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + - ]
770 : 3516 : case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
771 [ + - ]: 1056 : case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
772 : 6512 : case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY);
773 : 976 : case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY);
774 [ + + ]: 197 : case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
775 [ + + ]: 129 : case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
776 [ + + ]: 192 : case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
777 [ + + ]: 123 : case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
778 : 7823 : case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK);
779 : 1490 : case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
780 [ + + ]: 7721 : case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
781 : 145 : case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF);
782 : 1106 : case Fragment::WRAP_V: {
783 [ + + ]: 1106 : if (node.subs[0]->GetType() << "x"_mst) {
784 : 352 : return BuildScript(std::move(subs[0]), OP_VERIFY);
785 : : } else {
786 : 754 : return std::move(subs[0]);
787 : : }
788 : : }
789 : 24 : case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF);
790 : 1648156 : case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
791 : 237 : case Fragment::JUST_1: return BuildScript(OP_1);
792 : 1142 : case Fragment::JUST_0: return BuildScript(OP_0);
793 : 931 : case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
794 : 7426 : case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
795 : 79 : case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
796 : 150 : case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
797 : 57 : case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
798 : 1053 : case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
799 : 262 : case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
800 : 210 : case Fragment::MULTI: {
801 : 210 : CHECK_NONFATAL(!is_tapscript);
802 : 210 : CScript script = BuildScript(node.k);
803 [ + + ]: 651 : for (const auto& key : node.keys) {
804 [ + - ]: 441 : script = BuildScript(std::move(script), ctx.ToPKBytes(key));
805 : : }
806 [ + + + - ]: 396 : return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
807 : 210 : }
808 : 52 : case Fragment::MULTI_A: {
809 : 52 : CHECK_NONFATAL(is_tapscript);
810 [ + - ]: 52 : CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG);
811 [ + + ]: 197 : for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) {
812 [ + - + - ]: 290 : script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD);
813 : : }
814 [ + + + - ]: 83 : return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL);
815 : 52 : }
816 : 548 : case Fragment::THRESH: {
817 : 548 : CScript script = std::move(subs[0]);
818 [ + + ]: 2356 : for (size_t i = 1; i < subs.size(); ++i) {
819 [ + - ]: 3616 : script = BuildScript(std::move(script), subs[i], OP_ADD);
820 : : }
821 [ + + + - ]: 1053 : return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
822 : 548 : }
823 : : }
824 : 0 : assert(false);
825 : : };
826 : 1668 : return TreeEval<CScript>(false, downfn, upfn);
827 : : }
828 : :
829 : : template<typename CTx>
830 : 831 : std::optional<std::string> ToString(const CTx& ctx) const {
831 : : // To construct the std::string representation for a Miniscript object, we use
832 : : // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
833 : : // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
834 : 2973402 : auto downfn = [](bool, const Node& node, size_t) {
835 [ + + + + : 2973402 : return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
+ + ]
[ - + + ]
836 : : node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
837 : : node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
838 : : node.fragment == Fragment::WRAP_C ||
839 [ + - + + : 4234 : (node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) ||
+ + + + ]
[ - - - + ]
840 [ + - + + : 4220 : (node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) ||
+ + + + ]
[ - - - + ]
841 [ - + - + ]: 216 : (node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0));
[ # # ]
842 : : };
843 : : // The upward function computes for a node, given whether its parent is a wrapper,
844 : : // and the string representations of its child nodes, the string representation of the node.
845 : 831 : const bool is_tapscript{IsTapscript(m_script_ctx)};
846 [ + + ]: 2974992 : auto upfn = [&ctx, is_tapscript](bool wrapped, const Node& node, std::span<std::string> subs) -> std::optional<std::string> {
847 [ + + + + ]: 2978929 : std::string ret = wrapped ? ":" : "";
[ + + ]
848 : :
849 [ + + + - : 2974162 : switch (node.fragment) {
+ - - + +
+ + + + +
+ - + + +
+ ][ + - -
- - - - -
- + ]
850 [ + - + - ]: 1196 : case Fragment::WRAP_A: return "a" + std::move(subs[0]);
[ + - ]
851 [ + - + - ]: 660 : case Fragment::WRAP_S: return "s" + std::move(subs[0]);
[ # # ]
852 : 2081 : case Fragment::WRAP_C:
853 [ + + + + ]: 2081 : if (node.subs[0]->fragment == Fragment::PK_K) {
[ # # ]
854 : : // pk(K) is syntactic sugar for c:pk_k(K)
855 [ + - + - ]: 1536 : auto key_str = ctx.ToString(node.subs[0]->keys[0]);
[ # # ]
856 [ - + - + ]: 1536 : if (!key_str) return {};
[ # # ]
857 [ + - + - : 4608 : return std::move(ret) + "pk(" + std::move(*key_str) + ")";
+ - + - ]
[ # # # # ]
858 : 1536 : }
859 [ + + + + ]: 545 : if (node.subs[0]->fragment == Fragment::PK_H) {
[ # # ]
860 : : // pkh(K) is syntactic sugar for c:pk_h(K)
861 [ + - + - ]: 523 : auto key_str = ctx.ToString(node.subs[0]->keys[0]);
[ # # ]
862 [ - + - + ]: 523 : if (!key_str) return {};
[ # # ]
863 [ + - + - : 1569 : return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
+ - + - ]
[ # # # # ]
864 : 523 : }
865 [ + - + - ]: 44 : return "c" + std::move(subs[0]);
[ # # ]
866 [ - - + - ]: 166 : case Fragment::WRAP_D: return "d" + std::move(subs[0]);
[ # # ]
867 [ + - + - ]: 1634 : case Fragment::WRAP_V: return "v" + std::move(subs[0]);
[ # # ]
868 [ # # # # ]: 0 : case Fragment::WRAP_J: return "j" + std::move(subs[0]);
[ # # ]
869 [ - - + - ]: 5930454 : case Fragment::WRAP_N: return "n" + std::move(subs[0]);
[ # # ]
870 : 712 : case Fragment::AND_V:
871 : : // t:X is syntactic sugar for and_v(X,1).
872 [ - + - - : 719 : if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
+ + + - ]
[ # # # # ]
873 : : break;
874 : 218 : case Fragment::OR_I:
875 [ - + - - : 328 : if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
+ + + - ]
[ # # # # ]
876 [ - + - - : 108 : if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
- + - - ]
[ # # # # ]
877 : : break;
878 : : default: break;
879 : : }
880 [ + + + + : 4909 : switch (node.fragment) {
- - + + +
+ + + + -
- + + - -
- - + + +
+ + + + +
+ + + + +
+ + + + +
+ + - ][ -
- + - - -
- - - - -
+ - - - -
- - - -
- ]
881 : 1605 : case Fragment::PK_K: {
882 [ + - + - ]: 1605 : auto key_str = ctx.ToString(node.keys[0]);
[ # # ]
883 [ - + + + ]: 1605 : if (!key_str) return {};
[ # # ]
884 [ + - + - : 4746 : return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
+ - + - ]
[ # # # # ]
885 : 1605 : }
886 : 525 : case Fragment::PK_H: {
887 [ + - + - ]: 525 : auto key_str = ctx.ToString(node.keys[0]);
[ # # ]
888 [ - + + + ]: 525 : if (!key_str) return {};
[ # # ]
889 [ + - + - : 1569 : return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
+ - + - ]
[ # # # # ]
890 : 525 : }
891 [ + - + - : 585 : case Fragment::AFTER: return std::move(ret) + "after(" + util::ToString(node.k) + ")";
+ - + - ]
[ + - + - ]
892 [ + - + - : 1107 : case Fragment::OLDER: return std::move(ret) + "older(" + util::ToString(node.k) + ")";
+ - + - ]
[ # # # # ]
893 [ - - - - : 84 : case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
+ - + - ]
[ # # # # ]
894 [ - - - - : 189 : case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
+ - + - ]
[ # # # # ]
895 [ + - + - : 213 : case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
+ - + - ]
[ # # # # ]
896 [ + - + - : 93 : case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
+ - + - ]
[ # # # # ]
897 [ + - + - ]: 16 : case Fragment::JUST_1: return std::move(ret) + "1";
[ # # ]
898 [ + - + - ]: 286 : case Fragment::JUST_0: return std::move(ret) + "0";
[ # # ]
899 [ + - + - : 2820 : case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ - + - +
- + - ][ #
# # # #
# ]
900 [ + - + - : 1472 : case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ - + - +
- + - ][ +
- + - +
- ]
901 [ + - + - : 248 : case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ - + - +
- + - ][ #
# # # #
# ]
902 [ - - - - : 292 : case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
- - + - +
- + - ][ #
# # # #
# ]
903 [ - - - - : 168 : case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
- - + - +
- + - ][ #
# # # #
# ]
904 [ + - + - : 432 : case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
+ - + - +
- + - ][ #
# # # #
# ]
905 : 174 : case Fragment::ANDOR:
906 : : // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
907 [ - + - - : 270 : if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
- - - - +
+ + - + -
+ - ][ # #
# # # # #
# ]
908 [ + - + - : 710 : return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
+ - + - +
- + - + -
+ - ][ # #
# # # # #
# ]
909 : 90 : case Fragment::MULTI: {
910 [ - - + - ]: 90 : CHECK_NONFATAL(!is_tapscript);
[ # # ]
911 [ - - - - : 270 : auto str = std::move(ret) + "multi(" + util::ToString(node.k);
+ - + - ]
[ # # # # ]
912 [ - - + + ]: 316 : for (const auto& key : node.keys) {
[ # # ]
913 [ - - + - ]: 226 : auto key_str = ctx.ToString(key);
[ # # ]
914 [ - - + + ]: 226 : if (!key_str) return {};
[ # # ]
915 [ - - + - ]: 436 : str += "," + std::move(*key_str);
[ # # ]
916 : : }
917 : 82 : return std::move(str) + ")";
918 : 90 : }
919 : 51 : case Fragment::MULTI_A: {
920 [ - - + - ]: 51 : CHECK_NONFATAL(is_tapscript);
[ # # ]
921 [ - - - - : 153 : auto str = std::move(ret) + "multi_a(" + util::ToString(node.k);
+ - + - ]
[ # # # # ]
922 [ - - + + ]: 181 : for (const auto& key : node.keys) {
[ # # ]
923 [ - - + - ]: 130 : auto key_str = ctx.ToString(key);
[ # # ]
924 [ - - - + ]: 130 : if (!key_str) return {};
[ # # ]
925 [ - - + - ]: 260 : str += "," + std::move(*key_str);
[ # # ]
926 : : }
927 : 51 : return std::move(str) + ")";
928 : 51 : }
929 : 198 : case Fragment::THRESH: {
930 [ - - - - : 594 : auto str = std::move(ret) + "thresh(" + util::ToString(node.k);
+ - + - ]
[ # # # # ]
931 [ - - + + ]: 896 : for (auto& sub : subs) {
[ # # ]
932 [ - - + - ]: 1396 : str += "," + std::move(sub);
[ # # ]
933 : : }
934 : 198 : return std::move(str) + ")";
935 : 198 : }
936 : : default: break;
937 : : }
938 : 0 : assert(false);
939 : 2974162 : };
940 : :
941 : 831 : return TreeEvalMaybe<std::string>(false, downfn, upfn);
942 : : }
943 : :
944 : : private:
945 : 6300631 : internal::Ops CalcOps() const {
946 [ + + + + : 6300631 : switch (fragment) {
+ + + + +
+ + + + +
+ + + + +
+ + - ]
947 : 243 : case Fragment::JUST_1: return {0, 0, {}};
948 : 715 : case Fragment::JUST_0: return {0, {}, 0};
949 : 4390 : case Fragment::PK_K: return {0, 0, 0};
950 : 657 : case Fragment::PK_H: return {3, 0, 0};
951 : 8572 : case Fragment::OLDER:
952 : 8572 : case Fragment::AFTER: return {1, 0, {}};
953 : 396 : case Fragment::SHA256:
954 : : case Fragment::RIPEMD160:
955 : : case Fragment::HASH256:
956 : 396 : case Fragment::HASH160: return {4, 0, {}};
957 : 978 : case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
958 : 7210 : case Fragment::AND_B: {
959 : 7210 : const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
960 : 7210 : const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
961 : 7210 : const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
962 : 7210 : return {count, sat, dsat};
963 : : }
964 : 98 : case Fragment::OR_B: {
965 : 98 : const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
966 : 98 : const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
967 : 98 : const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
968 : 98 : return {count, sat, dsat};
969 : : }
970 : 138 : case Fragment::OR_D: {
971 : 138 : const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
