LCOV - code coverage report
Current view: top level - src - cluster_linearize.h (source / functions) Coverage Total Hit
Test: total_coverage.info Lines: 97.2 % 72 70
Test Date: 2025-01-19 05:08:01 Functions: 100.0 % 7 7
Branches: 84.5 % 116 98

             Branch data     Line data    Source code
       1                 :             : // Copyright (c) The Bitcoin Core developers
       2                 :             : // Distributed under the MIT software license, see the accompanying
       3                 :             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4                 :             : 
       5                 :             : #ifndef BITCOIN_CLUSTER_LINEARIZE_H
       6                 :             : #define BITCOIN_CLUSTER_LINEARIZE_H
       7                 :             : 
       8                 :             : #include <algorithm>
       9                 :             : #include <numeric>
      10                 :             : #include <optional>
      11                 :             : #include <stdint.h>
      12                 :             : #include <vector>
      13                 :             : #include <utility>
      14                 :             : 
      15                 :             : #include <random.h>
      16                 :             : #include <span.h>
      17                 :             : #include <util/feefrac.h>
      18                 :             : #include <util/vecdeque.h>
      19                 :             : 
      20                 :             : namespace cluster_linearize {
      21                 :             : 
      22                 :             : /** Data type to represent transaction indices in clusters. */
      23                 :             : using ClusterIndex = uint32_t;
      24                 :             : 
      25                 :             : /** Data structure that holds a transaction graph's preprocessed data (fee, size, ancestors,
      26                 :             :  *  descendants). */
      27                 :             : template<typename SetType>
      28                 :          14 : class DepGraph
      29                 :             : {
      30                 :             :     /** Information about a single transaction. */
      31                 :             :     struct Entry
      32                 :             :     {
      33                 :             :         /** Fee and size of transaction itself. */
      34                 :          20 :         FeeFrac feerate;
      35                 :             :         /** All ancestors of the transaction (including itself). */
      36                 :          20 :         SetType ancestors;
      37                 :             :         /** All descendants of the transaction (including itself). */
      38                 :          20 :         SetType descendants;
      39                 :             : 
      40                 :             :         /** Equality operator (primarily for for testing purposes). */
      41   [ +  -  +  -  :          40 :         friend bool operator==(const Entry&, const Entry&) noexcept = default;
                   -  + ]
      42                 :             : 
      43                 :             :         /** Construct an empty entry. */
      44                 :          29 :         Entry() noexcept = default;
      45                 :             :         /** Construct an entry with a given feerate, ancestor set, descendant set. */
      46                 :          49 :         Entry(const FeeFrac& f, const SetType& a, const SetType& d) noexcept : feerate(f), ancestors(a), descendants(d) {}
      47                 :             :     };
      48                 :             : 
      49                 :             :     /** Data for each transaction. */
      50                 :             :     std::vector<Entry> entries;
      51                 :             : 
      52                 :             :     /** Which positions are used. */
      53                 :             :     SetType m_used;
      54                 :             : 
      55                 :             : public:
      56                 :             :     /** Equality operator (primarily for testing purposes). */
      57                 :           7 :     friend bool operator==(const DepGraph& a, const DepGraph& b) noexcept
      58                 :             :     {
      59         [ +  - ]:           7 :         if (a.m_used != b.m_used) return false;
      60                 :             :         // Only compare the used positions within the entries vector.
      61   [ +  +  +  +  :          54 :         for (auto idx : a.m_used) {
                   +  + ]
      62         [ +  - ]:          20 :             if (a.entries[idx] != b.entries[idx]) return false;
      63                 :             :         }
      64                 :             :         return true;
      65                 :             :     }
      66                 :             : 
      67                 :             :     // Default constructors.
      68                 :             :     DepGraph() noexcept = default;
      69                 :             :     DepGraph(const DepGraph&) noexcept = default;
      70                 :             :     DepGraph(DepGraph&&) noexcept = default;
      71                 :             :     DepGraph& operator=(const DepGraph&) noexcept = default;
      72                 :           7 :     DepGraph& operator=(DepGraph&&) noexcept = default;
      73                 :             : 
      74                 :             :     /** Construct a DepGraph object given another DepGraph and a mapping from old to new.