972 : 138 : const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
973 : 138 : const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
974 : 138 : return {count, sat, dsat};
975 : : }
976 : 66 : case Fragment::OR_C: {
977 : 66 : const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
978 : 66 : const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
979 : 66 : return {count, sat, {}};
980 : : }
981 : 663 : case Fragment::OR_I: {
982 : 663 : const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
983 : 663 : const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
984 : 663 : const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
985 : 663 : return {count, sat, dsat};
986 : : }
987 : 254 : case Fragment::ANDOR: {
988 : 254 : const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
989 : 254 : const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
990 : 254 : const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
991 : 254 : return {count, sat, dsat};
992 : : }
993 : 181 : case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
994 : 848 : case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0};
995 : 6265934 : case Fragment::WRAP_S:
996 : : case Fragment::WRAP_C:
997 : 6265934 : case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
998 : 7619 : case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
999 : 114 : case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
1000 : 16 : case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
1001 : 1117 : case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
1002 : 422 : case Fragment::THRESH: {
1003 : 422 : uint32_t count = 0;
1004 : 422 : auto sats = Vector(internal::MaxInt<uint32_t>(0));
1005 [ + - + + ]: 2048 : for (const auto& sub : subs) {
1006 : 1626 : count += sub->ops.count + 1;
1007 [ + - ]: 1626 : auto next_sats = Vector(sats[0] + sub->ops.dsat);
1008 [ + - + + ]: 4784 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
1009 [ + - ]: 1626 : next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
1010 : 1626 : sats = std::move(next_sats);
1011 : : }
1012 [ - + ]: 422 : assert(k < sats.size());
1013 : 422 : return {count, sats[k], sats[0]};
1014 : 422 : }
1015 : : }
1016 : 0 : assert(false);
1017 : : }
1018 : :
1019 : 6300631 : internal::StackSize CalcStackSize() const {
1020 : : using namespace internal;
1021 [ + + + + : 6300631 : switch (fragment) {
+ + + + +
+ + + + +
+ + + + +
+ + - ]
1022 : 715 : case Fragment::JUST_0: return {{}, SatInfo::Push()};
1023 : 243 : case Fragment::JUST_1: return {SatInfo::Push(), {}};
1024 : 8572 : case Fragment::OLDER:
1025 : 8572 : case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}};
1026 : 4390 : case Fragment::PK_K: return {SatInfo::Push()};
1027 : 657 : case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()};
1028 : 396 : case Fragment::SHA256:
1029 : : case Fragment::RIPEMD160:
1030 : : case Fragment::HASH256:
1031 : : case Fragment::HASH160: return {
1032 : : SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(),
1033 : : {}
1034 : 396 : };
1035 : 254 : case Fragment::ANDOR: {
1036 : 254 : const auto& x{subs[0]->ss};
1037 : 254 : const auto& y{subs[1]->ss};
1038 : 254 : const auto& z{subs[2]->ss};
1039 : : return {
1040 : 254 : (x.sat + SatInfo::If() + y.sat) | (x.dsat + SatInfo::If() + z.sat),
1041 : 254 : x.dsat + SatInfo::If() + z.dsat
1042 : 254 : };
1043 : : }
1044 : 978 : case Fragment::AND_V: {
1045 : 978 : const auto& x{subs[0]->ss};
1046 : 978 : const auto& y{subs[1]->ss};
1047 : 978 : return {x.sat + y.sat, {}};
1048 : : }
1049 : 7210 : case Fragment::AND_B: {
1050 : 7210 : const auto& x{subs[0]->ss};
1051 : 7210 : const auto& y{subs[1]->ss};
1052 : 7210 : return {x.sat + y.sat + SatInfo::BinaryOp(), x.dsat + y.dsat + SatInfo::BinaryOp()};
1053 : : }
1054 : 98 : case Fragment::OR_B: {
1055 : 98 : const auto& x{subs[0]->ss};
1056 : 98 : const auto& y{subs[1]->ss};
1057 : : return {
1058 : 98 : ((x.sat + y.dsat) | (x.dsat + y.sat)) + SatInfo::BinaryOp(),
1059 : 98 : x.dsat + y.dsat + SatInfo::BinaryOp()
1060 : 98 : };
1061 : : }
1062 : 66 : case Fragment::OR_C: {
1063 : 66 : const auto& x{subs[0]->ss};
1064 : 66 : const auto& y{subs[1]->ss};
1065 : 66 : return {(x.sat + SatInfo::If()) | (x.dsat + SatInfo::If() + y.sat), {}};
1066 : : }
1067 : 138 : case Fragment::OR_D: {
1068 : 138 : const auto& x{subs[0]->ss};
1069 : 138 : const auto& y{subs[1]->ss};
1070 : : return {
1071 : 138 : (x.sat + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.sat),
1072 : 138 : x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.dsat
1073 : 138 : };
1074 : : }
1075 : 663 : case Fragment::OR_I: {
1076 : 663 : const auto& x{subs[0]->ss};
1077 : 663 : const auto& y{subs[1]->ss};
1078 : 663 : return {SatInfo::If() + (x.sat | y.sat), SatInfo::If() + (x.dsat | y.dsat)};
1079 : : }
1080 : : // multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k
1081 : : // signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and
1082 : : // n itself, and ends with 1 stack element (success or failure). Thus, it net removes
1083 : : // k elements (from k+1 to 1), while reaching k+n+2 more than it ends with.
1084 : 181 : case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)};
1085 : : // multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the
1086 : : // signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net
1087 : : // removes n-1 elements (from n to 1) while reaching n more than it ends with.
1088 : 848 : case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())};
1089 : 6268576 : case Fragment::WRAP_A:
1090 : : case Fragment::WRAP_N:
1091 : 6268576 : case Fragment::WRAP_S: return subs[0]->ss;
1092 : 4977 : case Fragment::WRAP_C: return {
1093 : 4977 : subs[0]->ss.sat + SatInfo::OP_CHECKSIG(),
1094 : 4977 : subs[0]->ss.dsat + SatInfo::OP_CHECKSIG()
1095 : 4977 : };
1096 : 114 : case Fragment::WRAP_D: return {
1097 : 114 : SatInfo::OP_DUP() + SatInfo::If() + subs[0]->ss.sat,
1098 : : SatInfo::OP_DUP() + SatInfo::If()
1099 : 114 : };
1100 : 1117 : case Fragment::WRAP_V: return {subs[0]->ss.sat + SatInfo::OP_VERIFY(), {}};
1101 : 16 : case Fragment::WRAP_J: return {
1102 : 16 : SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0]->ss.sat,
1103 : : SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If()
1104 : 16 : };
1105 : 422 : case Fragment::THRESH: {
1106 : : // sats[j] is the SatInfo corresponding to all traces reaching j satisfactions.
1107 : 422 : auto sats = Vector(SatInfo::Empty());
1108 [ + + ]: 2048 : for (size_t i = 0; i < subs.size(); ++i) {
1109 : : // Loop over the subexpressions, processing them one by one. After adding
1110 : : // element i we need to add OP_ADD (if i>0).
1111 [ + + ]: 1626 : auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty();
1112 : : // Construct a variable that will become the next sats, starting with index 0.
1113 [ + - ]: 1626 : auto next_sats = Vector(sats[0] + subs[i]->ss.dsat + add);
1114 : : // Then loop to construct next_sats[1..i].
1115 [ + + ]: 4784 : for (size_t j = 1; j < sats.size(); ++j) {
1116 [ + - ]: 3158 : next_sats.push_back(((sats[j] + subs[i]->ss.dsat) | (sats[j - 1] + subs[i]->ss.sat)) + add);
1117 : : }
1118 : : // Finally construct next_sats[i+1].
1119 [ + - ]: 1626 : next_sats.push_back(sats[sats.size() - 1] + subs[i]->ss.sat + add);
1120 : : // Switch over.
1121 : 1626 : sats = std::move(next_sats);
1122 : : }
1123 : : // To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both
1124 : : // cases a push of k and an OP_EQUAL follow.
1125 : : return {
1126 : 422 : sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(),
1127 : 422 : sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL()
1128 : 422 : };
1129 : 422 : }
1130 : : }
1131 : 0 : assert(false);
1132 : : }
1133 : :
1134 : 6300631 : internal::WitnessSize CalcWitnessSize() const {
1135 [ + + ]: 6300631 : const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72;
1136 [ + + ]: 6300631 : const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33;
1137 [ + + + + : 6300631 : switch (fragment) {
+ + + + +
+ + + + +
+ + + + +
- ]
1138 : 715 : case Fragment::JUST_0: return {{}, 0};
1139 : 8815 : case Fragment::JUST_1:
1140 : : case Fragment::OLDER:
1141 : 8815 : case Fragment::AFTER: return {0, {}};
1142 : 4390 : case Fragment::PK_K: return {sig_size, 1};
1143 : 657 : case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size};
1144 : 396 : case Fragment::SHA256:
1145 : : case Fragment::RIPEMD160:
1146 : : case Fragment::HASH256:
1147 : 396 : case Fragment::HASH160: return {1 + 32, {}};
1148 : 254 : case Fragment::ANDOR: {
1149 : 254 : const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)};
1150 : 254 : const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat};
1151 : 254 : return {sat, dsat};
1152 : : }
1153 : 978 : case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}};
1154 : 7210 : case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat};
1155 : 98 : case Fragment::OR_B: {
1156 : 98 : const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)};
1157 : 98 : const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat};
1158 : 98 : return {sat, dsat};
1159 : : }
1160 : 66 : case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}};
1161 : 138 : case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat};
1162 : 663 : case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)};
1163 : 181 : case Fragment::MULTI: return {k * sig_size + 1, k + 1};
1164 : 848 : case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())};
1165 : 6273553 : case Fragment::WRAP_A:
1166 : : case Fragment::WRAP_N:
1167 : : case Fragment::WRAP_S:
1168 : 6273553 : case Fragment::WRAP_C: return subs[0]->ws;
1169 : 114 : case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1};
1170 : 1117 : case Fragment::WRAP_V: return {subs[0]->ws.sat, {}};
1171 : 16 : case Fragment::WRAP_J: return {subs[0]->ws.sat, 1};
1172 : 422 : case Fragment::THRESH: {
1173 : 422 : auto sats = Vector(internal::MaxInt<uint32_t>(0));
1174 [ + - + + ]: 2048 : for (const auto& sub : subs) {
1175 [ + - ]: 1626 : auto next_sats = Vector(sats[0] + sub->ws.dsat);
1176 [ + - + + ]: 4784 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat));
1177 [ + - ]: 1626 : next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat);
1178 : 1626 : sats = std::move(next_sats);
1179 : : }
1180 [ - + ]: 422 : assert(k < sats.size());
1181 : 422 : return {sats[k], sats[0]};
1182 : 422 : }
1183 : : }
1184 : 0 : assert(false);
1185 : : }
1186 : :
1187 : : template<typename Ctx>
1188 : 7047 : internal::InputResult ProduceInput(const Ctx& ctx) const {
1189 : : using namespace internal;
1190 : :
1191 : : // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
1192 : : // given those of its subnodes.
1193 : 6571826 : auto helper = [&ctx](const Node& node, std::span<InputResult> subres) -> InputResult {
1194 [ + + - + : 6564779 : switch (node.fragment) {
+ + + + +
+ + + + -
- + + + +
+ - + + -
- + + + -
+ + - - -
+ - + + -
- - - - +
+ - + - -
- ][ + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ - ]
1195 : 376582 : case Fragment::PK_K: {
1196 : 376582 : std::vector<unsigned char> sig;
1197 [ + - + - : 376582 : Availability avail = ctx.Sign(node.keys[0], sig);
+ - + - ]
[ + - + - ]
1198 [ + - + - : 753164 : return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
+ - + - +
- + - + -
+ - ][ + -
+ - + - +
- ]
1199 : 376582 : }
1200 : 832 : case Fragment::PK_H: {
1201 : 832 : std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
1202 [ + - + - ]: 832 : Availability avail = ctx.Sign(node.keys[0], sig);
[ + - ]
1203 [ + - + - : 1664 : return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - ]
[ + - + -
+ - + - +
- + - + -
+ - + - +
- + - +
- ]
1204 : 832 : }
1205 : 967 : case Fragment::MULTI_A: {
1206 : : // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1207 : : // In the loop below, these stacks are built up using a dynamic programming approach.
1208 : 967 : std::vector<InputStack> sats = Vector(EMPTY);
1209 [ - - + + ]: 104360 : for (size_t i = 0; i < node.keys.size(); ++i) {
[ + + ]
1210 : : // Get the signature for the i'th key in reverse order (the signature for the first key needs to
1211 : : // be at the top of the stack, contrary to CHECKMULTISIG's satisfaction).
1212 : 103393 : std::vector<unsigned char> sig;
1213 [ - - - - : 103393 : Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig);
+ - + - ]
[ + - + - ]
1214 : : // Compute signature stack for just this key.
1215 [ - - - - : 206786 : auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
- - - - +
- + - + -
+ - ][ + -
+ - + - +
- ]
1216 : : // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1217 : : // next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature
1218 : : // for the current (i'th) key. The very last element needs all signatures filled.
1219 : 103393 : std::vector<InputStack> next_sats;
1220 [ - - - - : 206786 : next_sats.push_back(sats[0] + ZERO);
- - + - +
- + - ][ +
- + - +
- ]
1221 [ - - - - : 49484045 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat));
- - - - -
- - - - -
+ - + - +
- + - + -
+ - + + ]
[ + - + -
+ - + - +
- + - +
+ ]
1222 [ - - + - ]: 206786 : next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
[ + - ]
1223 : : // Switch over.
1224 : 103393 : sats = std::move(next_sats);
1225 : : }
1226 : : // The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
1227 : : // satisfying 0 keys.
1228 : 967 : auto& nsat{sats[0]};
1229 [ - - + - ]: 967 : CHECK_NONFATAL(node.k != 0);
[ + - ]
1230 [ - - - + ]: 967 : assert(node.k < sats.size());
[ - + ]
1231 : 967 : return {std::move(nsat), std::move(sats[node.k])};
1232 : 967 : }
1233 : 384 : case Fragment::MULTI: {
1234 : : // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
1235 : : // In the loop below, these stacks are built up using a dynamic programming approach.
1236 : : // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
1237 : 384 : std::vector<InputStack> sats = Vector(ZERO);
1238 [ + + - - ]: 1140 : for (size_t i = 0; i < node.keys.size(); ++i) {
[ + + ]
1239 : 756 : std::vector<unsigned char> sig;
1240 [ + - + - : 756 : Availability avail = ctx.Sign(node.keys[i], sig);
- - - - ]
[ + - + - ]
1241 : : // Compute signature stack for just the i'th key.
1242 [ + - + - : 1512 : auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
+ - + - -
- - - - -
- - ][ + -
+ - + - +
- ]
1243 : : // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
1244 : : // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
1245 : : // current (i'th) key. The very last element needs all signatures filled.
1246 [ + - - - ]: 756 : std::vector<InputStack> next_sats;
[ + - ]
1247 [ + - - - ]: 756 : next_sats.push_back(sats[0]);
[ + - ]
1248 [ + - + - : 1200 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
+ - + - +
+ - - - -
- - - - -
- ][ + - +
- + - + -
+ + ]
1249 [ + - - - ]: 1512 : next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
[ + - ]
1250 : : // Switch over.
1251 : 756 : sats = std::move(next_sats);
1252 : : }
1253 : : // The dissatisfaction consists of k+1 stack elements all equal to 0.
1254 [ + - - - ]: 384 : InputStack nsat = ZERO;
[ + - ]
1255 [ + - + - : 1116 : for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
+ + - - -
- - - ][ +
- + - +
+ ]
1256 [ - + - - ]: 384 : assert(node.k < sats.size());
[ - + ]
1257 : 768 : return {std::move(nsat), std::move(sats[node.k])};
1258 : 384 : }
1259 : 500 : case Fragment::THRESH: {
1260 : : // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
1261 : : // In the loop below, these stacks are built up using a dynamic programming approach.
1262 : : // sats[0] starts off empty.
1263 : 500 : std::vector<InputStack> sats = Vector(EMPTY);
1264 [ + + + + ]: 2250 : for (size_t i = 0; i < subres.size(); ++i) {
[ + + ]
1265 : : // Introduce an alias for the i'th last satisfaction/dissatisfaction.
1266 [ + - + - ]: 1750 : auto& res = subres[subres.size() - i - 1];
[ + - ]
1267 : : // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
1268 : : // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
1269 : : // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
1270 : 1750 : std::vector<InputStack> next_sats;
1271 [ + - + - : 3500 : next_sats.push_back(sats[0] + res.nsat);
+ - + - +
- + - ][ +
- + - +
- ]
1272 [ + - + - : 4540 : for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
+ - + - +
- + - + +
+ - + - +
- + - + -
+ - + + ]
[ + - + -
+ - + - +
- + - +
+ ]
1273 [ + - + - ]: 3500 : next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
[ + - ]
1274 : : // Switch over.
1275 : 1750 : sats = std::move(next_sats);
1276 : : }
1277 : : // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
1278 : : // is computed by gathering all sats[i].nsat for i != k.
1279 [ + - + - ]: 500 : InputStack nsat = INVALID;
[ + - ]
1280 [ + + + + ]: 2750 : for (size_t i = 0; i < sats.size(); ++i) {
[ + + ]
1281 : : // i==k is the satisfaction; i==0 is the canonical dissatisfaction;
1282 : : // the rest are non-canonical (a no-signature dissatisfaction - the i=0
1283 : : // form - is always available) and malleable (due to overcompleteness).
1284 : : // Marking the solutions malleable here is not strictly necessary, as they
1285 : : // should already never be picked in non-malleable solutions due to the
1286 : : // availability of the i=0 form.
1287 [ + + + + : 2250 : if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
+ - + - +
+ + + + -
+ - ][ + +
+ + + - +
- ]
1288 : : // Include all dissatisfactions (even these non-canonical ones) in nsat.
1289 [ + + + - : 2250 : if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
+ + + - ]
[ + + + - ]
1290 : : }
1291 [ - + - + ]: 500 : assert(node.k < sats.size());
[ - + ]
1292 : 1000 : return {std::move(nsat), std::move(sats[node.k])};
1293 : 500 : }
1294 : 37032 : case Fragment::OLDER: {
1295 [ + + + + ]: 55508 : return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
[ + + ]
1296 : : }
1297 : 1557 : case Fragment::AFTER: {
1298 [ + + - - ]: 2354 : return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
[ + + ]
1299 : : }
1300 : 521 : case Fragment::SHA256: {
1301 : 521 : std::vector<unsigned char> preimage;
1302 [ + - + - : 521 : Availability avail = ctx.SatSHA256(node.data, preimage);
- - - - ]
[ + - + - ]
1303 [ + - + - : 1042 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
+ - - - -
- - - ][ +
- + - +
- ]
1304 : 521 : }
1305 : 222 : case Fragment::RIPEMD160: {
1306 : 222 : std::vector<unsigned char> preimage;
1307 [ + - + - : 222 : Availability avail = ctx.SatRIPEMD160(node.data, preimage);
- - - - ]
[ + - + - ]
1308 [ + - + - : 444 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
+ - - - -
- - - ][ +
- + - +
- ]
1309 : 222 : }
1310 : 396 : case Fragment::HASH256: {
1311 : 396 : std::vector<unsigned char> preimage;
1312 [ + - + - : 396 : Availability avail = ctx.SatHASH256(node.data, preimage);
+ - + - ]
[ + - + - ]
1313 [ + - + - : 792 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
+ - + - +
- + - ][ +
- + - +
- ]
1314 : 396 : }
1315 : 168 : case Fragment::HASH160: {
1316 : 168 : std::vector<unsigned char> preimage;
1317 [ + - + - : 168 : Availability avail = ctx.SatHASH160(node.data, preimage);
- - - - ]
[ + - + - ]
1318 [ + - + - : 336 : return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
+ - - - -
- - - ][ +
- + - +
- ]
1319 : 168 : }
1320 : 1554 : case Fragment::AND_V: {
1321 : 1554 : auto& x = subres[0], &y = subres[1];
1322 : : // As the dissatisfaction here only consist of a single option, it doesn't
1323 : : // actually need to be listed (it's not required for reasoning about malleability of
1324 : : // other options), and is never required (no valid miniscript relies on the ability
1325 : : // to satisfy the type V left subexpression). It's still listed here for
1326 : : // completeness, as a hypothetical (not currently implemented) satisfier that doesn't
1327 : : // care about malleability might in some cases prefer it still.
1328 [ + - + - : 3108 : return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
+ - + - +
- + - + -
+ - + - +
- + - +
- ][ + - +
- + - + -
+ - + - ]
1329 : : }
1330 : 407716 : case Fragment::AND_B: {
1331 : 407716 : auto& x = subres[0], &y = subres[1];
1332 : : // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
1333 : : // as malleable. While they are definitely malleable, they are also non-canonical due
1334 : : // to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
1335 : : // option. Because of that, the 2nd and 3rd option will never be chosen, even if they
1336 : : // weren't marked as malleable.
1337 [ + - + - : 815432 : return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - ][ + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- ]
1338 : : }
1339 : 144 : case Fragment::OR_B: {
1340 : 144 : auto& x = subres[0], &z = subres[1];
1341 : : // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
1342 [ # # # # : 288 : return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # #
# ][ + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - ]
1343 : : }
1344 : 90 : case Fragment::OR_C: {
1345 : 90 : auto& x = subres[0], &z = subres[1];
1346 [ # # # # : 180 : return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
# # # # #
# # # ][ +
- + - +
- ]
1347 : : }
1348 : 322 : case Fragment::OR_D: {
1349 : 322 : auto& x = subres[0], &z = subres[1];
1350 [ + - + - : 644 : return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
+ - + - +
- + - - -
- - - - -
- - - -
- ][ + - +
- + - + -
+ - + - ]
1351 : : }
1352 : 1815 : case Fragment::OR_I: {
1353 : 1815 : auto& x = subres[0], &z = subres[1];
1354 [ + - + - : 3630 : return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - ][ +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - +
- ]
1355 : : }
1356 : 719 : case Fragment::ANDOR: {
1357 : 719 : auto& x = subres[0], &y = subres[1], &z = subres[2];
1358 [ + - + - : 1438 : return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
- ][ + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - ]
1359 : : }
1360 : 5728337 : case Fragment::WRAP_A:
1361 : : case Fragment::WRAP_S:
1362 : : case Fragment::WRAP_C:
1363 : : case Fragment::WRAP_N:
1364 : 5728337 : return std::move(subres[0]);
1365 : 125 : case Fragment::WRAP_D: {
1366 : 125 : auto &x = subres[0];
1367 [ + - + - : 250 : return {ZERO, x.sat + ONE};
+ - + - ]
[ + - + - ]
1368 : : }
1369 : 198 : case Fragment::WRAP_J: {
1370 : 198 : auto &x = subres[0];
1371 : : // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
1372 : : // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
1373 : : // if a dissatisfaction with a top zero element is found, we don't know whether another one with a
1374 : : // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
1375 : : // dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
1376 [ # # # # : 572 : return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
# # # # #
# # # # #
# # ][ + +
- + + - +
- ]
1377 : : }
1378 : 1883 : case Fragment::WRAP_V: {
1379 : 1883 : auto &x = subres[0];
1380 : 1883 : return {INVALID, std::move(x.sat)};
1381 : : }
1382 : 1743 : case Fragment::JUST_0: return {EMPTY, INVALID};
1383 : 972 : case Fragment::JUST_1: return {INVALID, EMPTY};
1384 : : }
1385 : 0 : assert(false);
1386 : : return {INVALID, INVALID};
1387 : : };
1388 : :
1389 : 6571826 : auto tester = [&helper](const Node& node, std::span<InputResult> subres) -> InputResult {
1390 : 6564779 : auto ret = helper(node, subres);
1391 : :
1392 : : // Do a consistency check between the satisfaction code and the type checker
1393 : : // (the actual satisfaction code in ProduceInputHelper does not use GetType)
1394 : :
1395 : : // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
1396 [ + + + - : 43396 : if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0);
- + - - ]
[ + + + - ]
1397 [ + + + - : 43396 : if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0);
+ + + - ]
[ + + + - ]
1398 : :
1399 : : // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
1400 [ + + + - : 5698759 : if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1);
+ + + - ]
[ + + + - ]
1401 [ + + + - : 5698759 : if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1);
+ + + - ]
[ + + + - ]
1402 : :
1403 : : // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
1404 : : // the top element cannot be 0.
1405 [ + + + - : 6070670 : if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1);
+ + + - ]
[ + + + - ]
1406 [ + + + - : 6070670 : if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1);
+ + + - ]
[ + + + - ]
1407 [ + + + - : 6070670 : if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty());
+ + + - ]
[ + + + - ]
1408 : :
1409 : : // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
1410 : : // it must be canonical.