      75                 :             :      *
      76                 :             :      * @param depgraph   The original DepGraph that is being remapped.
      77                 :             :      *
      78                 :             :      * @param mapping    A Span such that mapping[i] gives the position in the new DepGraph
      79                 :             :      *                   for position i in the old depgraph. Its size must be equal to
      80                 :             :      *                   depgraph.PositionRange(). The value of mapping[i] is ignored if
      81                 :             :      *                   position i is a hole in depgraph (i.e., if !depgraph.Positions()[i]).
      82                 :             :      *
      83                 :             :      * @param pos_range  The PositionRange() for the new DepGraph. It must equal the largest
      84                 :             :      *                   value in mapping for any used position in depgraph plus 1, or 0 if
      85                 :             :      *                   depgraph.TxCount() == 0.
      86                 :             :      *
      87                 :             :      * Complexity: O(N^2) where N=depgraph.TxCount().
      88                 :             :      */
      89         [ +  + ]:           7 :     DepGraph(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> mapping, ClusterIndex pos_range) noexcept : entries(pos_range)
      90                 :             :     {
      91                 :           7 :         Assume(mapping.size() == depgraph.PositionRange());
      92                 :           7 :         Assume((pos_range == 0) == (depgraph.TxCount() == 0));
      93         [ +  + ]:          34 :         for (ClusterIndex i : depgraph.Positions()) {
      94         [ +  + ]:          20 :             auto new_idx = mapping[i];
      95         [ +  + ]:          20 :             Assume(new_idx < pos_range);
      96                 :             :             // Add transaction.
      97         [ +  + ]:          20 :             entries[new_idx].ancestors = SetType::Singleton(new_idx);
      98                 :          20 :             entries[new_idx].descendants = SetType::Singleton(new_idx);
      99         [ +  + ]:          20 :             m_used.Set(new_idx);
     100                 :             :             // Fill in fee and size.
     101         [ +  + ]:          20 :             entries[new_idx].feerate = depgraph.entries[i].feerate;
     102                 :             :         }
     103   [ +  +  +  + ]:          48 :         for (ClusterIndex i : depgraph.Positions()) {
     104                 :             :             // Fill in dependencies by mapping direct parents.
     105                 :          20 :             SetType parents;
     106   [ +  +  +  +  :          65 :             for (auto j : depgraph.GetReducedParents(i)) parents.Set(mapping[j]);
                   +  + ]
     107                 :          20 :             AddDependencies(parents, mapping[i]);
     108                 :             :         }
     109                 :             :         // Verify that the provided pos_range was correct (no unused positions at the end).
     110                 :           7 :         Assume(m_used.None() ? (pos_range == 0) : (pos_range == m_used.Last() + 1));
     111                 :           7 :     }
     112                 :             : 
     113                 :             :     /** Get the set of transactions positions in use. Complexity: O(1). */
     114   [ +  +  +  + ]:          14 :     const SetType& Positions() const noexcept { return m_used; }
     115                 :             :     /** Get the range of positions in this DepGraph. All entries in Positions() are in [0, PositionRange() - 1]. */
     116         [ +  + ]:           7 :     ClusterIndex PositionRange() const noexcept { return entries.size(); }
     117                 :             :     /** Get the number of transactions in the graph. Complexity: O(1). */
     118   [ +  +  +  -  :          34 :     auto TxCount() const noexcept { return m_used.Count(); }
                   +  - ]
     119                 :             :     /** Get the feerate of a given transaction i. Complexity: O(1). */
     120   [ +  -  +  + ]:          40 :     const FeeFrac& FeeRate(ClusterIndex i) const noexcept { return entries[i].feerate; }
     121                 :             :     /** Get the mutable feerate of a given transaction i. Complexity: O(1). */
     122                 :             :     FeeFrac& FeeRate(ClusterIndex i) noexcept { return entries[i].feerate; }
     123                 :             :     /** Get the ancestors of a given transaction i. Complexity: O(1). */
     124   [ +  -  +  +  :          89 :     const SetType& Ancestors(ClusterIndex i) const noexcept { return entries[i].ancestors; }
                   +  + ]
     125                 :             :     /** Get the descendants of a given transaction i. Complexity: O(1). */
     126   [ +  +  +  - ]:          63 :     const SetType& Descendants(ClusterIndex i) const noexcept { return entries[i].descendants; }
     127                 :             : 
     128                 :             :     /** Add a new unconnected transaction to this transaction graph (in the first available
     129                 :             :      *  position), and return its ClusterIndex.
     130                 :             :      *
     131                 :             :      * Complexity: O(1) (amortized, due to resizing of backing vector).
     132                 :             :      */
     133                 :          49 :     ClusterIndex AddTransaction(const FeeFrac& feefrac) noexcept
     134                 :             :     {
     135                 :             :         static constexpr auto ALL_POSITIONS = SetType::Fill(SetType::Size());
     136         [ +  - ]:          49 :         auto available = ALL_POSITIONS - m_used;
     137         [ +  - ]:          49 :         Assume(available.Any());
     138                 :          49 :         ClusterIndex new_idx = available.First();
     139         [ +  - ]:          49 :         if (new_idx == entries.size()) {
     140                 :          49 :             entries.emplace_back(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
     141                 :             :         } else {
     142                 :           0 :             entries[new_idx] = Entry(feefrac, SetType::Singleton(new_idx), SetType::Singleton(new_idx));
     143                 :             :         }
     144                 :          49 :         m_used.Set(new_idx);
     145                 :          49 :         return new_idx;
     146                 :             :     }
     147                 :             : 
     148                 :             :     /** Remove the specified positions from this DepGraph.
     149                 :             :      *
     150                 :             :      * The specified positions will no longer be part of Positions(), and dependencies with them are
     151                 :             :      * removed. Note that due to DepGraph only tracking ancestors/descendants (and not direct
     152                 :             :      * dependencies), if a parent is removed while a grandparent remains, the grandparent will
     153                 :             :      * remain an ancestor.
     154                 :             :      *
     155                 :             :      * Complexity: O(N) where N=TxCount().
     156                 :             :      */
     157                 :           7 :     void RemoveTransactions(const SetType& del) noexcept
     158                 :             :     {
     159                 :           7 :         m_used -= del;
     160                 :             :         // Remove now-unused trailing entries.
     161   [ +  +  -  + ]:           7 :         while (!entries.empty() && !m_used[entries.size() - 1]) {
     162                 :           0 :             entries.pop_back();
     163                 :             :         }
     164                 :             :         // Remove the deleted transactions from ancestors/descendants of other transactions. Note
     165                 :             :         // that the deleted positions will retain old feerate and dependency information. This does
     166                 :             :         // not matter as they will be overwritten by AddTransaction if they get used again.
     167         [ +  + ]:          36 :         for (auto& entry : entries) {
     168                 :          29 :             entry.ancestors &= m_used;
     169                 :          29 :             entry.descendants &= m_used;
     170                 :             :         }
     171                 :           7 :     }
     172                 :             : 
     173                 :             :     /** Modify this transaction graph, adding multiple parents to a specified child.
     174                 :             :      *
     175                 :             :      * Complexity: O(N) where N=TxCount().
     176                 :             :      */
     177                 :          69 :     void AddDependencies(const SetType& parents, ClusterIndex child) noexcept
     178                 :             :     {
     179                 :          69 :         Assume(m_used[child]);
     180                 :          69 :         Assume(parents.IsSubsetOf(m_used));
     181                 :             :         // Compute the ancestors of parents that are not already ancestors of child.