1411 [ + - + - ]: 6447994 : if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
[ + - ]
1412 [ + - + - ]: 6447994 : if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig);
[ + - ]
1413 [ + + + - : 6447994 : if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon);
+ + + - ]
[ + + + - ]
1414 : :
1415 : : // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
1416 [ + + + - : 44041 : if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig);
+ + + - ]
[ + + + - ]
1417 [ + + + - : 6516535 : if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig);
+ + + - ]
[ + + + - ]
1418 : :
1419 : : // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
1420 [ + - + - ]: 6445010 : if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
[ + - ]
1421 [ + - + - ]: 6445010 : if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable);
[ + - ]
1422 : :
1423 : : // For 'm' nodes, if a satisfaction exists, it must be non-malleable.
1424 [ + + + - : 6563231 : if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable);
+ + + - ]
[ + + + - ]
1425 : :
1426 : : // If a non-malleable satisfaction exists, it must be canonical.
1427 [ + + + - : 6564779 : if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon);
+ - + + +
- + - ][ +
+ + + +
- ]
1428 : :
1429 : 6564779 : return ret;
1430 : 0 : };
1431 : :
1432 : 7047 : return TreeEval<InputResult>(tester);
1433 : : }
1434 : :
1435 : : public:
1436 : : /** Update duplicate key information in this Node.
1437 : : *
1438 : : * This uses a custom key comparator provided by the context in order to still detect duplicates
1439 : : * for more complicated types.
1440 : : */
1441 : 3241 : template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
1442 : : {
1443 : : // We cannot use a lambda here, as lambdas are non assignable, and the set operations
1444 : : // below require moving the comparators around.
1445 : : struct Comp {
1446 : : const Ctx* ctx_ptr;
1447 : 5967742 : Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
1448 [ - + + - : 347751 : bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
- - - - -
- - - + +
+ + - - -
- - - - -
+ + + + +
- + + + +
+ + ][ + +
+ + - - -
- - - - -
+ + + + +
+ ]
1449 : : };
1450 : :
1451 : : // state in the recursive computation:
1452 : : // - std::nullopt means "this node has duplicates"
1453 : : // - an std::set means "this node has no duplicate keys, and they are: ...".
1454 : : using keyset = std::set<Key, Comp>;
1455 : : using state = std::optional<keyset>;
1456 : :
1457 : 5970983 : auto upfn = [&ctx](const Node& node, std::span<state> subs) -> state {
1458 : : // If this node is already known to have duplicates, nothing left to do.
1459 [ - + - - ]: 5967742 : if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
[ - + - -
- + - - ]
1460 : :
1461 : : // Check if one of the children is already known to have duplicates.
1462 [ - + + + ]: 11932243 : for (auto& sub : subs) {
[ - + + +
- + + + ]
1463 [ - + ]: 5964501 : if (!sub.has_value()) {
[ - + - + ]
1464 : 0 : node.has_duplicate_keys = true;
1465 : 0 : return {};
1466 : : }
1467 : : }
1468 : :
1469 : : // Start building the set of keys involved in this node and children.
1470 : : // Start by keys in this node directly.
1471 : 5967742 : size_t keys_count = node.keys.size();
1472 : 5967742 : keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
1473 [ - + ]: 5967742 : if (key_set.size() != keys_count) {
[ - + + + ]
1474 : : // It already has duplicates; bail out.
1475 : 99 : node.has_duplicate_keys = true;
1476 : 99 : return {};
1477 : : }
1478 : :
1479 : : // Merge the keys from the children into this set.
1480 [ + + + + ]: 11932134 : for (auto& sub : subs) {
[ + + + +
+ + + + ]
1481 [ + + ]: 5964499 : keys_count += sub->size();
[ + + + + ]
1482 : : // Small optimization: std::set::merge is linear in the size of the second arg but
1483 : : // logarithmic in the size of the first.
1484 [ + + ]: 5964499 : if (key_set.size() < sub->size()) std::swap(key_set, *sub);
[ + + + + ]
1485 [ + + ]: 5964499 : key_set.merge(*sub);
[ - + - + ]
1486 [ + + ]: 5964499 : if (key_set.size() != keys_count) {
[ - + - + ]
1487 : 8 : node.has_duplicate_keys = true;
1488 : 8 : return {};
1489 : : }
1490 : : }
1491 : :
1492 : 5967635 : node.has_duplicate_keys = false;
1493 : 5967635 : return key_set;
1494 : 5967742 : };
1495 : :
1496 : 3241 : TreeEval<state>(upfn);
1497 : 3241 : }
1498 : :
1499 : : //! Return the size of the script for this expression (faster than ToScript().size()).
1500 [ - + ]: 6295963 : size_t ScriptSize() const { return scriptlen; }
[ - + + + ]
1501 : :
1502 : : //! Return the maximum number of ops needed to satisfy this script non-malleably.
1503 : 2194 : std::optional<uint32_t> GetOps() const {
1504 [ + + ]: 2194 : if (!ops.sat.valid) return {};
1505 : 2182 : return ops.count + ops.sat.value;
1506 : : }
1507 : :
1508 : : //! Return the number of ops in the script (not counting the dynamic ones that depend on execution).
1509 : : uint32_t GetStaticOps() const { return ops.count; }
1510 : :
1511 : : //! Check the ops limit of this script against the consensus limit.
1512 : 6286 : bool CheckOpsLimit() const {
1513 [ + + ]: 6286 : if (IsTapscript(m_script_ctx)) return true;
1514 [ + + ]: 2071 : if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
1515 : : return true;
1516 : : }
1517 : :
1518 : : /** Whether this node is of type B, K or W. (That is, anything but V.) */
1519 : 7082 : bool IsBKW() const {
1520 : 7082 : return !((GetType() & "BKW"_mst) == ""_mst);
1521 : : }
1522 : :
1523 : : /** Return the maximum number of stack elements needed to satisfy this script non-malleably. */
1524 : 2765 : std::optional<uint32_t> GetStackSize() const {
1525 [ + + ]: 2765 : if (!ss.sat.valid) return {};
1526 : 2752 : return ss.sat.netdiff + static_cast<int32_t>(IsBKW());
1527 : : }
1528 : :
1529 : : //! Return the maximum size of the stack during execution of this script.
1530 : 4339 : std::optional<uint32_t> GetExecStackSize() const {
1531 [ + + ]: 4339 : if (!ss.sat.valid) return {};
1532 : 4330 : return ss.sat.exec + static_cast<int32_t>(IsBKW());
1533 : : }
1534 : :
1535 : : //! Check the maximum stack size for this script against the policy limit.
1536 : 6288 : bool CheckStackSize() const {
1537 : : // Since in Tapscript there is no standardness limit on the script and witness sizes, we may run
1538 : : // into the maximum stack size while executing the script. Make sure it doesn't happen.
1539 [ + + ]: 6288 : if (IsTapscript(m_script_ctx)) {
1540 [ + + ]: 4217 : if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE;
1541 : : return true;
1542 : : }
1543 [ + + ]: 2071 : if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
1544 : : return true;
1545 : : }
1546 : :
1547 : : //! Whether no satisfaction exists for this node.
1548 [ + + ]: 137 : bool IsNotSatisfiable() const { return !GetStackSize(); }
1549 : :
1550 : : /** Return the maximum size in bytes of a witness to satisfy this script non-malleably. Note this does
1551 : : * not include the witness script push. */
1552 : 556 : std::optional<uint32_t> GetWitnessSize() const {
1553 [ - + ]: 556 : if (!ws.sat.valid) return {};
1554 : 556 : return ws.sat.value;
1555 : : }
1556 : :
1557 : : //! Return the expression type.
1558 [ + - + + ]: 87639280 : Type GetType() const { return typ; }
[ + - + -
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + -
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + +
- ][ + - +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + - ]
1559 : :
1560 : : //! Return the script context for this node.
1561 : 1293 : MiniscriptContext GetMsCtx() const { return m_script_ctx; }
1562 : :
1563 : : //! Find an insane subnode which has no insane children. Nullptr if there is none.
1564 : 15 : const Node* FindInsaneSub() const {
1565 [ + - ]: 15 : return TreeEval<const Node*>([](const Node& node, std::span<const Node*> subs) -> const Node* {
1566 [ + + + + ]: 193 : for (auto& sub: subs) if (sub) return sub;
1567 [ + + ]: 103 : if (!node.IsSaneSubexpression()) return &node;
1568 : : return nullptr;
1569 : : });
1570 : : }
1571 : :
1572 : : //! Determine whether a Miniscript node is satisfiable. fn(node) will be invoked for all
1573 : : //! key, time, and hashing nodes, and should return their satisfiability.
1574 : : template<typename F>
1575 : 375 : bool IsSatisfiable(F fn) const
1576 : : {
1577 : : // TreeEval() doesn't support bool as NodeType, so use int instead.
1578 [ + - ]: 375 : return TreeEval<int>([&fn](const Node& node, std::span<int> subs) -> bool {
1579 [ + + + + : 25413 : switch (node.fragment) {
+ + + + ]
1580 : : case Fragment::JUST_0:
1581 : : return false;
1582 : 231 : case Fragment::JUST_1:
1583 : 231 : return true;
1584 : 7935 : case Fragment::PK_K:
1585 : : case Fragment::PK_H:
1586 : : case Fragment::MULTI:
1587 : : case Fragment::MULTI_A:
1588 : : case Fragment::AFTER:
1589 : : case Fragment::OLDER:
1590 : : case Fragment::HASH256:
1591 : : case Fragment::HASH160:
1592 : : case Fragment::SHA256:
1593 : : case Fragment::RIPEMD160:
1594 : 7935 : return bool{fn(node)};
1595 [ + + ]: 87 : case Fragment::ANDOR:
1596 [ + + - + : 87 : return (subs[0] && subs[1]) || subs[2];
+ - ]
1597 [ + - ]: 7452 : case Fragment::AND_V:
1598 : : case Fragment::AND_B:
1599 [ + - - + ]: 7452 : return subs[0] && subs[1];
1600 [ + + ]: 324 : case Fragment::OR_B:
1601 : : case Fragment::OR_C:
1602 : : case Fragment::OR_D:
1603 : : case Fragment::OR_I:
1604 [ + + + + ]: 324 : return subs[0] || subs[1];
1605 : 48 : case Fragment::THRESH:
1606 : 48 : return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
1607 [ - + ]: 9087 : default: // wrappers
1608 [ - + ]: 9087 : assert(subs.size() >= 1);
1609 : 9087 : CHECK_NONFATAL(subs.size() == 1);
1610 : 9087 : return subs[0];
1611 : : }
1612 [ + - ]: 375 : });
1613 : : }
1614 : :
1615 : : //! Check whether this node is valid at all.
1616 : 5653011 : bool IsValid() const {
1617 [ + + ]: 5653011 : if (GetType() == ""_mst) return false;
1618 : 11305888 : return ScriptSize() <= internal::MaxScriptSize(m_script_ctx);
1619 : : }
1620 : :
1621 : : //! Check whether this node is valid as a script on its own.
1622 [ + + - + ]: 8941 : bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
1623 : :
1624 : : //! Check whether this script can always be satisfied in a non-malleable way.
1625 : 6124 : bool IsNonMalleable() const { return GetType() << "m"_mst; }
1626 : :
1627 : : //! Check whether this script always needs a signature.
1628 : 4684 : bool NeedsSignature() const { return GetType() << "s"_mst; }
1629 : :
1630 : : //! Check whether there is no satisfaction path that contains both timelocks and heightlocks
1631 : 4952 : bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
1632 : :
1633 : : //! Check whether there is no duplicate key across this fragment and all its sub-fragments.
1634 [ + - + + : 4689 : bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
+ - - + ]
[ + - + +
+ - - + +
- - + + -
- + + - -
+ + - +
- ]
1635 : :
1636 : : //! Whether successful non-malleable satisfactions are guaranteed to be valid.
1637 [ + + + - : 6287 : bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
+ + ]
1638 : :
1639 : : //! Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe script on its own.
1640 [ + + + + : 6015 : bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
+ + ]
1641 : :
1642 : : //! Check whether this node is safe as a script on its own.
1643 [ + + + + : 5916 : bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
+ + ]
1644 : :
1645 : : //! Produce a witness for this script, if possible and given the information available in the context.
1646 : : //! The non-malleable satisfaction is guaranteed to be valid if it exists, and ValidSatisfaction()
1647 : : //! is true. If IsSane() holds, this satisfaction is guaranteed to succeed in case the node's
1648 : : //! conditions are satisfied (private keys and hash preimages available, locktimes satisfied).
1649 : : template<typename Ctx>
1650 : 7047 : Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
1651 : 7047 : auto ret = ProduceInput(ctx);
1652 [ + + + + : 7047 : if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
+ + ]
1653 : 3441 : stack = std::move(ret.sat.stack);
1654 : 3441 : return ret.sat.available;
1655 : 7047 : }
1656 : :
1657 : : //! Equality testing.
1658 : : bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
1659 : :
1660 : : // Constructors with various argument combinations, which bypass the duplicate key check.