     182         [ +  + ]:          69 :         SetType par_anc;
     183   [ +  +  +  +  :         185 :         for (auto par : parents - Ancestors(child)) {
                   +  + ]
     184         [ +  + ]:          47 :             par_anc |= Ancestors(par);
     185                 :             :         }
     186         [ +  + ]:          69 :         par_anc -= Ancestors(child);
     187                 :             :         // Bail out if there are no such ancestors.
     188         [ +  + ]:          69 :         if (par_anc.None()) return;
     189                 :             :         // To each such ancestor, add as descendants the descendants of the child.
     190                 :          33 :         const auto& chl_des = entries[child].descendants;
     191         [ +  + ]:         123 :         for (auto anc_of_par : par_anc) {
     192         [ +  + ]:          57 :             entries[anc_of_par].descendants |= chl_des;
     193                 :             :         }
     194                 :             :         // To each descendant of the child, add those ancestors.
     195   [ +  -  +  + ]:         132 :         for (auto dec_of_chl : Descendants(child)) {
     196         [ -  + ]:          33 :             entries[dec_of_chl].ancestors |= par_anc;
     197                 :             :         }
     198                 :             :     }
     199                 :             : 
     200                 :             :     /** Compute the (reduced) set of parents of node i in this graph.
     201                 :             :      *
     202                 :             :      * This returns the minimal subset of the parents of i whose ancestors together equal all of
     203                 :             :      * i's ancestors (unless i is part of a cycle of dependencies). Note that DepGraph does not
     204                 :             :      * store the set of parents; this information is inferred from the ancestor sets.
     205                 :             :      *
     206                 :             :      * Complexity: O(N) where N=Ancestors(i).Count() (which is bounded by TxCount()).
     207                 :             :      */
     208         [ +  + ]:          20 :     SetType GetReducedParents(ClusterIndex i) const noexcept
     209                 :             :     {
     210         [ +  + ]:          20 :         SetType parents = Ancestors(i);
     211                 :          20 :         parents.Reset(i);
     212   [ +  +  +  -  :          78 :         for (auto parent : parents) {
             +  +  +  + ]
     213         [ +  - ]:          19 :             if (parents[parent]) {
     214                 :          19 :                 parents -= Ancestors(parent);
     215                 :          19 :                 parents.Set(parent);
     216                 :             :             }
     217                 :             :         }
     218                 :          20 :         return parents;
     219                 :             :     }
     220                 :             : 
     221                 :             :     /** Compute the (reduced) set of children of node i in this graph.
     222                 :             :      *
     223                 :             :      * This returns the minimal subset of the children of i whose descendants together equal all of
     224                 :             :      * i's descendants (unless i is part of a cycle of dependencies). Note that DepGraph does not
     225                 :             :      * store the set of children; this information is inferred from the descendant sets.
     226                 :             :      *
     227                 :             :      * Complexity: O(N) where N=Descendants(i).Count() (which is bounded by TxCount()).
     228                 :             :      */
     229                 :             :     SetType GetReducedChildren(ClusterIndex i) const noexcept
     230                 :             :     {
     231                 :             :         SetType children = Descendants(i);
     232                 :             :         children.Reset(i);
     233                 :             :         for (auto child : children) {
     234                 :             :             if (children[child]) {
     235                 :             :                 children -= Descendants(child);
     236                 :             :                 children.Set(child);
     237                 :             :             }
     238                 :             :         }
     239                 :             :         return children;
     240                 :             :     }
     241                 :             : 
     242                 :             :     /** Compute the aggregate feerate of a set of nodes in this graph.
     243                 :             :      *
     244                 :             :      * Complexity: O(N) where N=elems.Count().
     245                 :             :      **/
     246                 :             :     FeeFrac FeeRate(const SetType& elems) const noexcept
     247                 :             :     {
     248                 :             :         FeeFrac ret;
     249                 :             :         for (auto pos : elems) ret += entries[pos].feerate;
     250                 :             :         return ret;
     251                 :             :     }
     252                 :             : 
     253                 :             :     /** Find some connected component within the subset "todo" of this graph.
     254                 :             :      *
     255                 :             :      * Specifically, this finds the connected component which contains the first transaction of
     256                 :             :      * todo (if any).
     257                 :             :      *
     258                 :             :      * Two transactions are considered connected if they are both in `todo`, and one is an ancestor
     259                 :             :      * of the other in the entire graph (so not just within `todo`), or transitively there is a
     260                 :             :      * path of transactions connecting them. This does mean that if `todo` contains a transaction
     261                 :             :      * and a grandparent, but misses the parent, they will still be part of the same component.
     262                 :             :      *
     263                 :             :      * Complexity: O(ret.Count()).
     264                 :             :      */
     265                 :             :     SetType FindConnectedComponent(const SetType& todo) const noexcept
     266                 :             :     {
     267                 :             :         if (todo.None()) return todo;
     268                 :             :         auto to_add = SetType::Singleton(todo.First());
     269                 :             :         SetType ret;
     270                 :             :         do {
     271                 :             :             SetType old = ret;
     272                 :             :             for (auto add : to_add) {
     273                 :             :                 ret |= Descendants(add);
     274                 :             :                 ret |= Ancestors(add);
     275                 :             :             }
     276                 :             :             ret &= todo;
     277                 :             :             to_add = ret - old;
     278                 :             :         } while (to_add.Any());
     279                 :             :         return ret;
     280                 :             :     }
     281                 :             : 
     282                 :             :     /** Determine if a subset is connected.
     283                 :             :      *
     284                 :             :      * Complexity: O(subset.Count()).
     285                 :             :      */
     286                 :             :     bool IsConnected(const SetType& subset) const noexcept
     287                 :             :     {
     288                 :             :         return FindConnectedComponent(subset) == subset;
     289                 :             :     }
     290                 :             : 
     291                 :             :     /** Determine if this entire graph is connected.
     292                 :             :      *
     293                 :             :      * Complexity: O(TxCount()).
     294                 :             :      */
     295                 :             :     bool IsConnected() const noexcept { return IsConnected(m_used); }
     296                 :             : 
     297                 :             :     /** Append the entries of select to list in a topologically valid order.
     298                 :             :      *
     299                 :             :      * Complexity: O(select.Count() * log(select.Count())).
     300                 :             :      */
     301                 :             :     void AppendTopo(std::vector<ClusterIndex>& list, const SetType& select) const noexcept
     302                 :             :     {
     303                 :             :         ClusterIndex old_len = list.size();
     304                 :             :         for (auto i : select) list.push_back(i);
     305                 :             :         std::sort(list.begin() + old_len, list.end(), [&](ClusterIndex a, ClusterIndex b) noexcept {
     306                 :             :             const auto a_anc_count = entries[a].ancestors.Count();
     307                 :             :             const auto b_anc_count = entries[b].ancestors.Count();
     308                 :             :             if (a_anc_count != b_anc_count) return a_anc_count < b_anc_count;
     309                 :             :             return a < b;
     310                 :             :         });
     311                 :             :     }
     312                 :             : };
     313                 :             : 
     314                 :             : /** A set of transactions together with their aggregate feerate. */
     315                 :             : template<typename SetType>
     316                 :             : struct SetInfo
     317                 :             : {
     318                 :             :     /** The transactions in the set. */
     319                 :             :     SetType transactions;
     320                 :             :     /** Their combined fee and size. */
     321                 :             :     FeeFrac feerate;
     322                 :             : 
     323                 :             :     /** Construct a SetInfo for the empty set. */
     324                 :             :     SetInfo() noexcept = default;
     325                 :             : 
     326                 :             :     /** Construct a SetInfo for a specified set and feerate. */
     327                 :             :     SetInfo(const SetType& txn, const FeeFrac& fr) noexcept : transactions(txn), feerate(fr) {}
     328                 :             : 
     329                 :             :     /** Construct a SetInfo for a given transaction in a depgraph. */
     330                 :             :     explicit SetInfo(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept :
     331                 :             :         transactions(SetType::Singleton(pos)), feerate(depgraph.FeeRate(pos)) {}
     332                 :             : 
     333                 :             :     /** Construct a SetInfo for a set of transactions in a depgraph. */
     334                 :             :     explicit SetInfo(const DepGraph<SetType>& depgraph, const SetType& txn) noexcept :