1661 : : Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1662 : : : fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1663 : 360 : Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1664 [ + - + - : 360 : : fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ - + - +
- ]
1665 : : Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
1666 : : : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
1667 : 5730 : Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
1668 [ + - + - : 5730 : : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ - + - +
- ]
1669 : 5954291 : Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
1670 [ + - + - : 5954291 : : fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ - + - +
- ]
1671 : 9405 : Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val = 0)
1672 [ + - + - : 9405 : : fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
+ - + - +
- ]
1673 : :
1674 : : // Constructors with various argument combinations, which do perform the duplicate key check.
1675 : : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0)
1676 : : : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
1677 : : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
1678 : : : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
1679 : : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0)
1680 : : : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
1681 : : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0)
1682 : : : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
1683 : : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0)
1684 : : : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
1685 : : template <typename Ctx> Node(const Ctx& ctx, Fragment nt, uint32_t val = 0)
1686 : : : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); }
1687 : :
1688 : : // Delete copy constructor and assignment operator, use Clone() instead
1689 : : Node(const Node&) = delete;
1690 : : Node& operator=(const Node&) = delete;
1691 : : };
1692 : :
1693 : : namespace internal {
1694 : :
1695 : : enum class ParseContext {
1696 : : /** An expression which may be begin with wrappers followed by a colon. */
1697 : : WRAPPED_EXPR,
1698 : : /** A miniscript expression which does not begin with wrappers. */
1699 : : EXPR,
1700 : :
1701 : : /** SWAP wraps the top constructed node with s: */
1702 : : SWAP,
1703 : : /** ALT wraps the top constructed node with a: */
1704 : : ALT,
1705 : : /** CHECK wraps the top constructed node with c: */
1706 : : CHECK,
1707 : : /** DUP_IF wraps the top constructed node with d: */
1708 : : DUP_IF,
1709 : : /** VERIFY wraps the top constructed node with v: */
1710 : : VERIFY,
1711 : : /** NON_ZERO wraps the top constructed node with j: */
1712 : : NON_ZERO,
1713 : : /** ZERO_NOTEQUAL wraps the top constructed node with n: */
1714 : : ZERO_NOTEQUAL,
1715 : : /** WRAP_U will construct an or_i(X,0) node from the top constructed node. */
1716 : : WRAP_U,
1717 : : /** WRAP_T will construct an and_v(X,1) node from the top constructed node. */
1718 : : WRAP_T,
1719 : :
1720 : : /** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */
1721 : : AND_N,
1722 : : /** AND_V will construct an and_v node from the last two constructed nodes. */
1723 : : AND_V,
1724 : : /** AND_B will construct an and_b node from the last two constructed nodes. */
1725 : : AND_B,
1726 : : /** ANDOR will construct an andor node from the last three constructed nodes. */
1727 : : ANDOR,
1728 : : /** OR_B will construct an or_b node from the last two constructed nodes. */
1729 : : OR_B,
1730 : : /** OR_C will construct an or_c node from the last two constructed nodes. */
1731 : : OR_C,
1732 : : /** OR_D will construct an or_d node from the last two constructed nodes. */
1733 : : OR_D,
1734 : : /** OR_I will construct an or_i node from the last two constructed nodes. */
1735 : : OR_I,
1736 : :
1737 : : /** THRESH will read a wrapped expression, and then look for a COMMA. If
1738 : : * no comma follows, it will construct a thresh node from the appropriate
1739 : : * number of constructed children. Otherwise, it will recurse with another
1740 : : * THRESH. */
1741 : : THRESH,
1742 : :
1743 : : /** COMMA expects the next element to be ',' and fails if not. */
1744 : : COMMA,
1745 : : /** CLOSE_BRACKET expects the next element to be ')' and fails if not. */
1746 : : CLOSE_BRACKET,
1747 : : };
1748 : :
1749 : : int FindNextChar(std::span<const char> in, const char m);
1750 : :
1751 : : /** Parse a key string ending at the end of the fragment's text representation. */
1752 : : template<typename Key, typename Ctx>
1753 : 1134 : std::optional<std::pair<Key, int>> ParseKeyEnd(std::span<const char> in, const Ctx& ctx)
1754 : : {
1755 : 1134 : int key_size = FindNextChar(in, ')');
1756 [ - + ]: 1134 : if (key_size < 1) return {};
1757 [ + + ]: 1134 : auto key = ctx.FromString(in.begin(), in.begin() + key_size);
1758 [ + + ]: 1134 : if (!key) return {};
1759 : 1132 : return {{std::move(*key), key_size}};
1760 : : }
1761 : :
1762 : : /** Parse a hex string ending at the end of the fragment's text representation. */
1763 : : template<typename Ctx>
1764 : 88 : std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(std::span<const char> in, const size_t expected_size,
1765 : : const Ctx& ctx)
1766 : : {
1767 : 88 : int hash_size = FindNextChar(in, ')');
1768 [ - + ]: 88 : if (hash_size < 1) return {};
1769 [ + - ]: 88 : std::string val = std::string(in.begin(), in.begin() + hash_size);
1770 [ + - - + ]: 88 : if (!IsHex(val)) return {};
1771 [ + - ]: 88 : auto hash = ParseHex(val);
1772 [ - + ]: 88 : if (hash.size() != expected_size) return {};
1773 : 88 : return {{std::move(hash), hash_size}};
1774 : 176 : }
1775 : :
1776 : : /** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */
1777 : : template<typename Key>
1778 : 8861 : void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
1779 : : {
1780 : 8861 : NodeRef<Key> child = std::move(constructed.back());
1781 : 8861 : constructed.pop_back();
1782 [ + + ]: 8861 : if (reverse) {
1783 [ + - + - ]: 4029 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back())));
1784 : : } else {
1785 [ + - + - ]: 4832 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child)));
1786 : : }
1787 : 8861 : }
1788 : :
1789 : : /**
1790 : : * Parse a miniscript from its textual descriptor form.
1791 : : * This does not check whether the script is valid, let alone sane. The caller is expected to use
1792 : : * the `IsValidTopLevel()` and `IsSaneTopLevel()` to check for these properties on the node.
1793 : : */
1794 : : template<typename Key, typename Ctx>
1795 : 715 : inline NodeRef<Key> Parse(std::span<const char> in, const Ctx& ctx)
1796 : : {
1797 : : using namespace script;
1798 : :
1799 : : // Account for the minimum script size for all parsed fragments so far. It "borrows" 1
1800 : : // script byte from all leaf nodes, counting it instead whenever a space for a recursive
1801 : : // expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
1802 : : // increment the script_size by at least one, except for:
1803 : : // - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
1804 : : // This is not an issue however, as "space" for them has to be created by combinators,
1805 : : // which do increment script_size.
1806 : : // - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
1807 : : // (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
1808 : : // to be interleaved with other fragments to be valid, so this is not a concern.
1809 : 715 : size_t script_size{1};
1810 : 715 : size_t max_size{internal::MaxScriptSize(ctx.MsContext())};
1811 : :
1812 : : // The two integers are used to hold state for thresh()
1813 : 715 : std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
1814 : 715 : std::vector<NodeRef<Key>> constructed;
1815 : :
1816 [ + - ]: 715 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
1817 : :
1818 : : // Parses a multi() or multi_a() from its string representation. Returns false on parsing error.
1819 : 773 : const auto parse_multi_exp = [&](std::span<const char>& in, const bool is_multi_a) -> bool {
1820 [ + + ]: 58 : const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG};
1821 : 58 : const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH};
1822 [ + + ]: 58 : if (ctx.MsContext() != required_ctx) return false;
1823 : : // Get threshold
1824 : 46 : int next_comma = FindNextChar(in, ',');
1825 [ + - ]: 46 : if (next_comma < 1) return false;
1826 [ + + ]: 46 : const auto k_to_integral{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
1827 [ + + ]: 46 : if (!k_to_integral.has_value()) return false;
1828 : 45 : const int64_t k{k_to_integral.value()};
1829 : 45 : in = in.subspan(next_comma + 1);
1830 : : // Get keys. It is compatible for both compressed and x-only keys.
1831 : 45 : std::vector<Key> keys;
1832 [ + + ]: 172 : while (next_comma != -1) {
1833 [ + - ]: 127 : next_comma = FindNextChar(in, ',');
1834 [ + + + - ]: 127 : int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
1835 [ + - ]: 127 : if (key_length < 1) return false;
1836 [ + - ]: 127 : auto key = ctx.FromString(in.begin(), in.begin() + key_length);
1837 [ + - ]: 127 : if (!key) return false;
1838 [ + - ]: 127 : keys.push_back(std::move(*key));
1839 : 127 : in = in.subspan(key_length + 1);
1840 : : }
1841 [ + - + - ]: 45 : if (keys.size() < 1 || keys.size() > max_keys) return false;
1842 [ + - + - ]: 45 : if (k < 1 || k > (int64_t)keys.size()) return false;
1843 [ + + ]: 45 : if (is_multi_a) {
1844 : : // (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one.
1845 [ + - ]: 32 : script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size();
1846 [ + - ]: 32 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k));
1847 : : } else {
1848 [ + - ]: 29 : script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
1849 [ + - ]: 58 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k));
1850 : : }
1851 : : return true;
1852 : 45 : };
1853 : :
1854 [ + + ]: 380307 : while (!to_parse.empty()) {
1855 [ + + ]: 379248 : if (script_size > max_size) return {};
1856 : :
1857 : : // Get the current context we are decoding within
1858 [ + + + + : 379242 : auto [cur_context, n, k] = to_parse.back();
+ + + + +
+ + + + +
+ + + + +
+ + + - ]
1859 : 379242 : to_parse.pop_back();
1860 : :
1861 [ + + + + : 379242 : switch (cur_context) {
+ + + + +
+ + + + +
+ + + + +
+ + + - ]
1862 : 14096 : case ParseContext::WRAPPED_EXPR: {
1863 : 14096 : std::optional<size_t> colon_index{};
1864 [ + + ]: 698343 : for (size_t i = 1; i < in.size(); ++i) {
1865 [ + + ]: 698328 : if (in[i] == ':') {
1866 : 6721 : colon_index = i;
1867 : 6721 : break;
1868 : : }
1869 [ + + + - ]: 691607 : if (in[i] < 'a' || in[i] > 'z') break;
1870 : : }
1871 : : // If there is no colon, this loop won't execute
1872 : : bool last_was_v{false};
1873 [ + + + + ]: 679868 : for (size_t j = 0; colon_index && j < *colon_index; ++j) {
1874 [ - + ]: 665772 : if (script_size > max_size) return {};
1875 [ + + + + : 665772 : if (in[j] == 'a') {
+ + + + +
+ - ]
1876 : 6286 : script_size += 2;
1877 [ + - ]: 6286 : to_parse.emplace_back(ParseContext::ALT, -1, -1);
1878 : : } else if (in[j] == 's') {
1879 : 84 : script_size += 1;
1880 [ + - ]: 84 : to_parse.emplace_back(ParseContext::SWAP, -1, -1);
1881 : : } else if (in[j] == 'c') {
1882 : 66 : script_size += 1;
1883 [ + - ]: 66 : to_parse.emplace_back(ParseContext::CHECK, -1, -1);
1884 : : } else if (in[j] == 'd') {
1885 : 18 : script_size += 3;
1886 [ + - ]: 18 : to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
1887 : : } else if (in[j] == 'j') {
1888 : 10 : script_size += 4;
1889 [ + - ]: 10 : to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
1890 : : } else if (in[j] == 'n') {
1891 : 658941 : script_size += 1;
1892 [ + - ]: 658941 : to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
1893 : : } else if (in[j] == 'v') {
1894 : : // do not permit "...vv...:"; it's not valid, and also doesn't trigger early
1895 : : // failure as script_size isn't incremented.