     335                 :             :         transactions(txn), feerate(depgraph.FeeRate(txn)) {}
     336                 :             : 
     337                 :             :     /** Add a transaction to this SetInfo (which must not yet be in it). */
     338                 :             :     void Set(const DepGraph<SetType>& depgraph, ClusterIndex pos) noexcept
     339                 :             :     {
     340                 :             :         Assume(!transactions[pos]);
     341                 :             :         transactions.Set(pos);
     342                 :             :         feerate += depgraph.FeeRate(pos);
     343                 :             :     }
     344                 :             : 
     345                 :             :     /** Add the transactions of other to this SetInfo (no overlap allowed). */
     346                 :             :     SetInfo& operator|=(const SetInfo& other) noexcept
     347                 :             :     {
     348                 :             :         Assume(!transactions.Overlaps(other.transactions));
     349                 :             :         transactions |= other.transactions;
     350                 :             :         feerate += other.feerate;
     351                 :             :         return *this;
     352                 :             :     }
     353                 :             : 
     354                 :             :     /** Construct a new SetInfo equal to this, with more transactions added (which may overlap
     355                 :             :      *  with the existing transactions in the SetInfo). */
     356                 :             :     [[nodiscard]] SetInfo Add(const DepGraph<SetType>& depgraph, const SetType& txn) const noexcept
     357                 :             :     {
     358                 :             :         return {transactions | txn, feerate + depgraph.FeeRate(txn - transactions)};
     359                 :             :     }
     360                 :             : 
     361                 :             :     /** Swap two SetInfo objects. */
     362                 :             :     friend void swap(SetInfo& a, SetInfo& b) noexcept
     363                 :             :     {
     364                 :             :         swap(a.transactions, b.transactions);
     365                 :             :         swap(a.feerate, b.feerate);
     366                 :             :     }
     367                 :             : 
     368                 :             :     /** Permit equality testing. */
     369                 :             :     friend bool operator==(const SetInfo&, const SetInfo&) noexcept = default;
     370                 :             : };
     371                 :             : 
     372                 :             : /** Compute the feerates of the chunks of linearization. */
     373                 :             : template<typename SetType>
     374                 :             : std::vector<FeeFrac> ChunkLinearization(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> linearization) noexcept
     375                 :             : {
     376                 :             :     std::vector<FeeFrac> ret;
     377                 :             :     for (ClusterIndex i : linearization) {
     378                 :             :         /** The new chunk to be added, initially a singleton. */
     379                 :             :         auto new_chunk = depgraph.FeeRate(i);
     380                 :             :         // As long as the new chunk has a higher feerate than the last chunk so far, absorb it.
     381                 :             :         while (!ret.empty() && new_chunk >> ret.back()) {
     382                 :             :             new_chunk += ret.back();
     383                 :             :             ret.pop_back();
     384                 :             :         }
     385                 :             :         // Actually move that new chunk into the chunking.
     386                 :             :         ret.push_back(std::move(new_chunk));
     387                 :             :     }
     388                 :             :     return ret;
     389                 :             : }
     390                 :             : 
     391                 :             : /** Data structure encapsulating the chunking of a linearization, permitting removal of subsets. */
     392                 :             : template<typename SetType>
     393                 :             : class LinearizationChunking
     394                 :             : {
     395                 :             :     /** The depgraph this linearization is for. */
     396                 :             :     const DepGraph<SetType>& m_depgraph;
     397                 :             : 
     398                 :             :     /** The linearization we started from, possibly with removed prefix stripped. */
     399                 :             :     Span<const ClusterIndex> m_linearization;
     400                 :             : 
     401                 :             :     /** Chunk sets and their feerates, of what remains of the linearization. */
     402                 :             :     std::vector<SetInfo<SetType>> m_chunks;
     403                 :             : 
     404                 :             :     /** How large a prefix of m_chunks corresponds to removed transactions. */
     405                 :             :     ClusterIndex m_chunks_skip{0};
     406                 :             : 
     407                 :             :     /** Which transactions remain in the linearization. */
     408                 :             :     SetType m_todo;
     409                 :             : 
     410                 :             :     /** Fill the m_chunks variable, and remove the done prefix of m_linearization. */
     411                 :             :     void BuildChunks() noexcept
     412                 :             :     {
     413                 :             :         // Caller must clear m_chunks.