1896 [ - + ]: 233 : if (last_was_v) return {};
1897 [ + - ]: 233 : to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
1898 : : } else if (in[j] == 'u') {
1899 : 23 : script_size += 4;
1900 [ + - ]: 23 : to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
1901 : : } else if (in[j] == 't') {
1902 : 46 : script_size += 1;
1903 [ + - ]: 46 : to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
1904 : : } else if (in[j] == 'l') {
1905 : : // The l: wrapper is equivalent to or_i(0,X)
1906 : 65 : script_size += 4;
1907 [ + - ]: 130 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
1908 [ + - ]: 65 : to_parse.emplace_back(ParseContext::OR_I, -1, -1);
1909 : : } else {
1910 : 0 : return {};
1911 : : }
1912 : 665772 : last_was_v = (in[j] == 'v');
1913 : : }
1914 [ + - ]: 14096 : to_parse.emplace_back(ParseContext::EXPR, -1, -1);
1915 [ + + ]: 14096 : if (colon_index) in = in.subspan(*colon_index + 1);
1916 : : break;
1917 : : }
1918 [ + - ]: 14094 : case ParseContext::EXPR: {
1919 [ + - + - : 14094 : if (Const("0", in)) {
+ + ]
1920 [ + - ]: 118 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
1921 [ + - + - : 14035 : } else if (Const("1", in)) {
+ + ]
1922 [ + - ]: 230 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
1923 [ + - + - : 13920 : } else if (Const("pk(", in)) {
+ + ]
1924 [ + - ]: 954 : auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
1925 [ - + ]: 954 : if (!res) return {};
1926 [ + - ]: 954 : auto& [key, key_size] = *res;
1927 [ + - + - : 1908 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))))));
+ - + - ]
1928 : 954 : in = in.subspan(key_size + 1);
1929 [ + + ]: 1374 : script_size += IsTapscript(ctx.MsContext()) ? 33 : 34;
1930 [ + - + - : 12966 : } else if (Const("pkh(", in)) {
+ + ]
1931 [ + - ]: 82 : auto res = ParseKeyEnd<Key>(in, ctx);
1932 [ - + ]: 82 : if (!res) return {};
1933 [ + - ]: 82 : auto& [key, key_size] = *res;
1934 [ + - + - : 164 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))))));
+ - + - ]
1935 : 82 : in = in.subspan(key_size + 1);
1936 : 82 : script_size += 24;
1937 [ + - + - : 12884 : } else if (Const("pk_k(", in)) {
+ + ]
1938 [ + - ]: 73 : auto res = ParseKeyEnd<Key>(in, ctx);
1939 [ + + ]: 73 : if (!res) return {};
1940 [ + - ]: 71 : auto& [key, key_size] = *res;
1941 [ + - + - ]: 142 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key))));
1942 : 71 : in = in.subspan(key_size + 1);
1943 [ + + ]: 114 : script_size += IsTapscript(ctx.MsContext()) ? 32 : 33;
1944 [ + - + - : 12811 : } else if (Const("pk_h(", in)) {
+ + ]
1945 [ + - ]: 25 : auto res = ParseKeyEnd<Key>(in, ctx);
1946 [ - + ]: 25 : if (!res) return {};
1947 [ + - ]: 25 : auto& [key, key_size] = *res;
1948 [ + - + - ]: 50 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key))));
1949 : 25 : in = in.subspan(key_size + 1);
1950 : 25 : script_size += 23;
1951 [ + - + - : 12786 : } else if (Const("sha256(", in)) {
+ + ]
1952 [ + - ]: 30 : auto res = ParseHexStrEnd(in, 32, ctx);
1953 [ - + ]: 30 : if (!res) return {};
1954 [ + - ]: 30 : auto& [hash, hash_size] = *res;
1955 [ + - ]: 60 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash)));
1956 : 30 : in = in.subspan(hash_size + 1);
1957 : 30 : script_size += 38;
1958 [ + - + - : 12786 : } else if (Const("ripemd160(", in)) {
+ + ]
1959 [ + - ]: 14 : auto res = ParseHexStrEnd(in, 20, ctx);
1960 [ - + ]: 14 : if (!res) return {};
1961 [ + - ]: 14 : auto& [hash, hash_size] = *res;
1962 [ + - ]: 28 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash)));
1963 : 14 : in = in.subspan(hash_size + 1);
1964 : 14 : script_size += 26;
1965 [ + - + - : 12756 : } else if (Const("hash256(", in)) {
+ + ]
1966 [ + - ]: 22 : auto res = ParseHexStrEnd(in, 32, ctx);
1967 [ - + ]: 22 : if (!res) return {};
1968 [ + - ]: 22 : auto& [hash, hash_size] = *res;
1969 [ + - ]: 44 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash)));
1970 : 22 : in = in.subspan(hash_size + 1);
1971 : 22 : script_size += 38;
1972 [ + - + - : 12742 : } else if (Const("hash160(", in)) {
+ + ]
1973 [ + - ]: 22 : auto res = ParseHexStrEnd(in, 20, ctx);
1974 [ - + ]: 22 : if (!res) return {};
1975 [ + - ]: 22 : auto& [hash, hash_size] = *res;
1976 [ + - ]: 44 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash)));
1977 : 22 : in = in.subspan(hash_size + 1);
1978 : 22 : script_size += 26;
1979 [ + - + - : 12720 : } else if (Const("after(", in)) {
+ + ]
1980 [ + - ]: 115 : int arg_size = FindNextChar(in, ')');
1981 [ - + ]: 115 : if (arg_size < 1) return {};
1982 [ + + ]: 115 : const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
1983 [ + + + + : 115 : if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
+ + ]
1984 [ + - ]: 218 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
1985 [ + + ]: 109 : in = in.subspan(arg_size + 1);
1986 [ + + ]: 131 : script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
1987 [ + - + - : 12583 : } else if (Const("older(", in)) {
+ + ]
1988 [ + - ]: 5548 : int arg_size = FindNextChar(in, ')');
1989 [ - + ]: 5548 : if (arg_size < 1) return {};
1990 [ + - ]: 5548 : const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
1991 [ + - + + : 5548 : if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
+ + ]
1992 [ + - ]: 11088 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
1993 [ + + ]: 5544 : in = in.subspan(arg_size + 1);
1994 [ + + ]: 11039 : script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
1995 [ + - + - : 7035 : } else if (Const("multi(", in)) {
+ + ]
1996 [ + - + + ]: 40 : if (!parse_multi_exp(in, /* is_multi_a = */false)) return {};
1997 [ + - + - : 6995 : } else if (Const("multi_a(", in)) {
+ + ]
1998 [ + - + + ]: 18 : if (!parse_multi_exp(in, /* is_multi_a = */true)) return {};
1999 [ + - + - : 6977 : } else if (Const("thresh(", in)) {
+ + ]
2000 [ + - ]: 60 : int next_comma = FindNextChar(in, ',');
2001 [ - + ]: 60 : if (next_comma < 1) return {};
2002 [ + - ]: 60 : const auto k{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
2003 [ + - + + ]: 60 : if (!k.has_value() || *k < 1) return {};
2004 [ + - ]: 57 : in = in.subspan(next_comma + 1);
2005 : : // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
2006 [ + - ]: 57 : to_parse.emplace_back(ParseContext::THRESH, 1, *k);
2007 [ + - ]: 57 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2008 [ + - ]: 114 : script_size += 2 + (*k > 16) + (*k > 0x7f) + (*k > 0x7fff) + (*k > 0x7fffff);
2009 [ + - + - : 6917 : } else if (Const("andor(", in)) {
+ + ]
2010 [ + - ]: 55 : to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
2011 [ + - ]: 55 : to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
2012 [ + - ]: 55 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2013 [ + - ]: 55 : to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2014 [ + - ]: 55 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2015 [ + - ]: 55 : to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2016 [ + - ]: 55 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2017 : 55 : script_size += 5;
2018 : : } else {
2019 [ + - + - : 6862 : if (Const("and_n(", in)) {
+ + ]
2020 [ + - ]: 16 : to_parse.emplace_back(ParseContext::AND_N, -1, -1);
2021 : 16 : script_size += 5;
2022 [ + - + - : 6846 : } else if (Const("and_b(", in)) {
+ + ]
2023 [ + - ]: 6194 : to_parse.emplace_back(ParseContext::AND_B, -1, -1);
2024 : 6194 : script_size += 2;
2025 [ + - + - : 652 : } else if (Const("and_v(", in)) {
+ + ]
2026 [ + - ]: 157 : to_parse.emplace_back(ParseContext::AND_V, -1, -1);
2027 : 157 : script_size += 1;
2028 [ + - + - : 495 : } else if (Const("or_b(", in)) {
+ + ]
2029 [ + - ]: 45 : to_parse.emplace_back(ParseContext::OR_B, -1, -1);
2030 : 45 : script_size += 2;
2031 [ + - + - : 450 : } else if (Const("or_c(", in)) {
+ + ]
2032 [ + - ]: 28 : to_parse.emplace_back(ParseContext::OR_C, -1, -1);
2033 : 28 : script_size += 3;
2034 [ + - + - : 422 : } else if (Const("or_d(", in)) {
+ + ]
2035 [ + - ]: 42 : to_parse.emplace_back(ParseContext::OR_D, -1, -1);
2036 : 42 : script_size += 4;
2037 [ + - + - : 380 : } else if (Const("or_i(", in)) {
+ + ]
2038 [ + - ]: 45 : to_parse.emplace_back(ParseContext::OR_I, -1, -1);
2039 : 45 : script_size += 4;
2040 : : } else {
2041 : 335 : return {};
2042 : : }
2043 [ + - ]: 6527 : to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
2044 [ + - ]: 6527 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2045 [ + - ]: 6527 : to_parse.emplace_back(ParseContext::COMMA, -1, -1);
2046 [ + - ]: 6527 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2047 : : }
2048 : : break;
2049 : : }
2050 : 4564 : case ParseContext::ALT: {
2051 [ + - + - ]: 4564 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
2052 : 4564 : break;
2053 : : }
2054 : 84 : case ParseContext::SWAP: {
2055 [ + - + - ]: 84 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
2056 : 84 : break;
2057 : : }
2058 : 62 : case ParseContext::CHECK: {
2059 [ + - + - ]: 62 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
2060 : 62 : break;
2061 : : }
2062 : 18 : case ParseContext::DUP_IF: {
2063 [ + - + - ]: 18 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
2064 : 18 : break;
2065 : : }
2066 : 8 : case ParseContext::NON_ZERO: {
2067 [ + - + - ]: 8 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
2068 : 8 : break;
2069 : : }
2070 : 329491 : case ParseContext::ZERO_NOTEQUAL: {
2071 [ + - + - ]: 329491 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
2072 : 329491 : break;
2073 : : }
2074 : 227 : case ParseContext::VERIFY: {
2075 [ + - ]: 227 : script_size += (constructed.back()->GetType() << "x"_mst);
2076 [ + - + - ]: 227 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
2077 : 227 : break;
2078 : : }
2079 : 16 : case ParseContext::WRAP_U: {
2080 [ + - + - : 16 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
+ - ]
2081 : 16 : break;
2082 : : }
2083 : 45 : case ParseContext::WRAP_T: {
2084 [ + - + - : 45 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1)));
+ - ]
2085 : 45 : break;
2086 : : }
2087 [ + - ]: 4468 : case ParseContext::AND_B: {
2088 [ + - ]: 4468 : BuildBack(ctx.MsContext(), Fragment::AND_B, constructed);
2089 : : break;
2090 : : }
2091 : 16 : case ParseContext::AND_N: {
2092 : 16 : auto mid = std::move(constructed.back());
2093 : 16 : constructed.pop_back();
2094 [ + - + - : 16 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)));
+ - ]
2095 : : break;
2096 : 16 : }
2097 [ + - ]: 148 : case ParseContext::AND_V: {
2098 [ + - ]: 148 : BuildBack(ctx.MsContext(), Fragment::AND_V, constructed);
2099 : : break;
2100 : : }
2101 [ + - ]: 44 : case ParseContext::OR_B: {
2102 [ + - ]: 44 : BuildBack(ctx.MsContext(), Fragment::OR_B, constructed);
2103 : : break;
2104 : : }
2105 [ + - ]: 26 : case ParseContext::OR_C: {
2106 [ + - ]: 26 : BuildBack(ctx.MsContext(), Fragment::OR_C, constructed);
2107 : : break;
2108 : : }
2109 [ + - ]: 41 : case ParseContext::OR_D: {
2110 [ + - ]: 41 : BuildBack(ctx.MsContext(), Fragment::OR_D, constructed);
2111 : : break;
2112 : : }
2113 [ + - ]: 105 : case ParseContext::OR_I: {
2114 [ + - ]: 105 : BuildBack(ctx.MsContext(), Fragment::OR_I, constructed);
2115 : : break;
2116 : : }
2117 : 52 : case ParseContext::ANDOR: {
2118 : 52 : auto right = std::move(constructed.back());
2119 : 52 : constructed.pop_back();
2120 : 52 : auto mid = std::move(constructed.back());
2121 : 52 : constructed.pop_back();
2122 [ + - + - ]: 52 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
2123 : : break;
2124 : 52 : }
2125 [ - + ]: 178 : case ParseContext::THRESH: {
2126 [ - + ]: 178 : if (in.size() < 1) return {};
2127 [ + + ]: 178 : if (in[0] == ',') {
2128 : 122 : in = in.subspan(1);
2129 [ + - ]: 122 : to_parse.emplace_back(ParseContext::THRESH, n+1, k);
2130 [ + - ]: 122 : to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
2131 : 122 : script_size += 2;
2132 [ + - ]: 56 : } else if (in[0] == ')') {
2133 [ + + ]: 56 : if (k > n) return {};
2134 : 54 : in = in.subspan(1);
2135 : : // Children are constructed in reverse order, so iterate from end to beginning
2136 : 54 : std::vector<NodeRef<Key>> subs;
2137 [ + + ]: 228 : for (int i = 0; i < n; ++i) {
2138 [ + - ]: 174 : subs.push_back(std::move(constructed.back()));
2139 : 174 : constructed.pop_back();
2140 : : }
2141 : 54 : std::reverse(subs.begin(), subs.end());
2142 [ + - ]: 108 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
2143 : 54 : } else {
2144 : 0 : return {};
2145 : : }
2146 : : break;
2147 : : }
2148 [ + - ]: 6620 : case ParseContext::COMMA: {
2149 [ + - + - ]: 6620 : if (in.size() < 1 || in[0] != ',') return {};
2150 : 6620 : in = in.subspan(1);
2151 : 6620 : break;
2152 : : }
2153 [ + - ]: 4839 : case ParseContext::CLOSE_BRACKET: {
2154 [ + - + - ]: 4839 : if (in.size() < 1 || in[0] != ')') return {};
2155 : 4839 : in = in.subspan(1);
2156 : 4839 : break;
2157 : : }
2158 : : }
2159 : : }
2160 : :
2161 : : // Sanity checks on the produced miniscript
2162 [ - + ]: 344 : assert(constructed.size() >= 1);
2163 [ + - ]: 344 : CHECK_NONFATAL(constructed.size() == 1);
2164 [ - + ]: 344 : assert(constructed[0]->ScriptSize() == script_size);
2165 [ + + ]: 344 : if (in.size() > 0) return {};
2166 [ + - ]: 341 : NodeRef<Key> tl_node = std::move(constructed.front());
2167 [ + - ]: 341 : tl_node->DuplicateKeyCheck(ctx);
2168 : 341 : return tl_node;
2169 : 715 : }
2170 : :
2171 : : /** Decode a script into opcode/push pairs.
2172 : : *
2173 : : * Construct a vector with one element per opcode in the script, in reverse order.
2174 : : * Each element is a pair consisting of the opcode, as well as the data pushed by
2175 : : * the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY,
2176 : : * OP_NUMEQUALVERIFY and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG,
2177 : : * OP_EQUAL and OP_NUMEQUAL respectively, plus OP_VERIFY.
2178 : : */
2179 : : std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
2180 : :
2181 : : /** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */
2182 : : std::optional<int64_t> ParseScriptNumber(const Opcode& in);
2183 : :
2184 : : enum class DecodeContext {
2185 : : /** A single expression of type B, K, or V. Specifically, this can't be an
2186 : : * and_v or an expression of type W (a: and s: wrappers). */
2187 : : SINGLE_BKV_EXPR,
2188 : : /** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple)
2189 : : * and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */
2190 : : BKV_EXPR,
2191 : : /** An expression of type W (a: or s: wrappers). */
2192 : : W_EXPR,
2193 : :
2194 : : /** SWAP expects the next element to be OP_SWAP (inside a W-type expression that
2195 : : * didn't end with FROMALTSTACK), and wraps the top of the constructed stack
2196 : : * with s: */
2197 : : SWAP,
2198 : : /** ALT expects the next element to be TOALTSTACK (we must have already read a
2199 : : * FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */
2200 : : ALT,
2201 : : /** CHECK wraps the top constructed node with c: */
2202 : : CHECK,
2203 : : /** DUP_IF wraps the top constructed node with d: */
2204 : : DUP_IF,
2205 : : /** VERIFY wraps the top constructed node with v: */
2206 : : VERIFY,
2207 : : /** NON_ZERO wraps the top constructed node with j: */
2208 : : NON_ZERO,
2209 : : /** ZERO_NOTEQUAL wraps the top constructed node with n: */
2210 : : ZERO_NOTEQUAL,
2211 : :
2212 : : /** MAYBE_AND_V will check if the next part of the script could be a valid
2213 : : * miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR
2214 : : * to decode it and construct the and_v node. This is recursive, to deal with
2215 : : * multiple and_v nodes inside each other. */
2216 : : MAYBE_AND_V,
2217 : : /** AND_V will construct an and_v node from the last two constructed nodes. */
2218 : : AND_V,
2219 : : /** AND_B will construct an and_b node from the last two constructed nodes. */
2220 : : AND_B,
2221 : : /** ANDOR will construct an andor node from the last three constructed nodes. */
2222 : : ANDOR,
2223 : : /** OR_B will construct an or_b node from the last two constructed nodes. */
2224 : : OR_B,
2225 : : /** OR_C will construct an or_c node from the last two constructed nodes. */
2226 : : OR_C,
2227 : : /** OR_D will construct an or_d node from the last two constructed nodes. */
2228 : : OR_D,
2229 : :
2230 : : /** In a thresh expression, all sub-expressions other than the first are W-type,
2231 : : * and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR
2232 : : * or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */
2233 : : THRESH_W,
2234 : : /** THRESH_E constructs a thresh node from the appropriate number of constructed
2235 : : * children. */
2236 : : THRESH_E,
2237 : :
2238 : : /** ENDIF signals that we are inside some sort of OP_IF structure, which could be
2239 : : * or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read
2240 : : * a BKV_EXPR and then deal with the next opcode case-by-case. */
2241 : : ENDIF,
2242 : : /** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE,
2243 : : * we could either be in an or_d or an or_c node. We then check for IFDUP to
2244 : : * distinguish these cases. */
2245 : : ENDIF_NOTIF,
2246 : : /** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an
2247 : : * or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an
2248 : : * OP_NOTIF. */
2249 : : ENDIF_ELSE,
2250 : : };
2251 : :
2252 : : //! Parse a miniscript from a bitcoin script
2253 : : template<typename Key, typename Ctx, typename I>
2254 : 2919 : inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
2255 : : {
2256 : : // The two integers are used to hold state for thresh()
2257 : 2919 : std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
2258 : 2919 : std::vector<NodeRef<Key>> constructed;
2259 : :
2260 : : // This is the top level, so we assume the type is B
2261 : : // (in particular, disallowing top level W expressions)
2262 [ + - ]: 2919 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2263 : :
2264 [ + + ]: 11258275 : while (!to_parse.empty()) {
2265 : : // Exit early if the Miniscript is not going to be valid.
2266 [ + + - + ]: 11255375 : if (!constructed.empty() && !constructed.back()->IsValid()) return {};
2267 : :
2268 : : // Get the current context we are decoding within
2269 [ + + + + : 11255375 : auto [cur_context, n, k] = to_parse.back();
+ + + + +
+ + + + +
+ + + + +
+ + + - ]
2270 : 11255375 : to_parse.pop_back();
2271 : :
2272 [ + + + + : 11255375 : switch(cur_context) {
+ + + + +
+ + + + +
+ + + + +
+ + + - ]
2273 [ + + ]: 5617647 : case DecodeContext::SINGLE_BKV_EXPR: {
2274 [ + + ]: 5617647 : if (in >= last) return {};
2275 : :
2276 : : // Constants
2277 [ + + ]: 5617646 : if (in[0].first == OP_1) {
2278 : 80 : ++in;
2279 [ + - ]: 160 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1));
2280 : 80 : break;
2281 : : }
2282 [ + + ]: 5617566 : if (in[0].first == OP_0) {
2283 : 519 : ++in;
2284 [ + - ]: 1038 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0));
2285 : 519 : break;
2286 : : }
2287 : : // Public keys
2288 [ + + + + ]: 5617047 : if (in[0].second.size() == 33 || in[0].second.size() == 32) {
2289 [ + + ]: 3135 : auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
2290 [ + + ]: 3135 : if (!key) return {};
2291 [ + - ]: 3131 : ++in;
2292 [ + - + - ]: 6262 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key))));
2293 : : break;
2294 : : }
2295 [ + + + + : 5613912 : if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
+ + + + +
+ - + ]
2296 [ + - ]: 471 : auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
[ + - + + ]
2297 [ + + ]: 471 : if (!key) return {};
2298 [ + - ]: 468 : in += 5;
2299 [ + - + - ]: 936 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key))));
2300 : : break;
2301 : : }
2302 : : // Time locks
2303 [ + + ]: 5613441 : std::optional<int64_t> num;
2304 [ + + + + : 5613441 : if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
+ - + + ]
2305 [ + - ]: 2368 : in += 2;
2306 [ + - + - ]: 2368 : if (*num < 1 || *num > 0x7FFFFFFFL) return {};
2307 [ + - ]: 4736 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num));
2308 : 2368 : break;
2309 : : }
2310 [ + + + + : 5611073 : if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
+ - - + ]
2311 : 469 : in += 2;
2312 [ + - + - ]: 469 : if (num < 1 || num > 0x7FFFFFFFL) return {};
2313 [ + - ]: 938 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num));
2314 : 469 : break;
2315 : : }
2316 : : // Hashes
2317 [ + + + + : 5610604 : if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
+ + + - +
- + - + -
+ - + + ]
2318 [ + + - + ]: 272 : if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
2319 [ + - ]: 132 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second));
2320 : 66 : in += 7;
2321 : : break;
2322 [ + + - + ]: 206 : } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
2323 [ + - ]: 110 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second));
2324 : 55 : in += 7;
2325 : : break;
2326 [ + + - + ]: 151 : } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
2327 [ + - ]: 172 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second));
2328 : 86 : in += 7;
2329 : : break;
2330 [ + - + - ]: 65 : } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
2331 [ + - ]: 130 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second));
2332 : 65 : in += 7;
2333 : : break;
2334 : : }
2335 : : }
2336 : : // Multi
2337 [ + + + + ]: 5610332 : if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
2338 [ - + ]: 136 : if (IsTapscript(ctx.MsContext())) return {};
2339 [ + - ]: 136 : std::vector<Key> keys;
2340 [ + - ]: 136 : const auto n = ParseScriptNumber(in[1]);
2341 [ + - + - ]: 136 : if (!n || last - in < 3 + *n) return {};
2342 [ + - - + ]: 136 : if (*n < 1 || *n > 20) return {};
2343 [ + + ]: 459 : for (int i = 0; i < *n; ++i) {
2344 [ - + ]: 323 : if (in[2 + i].second.size() != 33) return {};
2345 [ + + ]: 323 : auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
2346 [ - + ]: 323 : if (!key) return {};
2347 [ + - ]: 323 : keys.push_back(std::move(*key));
2348 : : }
2349 [ + - ]: 136 : const auto k = ParseScriptNumber(in[2 + *n]);
2350 [ + - + - : 136 : if (!k || *k < 1 || *k > *n) return {};
+ - ]
2351 : 136 : in += 3 + *n;
2352 [ + - ]: 136 : std::reverse(keys.begin(), keys.end());
2353 [ + - ]: 272 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k));
2354 : : break;
2355 : 136 : }
2356 : : // Tapscript's equivalent of multi
2357 [ + + + + ]: 5610196 : if (last - in >= 4 && in[0].first == OP_NUMEQUAL) {
2358 [ - + ]: 819 : if (!IsTapscript(ctx.MsContext())) return {};
2359 : : // The necessary threshold of signatures.
2360 [ + - ]: 819 : const auto k = ParseScriptNumber(in[1]);
2361 [ - + ]: 819 : if (!k) return {};
2362 [ + - + - ]: 819 : if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {};
2363 [ - + ]: 819 : if (last - in < 2 + *k * 2) return {};
2364 [ + - ]: 819 : std::vector<Key> keys;
2365 [ + - ]: 819 : keys.reserve(*k);
2366 : : // Walk through the expected (pubkey, CHECKSIG[ADD]) pairs.
2367 : : for (int pos = 2;; pos += 2) {
2368 [ + + ]: 100608 : if (last - in < pos + 2) return {};
2369 : : // Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key.
2370 [ + + + - ]: 100607 : if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {};
2371 [ - + ]: 100607 : if (in[pos + 1].second.size() != 32) return {};
2372 [ + + ]: 100607 : auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end());
2373 [ - + ]: 100607 : if (!key) return {};
2374 [ + - - + ]: 100607 : keys.push_back(std::move(*key));
2375 : : // Make sure early we don't parse an arbitrary large expression.
2376 [ - + ]: 100607 : if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
2377 : : // OP_CHECKSIG means it was the last one to parse.