     414                 :             :         Assume(m_chunks.empty());
     415                 :             : 
     416                 :             :         // Chop off the initial part of m_linearization that is already done.
     417                 :             :         while (!m_linearization.empty() && !m_todo[m_linearization.front()]) {
     418                 :             :             m_linearization = m_linearization.subspan(1);
     419                 :             :         }
     420                 :             : 
     421                 :             :         // Iterate over the remaining entries in m_linearization. This is effectively the same
     422                 :             :         // algorithm as ChunkLinearization, but supports skipping parts of the linearization and
     423                 :             :         // keeps track of the sets themselves instead of just their feerates.
     424                 :             :         for (auto idx : m_linearization) {
     425                 :             :             if (!m_todo[idx]) continue;
     426                 :             :             // Start with an initial chunk containing just element idx.
     427                 :             :             SetInfo add(m_depgraph, idx);
     428                 :             :             // Absorb existing final chunks into add while they have lower feerate.
     429                 :             :             while (!m_chunks.empty() && add.feerate >> m_chunks.back().feerate) {
     430                 :             :                 add |= m_chunks.back();
     431                 :             :                 m_chunks.pop_back();
     432                 :             :             }
     433                 :             :             // Remember new chunk.
     434                 :             :             m_chunks.push_back(std::move(add));
     435                 :             :         }
     436                 :             :     }
     437                 :             : 
     438                 :             : public:
     439                 :             :     /** Initialize a LinearizationSubset object for a given length of linearization. */
     440                 :             :     explicit LinearizationChunking(const DepGraph<SetType>& depgraph LIFETIMEBOUND, Span<const ClusterIndex> lin LIFETIMEBOUND) noexcept :
     441                 :             :         m_depgraph(depgraph), m_linearization(lin)
     442                 :             :     {
     443                 :             :         // Mark everything in lin as todo still.
     444                 :             :         for (auto i : m_linearization) m_todo.Set(i);
     445                 :             :         // Compute the initial chunking.
     446                 :             :         m_chunks.reserve(depgraph.TxCount());
     447                 :             :         BuildChunks();
     448                 :             :     }
     449                 :             : 
     450                 :             :     /** Determine how many chunks remain in the linearization. */
     451                 :             :     ClusterIndex NumChunksLeft() const noexcept { return m_chunks.size() - m_chunks_skip; }
     452                 :             : 
     453                 :             :     /** Access a chunk. Chunk 0 is the highest-feerate prefix of what remains. */
     454                 :             :     const SetInfo<SetType>& GetChunk(ClusterIndex n) const noexcept
     455                 :             :     {
     456                 :             :         Assume(n + m_chunks_skip < m_chunks.size());
     457                 :             :         return m_chunks[n + m_chunks_skip];
     458                 :             :     }
     459                 :             : 
     460                 :             :     /** Remove some subset of transactions from the linearization. */
     461                 :             :     void MarkDone(SetType subset) noexcept
     462                 :             :     {
     463                 :             :         Assume(subset.Any());
     464                 :             :         Assume(subset.IsSubsetOf(m_todo));
     465                 :             :         m_todo -= subset;
     466                 :             :         if (GetChunk(0).transactions == subset) {
     467                 :             :             // If the newly done transactions exactly match the first chunk of the remainder of
     468                 :             :             // the linearization, we do not need to rechunk; just remember to skip one
     469                 :             :             // additional chunk.