2378 [ + + ]: 100607 : if (in[pos].first == OP_CHECKSIG) break;
2379 : : }
2380 [ - + ]: 818 : if (keys.size() < (size_t)*k) return {};
2381 : 818 : in += 2 + keys.size() * 2;
2382 [ + - ]: 818 : std::reverse(keys.begin(), keys.end());
2383 [ + - ]: 1636 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k));
2384 : : break;
2385 : 819 : }
2386 : : /** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather
2387 : : * than BKV_EXPR, because and_v commutes with these wrappers. For example,
2388 : : * c:and_v(X,Y) produces the same script as and_v(X,c:Y). */
2389 : : // c: wrapper
2390 [ + + ]: 5609377 : if (in[0].first == OP_CHECKSIG) {
2391 : 3568 : ++in;
2392 [ + - ]: 3568 : to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
2393 [ + - ]: 3568 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2394 : : break;
2395 : : }
2396 : : // v: wrapper
2397 [ + + ]: 5605809 : if (in[0].first == OP_VERIFY) {
2398 : 775 : ++in;
2399 [ + - ]: 775 : to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
2400 [ + - ]: 775 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2401 : : break;
2402 : : }
2403 : : // n: wrapper
2404 [ + + ]: 5605034 : if (in[0].first == OP_0NOTEQUAL) {
2405 : 5601083 : ++in;
2406 [ + - ]: 5601083 : to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
2407 [ + - ]: 5601083 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2408 : : break;
2409 : : }
2410 : : // Thresh
2411 [ + + + + : 3951 : if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
+ - + + ]
2412 [ - + ]: 333 : if (*num < 1) return {};
2413 [ + - ]: 333 : in += 2;
2414 [ + - ]: 333 : to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
2415 : : break;
2416 : : }
2417 : : // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
2418 [ + + ]: 3618 : if (in[0].first == OP_ENDIF) {
2419 : 863 : ++in;
2420 [ + - ]: 863 : to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
2421 [ + - ]: 863 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2422 : : break;
2423 : : }
2424 : : /** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because
2425 : : * or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as
2426 : : * and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as
2427 : : * miniscript, while the latter is valid. So we leave the and_v "outside"
2428 : : * while decoding. */
2429 : : // and_b
2430 [ + + ]: 2755 : if (in[0].first == OP_BOOLAND) {
2431 : 2710 : ++in;
2432 [ + - ]: 2710 : to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
2433 [ + - ]: 2710 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2434 [ + - ]: 2710 : to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2435 : : break;
2436 : : }
2437 : : // or_b
2438 [ + + ]: 45 : if (in[0].first == OP_BOOLOR) {
2439 : 35 : ++in;
2440 [ + - ]: 35 : to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
2441 [ + - ]: 35 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2442 [ + - ]: 35 : to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2443 : : break;
2444 : : }
2445 : : // Unrecognised expression
2446 : 10 : return {};
2447 : : }
2448 : 8877 : case DecodeContext::BKV_EXPR: {
2449 [ + - ]: 8877 : to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
2450 [ + - ]: 8877 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2451 : : break;
2452 : : }
2453 [ + - ]: 3746 : case DecodeContext::W_EXPR: {
2454 : : // a: wrapper
2455 [ - + ]: 3746 : if (in >= last) return {};
2456 [ + + ]: 3746 : if (in[0].first == OP_FROMALTSTACK) {
2457 : 2976 : ++in;
2458 [ + - ]: 2976 : to_parse.emplace_back(DecodeContext::ALT, -1, -1);
2459 : : } else {
2460 [ + - ]: 770 : to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
2461 : : }
2462 [ + - ]: 3746 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2463 : : break;
2464 : : }
2465 [ + + ]: 8857 : case DecodeContext::MAYBE_AND_V: {
2466 : : // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
2467 : : // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
2468 [ + + + + ]: 8857 : if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
2469 [ + - ]: 683 : to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
2470 : : // BKV_EXPR can contain more AND_V nodes
2471 [ + - ]: 683 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2472 : : }
2473 : : break;
2474 : : }
2475 [ + - ]: 770 : case DecodeContext::SWAP: {
2476 [ + - + - : 770 : if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
+ - ]
2477 : 770 : ++in;
2478 [ + - + - ]: 770 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back())));
2479 : 770 : break;
2480 : : }
2481 [ + - ]: 2976 : case DecodeContext::ALT: {
2482 [ + - + - : 2976 : if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
+ - ]
2483 : 2976 : ++in;
2484 [ + - + - ]: 2976 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back())));
2485 : 2976 : break;
2486 : : }
2487 : 3564 : case DecodeContext::CHECK: {
2488 [ - + ]: 3564 : if (constructed.empty()) return {};
2489 [ + - + - ]: 3564 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back())));
2490 : 3564 : break;
2491 : : }
2492 : 86 : case DecodeContext::DUP_IF: {
2493 [ - + ]: 86 : if (constructed.empty()) return {};
2494 [ + - + - ]: 86 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back())));
2495 : 86 : break;
2496 : : }
2497 : 775 : case DecodeContext::VERIFY: {
2498 [ - + ]: 775 : if (constructed.empty()) return {};
2499 [ + - + - ]: 775 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back())));
2500 : 775 : break;
2501 : : }
2502 : 8 : case DecodeContext::NON_ZERO: {
2503 [ - + ]: 8 : if (constructed.empty()) return {};
2504 [ + - + - ]: 8 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back())));
2505 : 8 : break;
2506 : : }
2507 : 5601081 : case DecodeContext::ZERO_NOTEQUAL: {
2508 [ - + ]: 5601081 : if (constructed.empty()) return {};
2509 [ + - + - ]: 5601081 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back())));
2510 : 5601081 : break;
2511 : : }
2512 [ - + ]: 680 : case DecodeContext::AND_V: {
2513 [ - + ]: 680 : if (constructed.size() < 2) return {};
2514 [ + - ]: 680 : BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true);
2515 : : break;
2516 : : }
2517 [ - + ]: 2710 : case DecodeContext::AND_B: {
2518 [ - + ]: 2710 : if (constructed.size() < 2) return {};
2519 [ + - ]: 2710 : BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true);
2520 : : break;
2521 : : }
2522 [ - + ]: 35 : case DecodeContext::OR_B: {
2523 [ - + ]: 35 : if (constructed.size() < 2) return {};
2524 [ + - ]: 35 : BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true);
2525 : : break;
2526 : : }
2527 [ - + ]: 28 : case DecodeContext::OR_C: {
2528 [ - + ]: 28 : if (constructed.size() < 2) return {};
2529 [ + - ]: 28 : BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true);
2530 : : break;
2531 : : }
2532 [ - + ]: 74 : case DecodeContext::OR_D: {
2533 [ - + ]: 74 : if (constructed.size() < 2) return {};
2534 [ + - ]: 74 : BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true);
2535 : : break;
2536 : : }
2537 [ - + ]: 164 : case DecodeContext::ANDOR: {
2538 [ - + ]: 164 : if (constructed.size() < 3) return {};
2539 : 164 : NodeRef<Key> left = std::move(constructed.back());
2540 : 164 : constructed.pop_back();
2541 : 164 : NodeRef<Key> right = std::move(constructed.back());
2542 : 164 : constructed.pop_back();
2543 [ + - ]: 164 : NodeRef<Key> mid = std::move(constructed.back());
2544 [ + - + - ]: 164 : constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
2545 : : break;
2546 : 164 : }
2547 [ + - ]: 1334 : case DecodeContext::THRESH_W: {
2548 [ - + ]: 1334 : if (in >= last) return {};
2549 [ + + ]: 1334 : if (in[0].first == OP_ADD) {
2550 : 1001 : ++in;
2551 [ + - ]: 1001 : to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
2552 [ + - ]: 1001 : to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
2553 : : } else {
2554 [ + - ]: 333 : to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
2555 : : // All children of thresh have type modifier d, so cannot be and_v
2556 [ + - ]: 333 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2557 : : }
2558 : : break;
2559 : : }
2560 : 333 : case DecodeContext::THRESH_E: {
2561 [ + - + - : 333 : if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
+ - ]
2562 : 333 : std::vector<NodeRef<Key>> subs;
2563 [ + + ]: 1667 : for (int i = 0; i < n; ++i) {
2564 : 1334 : NodeRef<Key> sub = std::move(constructed.back());
2565 [ + - ]: 1334 : constructed.pop_back();
2566 : 1334 : subs.push_back(std::move(sub));
2567 : : }
2568 [ + - ]: 666 : constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k));
2569 : : break;
2570 : 333 : }
2571 [ + - ]: 862 : case DecodeContext::ENDIF: {
2572 [ - + ]: 862 : if (in >= last) return {};
2573 : :
2574 : : // could be andor or or_i
2575 [ + + ]: 862 : if (in[0].first == OP_ELSE) {
2576 : 666 : ++in;
2577 [ + - ]: 666 : to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
2578 [ + - ]: 666 : to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
2579 : : }
2580 : : // could be j: or d: wrapper
2581 [ + + ]: 196 : else if (in[0].first == OP_IF) {
2582 [ + - + + ]: 94 : if (last - in >= 2 && in[1].first == OP_DUP) {
2583 : 86 : in += 2;
2584 [ + - ]: 86 : to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
2585 [ + - + - : 8 : } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
- + ]
2586 : 8 : in += 3;
2587 [ + - ]: 8 : to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
2588 : : }
2589 : : else {
2590 : 0 : return {};
2591 : : }
2592 : : // could be or_c or or_d
2593 [ + - ]: 102 : } else if (in[0].first == OP_NOTIF) {
2594 : 102 : ++in;
2595 [ + - ]: 102 : to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
2596 : : }
2597 : : else {
2598 : 0 : return {};
2599 : : }
2600 : : break;
2601 : : }
2602 [ + - ]: 102 : case DecodeContext::ENDIF_NOTIF: {
2603 [ - + ]: 102 : if (in >= last) return {};
2604 [ + + ]: 102 : if (in[0].first == OP_IFDUP) {
2605 : 74 : ++in;
2606 [ + - ]: 74 : to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
2607 : : } else {
2608 [ + - ]: 28 : to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
2609 : : }
2610 : : // or_c and or_d both require X to have type modifier d so, can't contain and_v
2611 [ + - ]: 102 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2612 : : break;
2613 : : }
2614 [ + - ]: 666 : case DecodeContext::ENDIF_ELSE: {
2615 [ - + ]: 666 : if (in >= last) return {};
2616 [ + + ]: 666 : if (in[0].first == OP_IF) {
2617 [ + - ]: 502 : ++in;
2618 [ + - ]: 502 : BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true);
2619 [ + - ]: 164 : } else if (in[0].first == OP_NOTIF) {
2620 : 164 : ++in;
2621 [ + - ]: 164 : to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
2622 : : // andor requires X to have type modifier d, so it can't be and_v
2623 [ + - ]: 164 : to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
2624 : : } else {
2625 : 0 : return {};
2626 : : }
2627 : : break;
2628 : : }
2629 : : }
2630 : : }
2631 [ - + ]: 2900 : if (constructed.size() != 1) return {};
2632 [ + - ]: 2900 : NodeRef<Key> tl_node = std::move(constructed.front());
2633 [ + - ]: 2900 : tl_node->DuplicateKeyCheck(ctx);
2634 : : // Note that due to how ComputeType works (only assign the type to the node if the
2635 : : // subs' types are valid) this would fail if any node of tree is badly typed.
2636 [ + + ]: 2900 : if (!tl_node->IsValidTopLevel()) return {};
2637 : 2899 : return tl_node;
2638 : 2919 : }
2639 : :
2640 : : } // namespace internal
2641 : :
2642 : : template<typename Ctx>
2643 [ + - ][ + - : 715 : inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- ]
2644 [ + - ][ + - : 715 : return internal::Parse<typename Ctx::Key>(str, ctx);
+ - + - +
- + - + -
+ - + - +
- + - + -
+ - + - +
- ]
2645 : : }
2646 : :
2647 : : template<typename Ctx>
2648 : 2923 : inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
2649 : : using namespace internal;
2650 : : // A too large Script is necessarily invalid, don't bother parsing it.
2651 [ + + - + ]: 8650 : if (script.size() > MaxScriptSize(ctx.MsContext())) return {};
2652 [ + + ]: 2923 : auto decomposed = DecomposeScript(script);
2653 [ + + ]: 2923 : if (!decomposed) return {};
2654 [ + - ]: 2919 : auto it = decomposed->begin();
2655 [ + - ]: 2919 : auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
2656 [ + + ]: 2919 : if (!ret) return {};
2657 [ - + ]: 2899 : if (it != decomposed->end()) return {};
2658 : 2899 : return ret;
2659 : 5842 : }
2660 : :
2661 : : } // namespace miniscript
2662 : :
2663 : : #endif // BITCOIN_SCRIPT_MINISCRIPT_H
|