     470                 :             :             ++m_chunks_skip;
     471                 :             :             // With subset marked done, some prefix of m_linearization will be done now. How long
     472                 :             :             // that prefix is depends on how many done elements were interspersed with subset,
     473                 :             :             // but at least as many transactions as there are in subset.
     474                 :             :             m_linearization = m_linearization.subspan(subset.Count());
     475                 :             :         } else {
     476                 :             :             // Otherwise rechunk what remains of m_linearization.
     477                 :             :             m_chunks.clear();
     478                 :             :             m_chunks_skip = 0;
     479                 :             :             BuildChunks();
     480                 :             :         }
     481                 :             :     }
     482                 :             : 
     483                 :             :     /** Find the shortest intersection between subset and the prefixes of remaining chunks
     484                 :             :      *  of the linearization that has a feerate not below subset's.
     485                 :             :      *
     486                 :             :      * This is a crucial operation in guaranteeing improvements to linearizations. If subset has
     487                 :             :      * a feerate not below GetChunk(0)'s, then moving IntersectPrefixes(subset) to the front of
     488                 :             :      * (what remains of) the linearization is guaranteed not to make it worse at any point.
     489                 :             :      *
     490                 :             :      * See https://delvingbitcoin.org/t/introduction-to-cluster-linearization/1032 for background.
     491                 :             :      */
     492                 :             :     SetInfo<SetType> IntersectPrefixes(const SetInfo<SetType>& subset) const noexcept
     493                 :             :     {
     494                 :             :         Assume(subset.transactions.IsSubsetOf(m_todo));
     495                 :             :         SetInfo<SetType> accumulator;
     496                 :             :         // Iterate over all chunks of the remaining linearization.
     497                 :             :         for (ClusterIndex i = 0; i < NumChunksLeft(); ++i) {
     498                 :             :             // Find what (if any) intersection the chunk has with subset.
     499                 :             :             const SetType to_add = GetChunk(i).transactions & subset.transactions;
     500                 :             :             if (to_add.Any()) {
     501                 :             :                 // If adding that to accumulator makes us hit all of subset, we are done as no
     502                 :             :                 // shorter intersection with higher/equal feerate exists.
     503                 :             :                 accumulator.transactions |= to_add;
     504                 :             :                 if (accumulator.transactions == subset.transactions) break;
     505                 :             :                 // Otherwise update the accumulator feerate.
     506                 :             :                 accumulator.feerate += m_depgraph.FeeRate(to_add);
     507                 :             :                 // If that does result in something better, or something with the same feerate but
     508                 :             :                 // smaller, return that. Even if a longer, higher-feerate intersection exists, it
     509                 :             :                 // does not hurt to return the shorter one (the remainder of the longer intersection
     510                 :             :                 // will generally be found in the next call to Intersect, but even if not, it is not
     511                 :             :                 // required for the improvement guarantee this function makes).
     512                 :             :                 if (!(accumulator.feerate << subset.feerate)) return accumulator;
     513                 :             :             }
     514                 :             :         }
     515                 :             :         return subset;
     516                 :             :     }
     517                 :             : };
     518                 :             : 
     519                 :             : /** Class encapsulating the state needed to find the best remaining ancestor set.
     520                 :             :  *
     521                 :             :  * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
     522                 :             :  * MarkDone.
     523                 :             :  *
     524                 :             :  * As long as any part of the graph remains, FindCandidateSet() can be called which will return a
     525                 :             :  * SetInfo with the highest-feerate ancestor set that remains (an ancestor set is a single
     526                 :             :  * transaction together with all its remaining ancestors).
     527                 :             :  */
     528                 :             : template<typename SetType>
     529                 :             : class AncestorCandidateFinder
     530                 :             : {
     531                 :             :     /** Internal dependency graph. */
     532                 :             :     const DepGraph<SetType>& m_depgraph;
     533                 :             :     /** Which transaction are left to include. */
     534                 :             :     SetType m_todo;
     535                 :             :     /** Precomputed ancestor-set feerates (only kept up-to-date for indices in m_todo). */
     536                 :             :     std::vector<FeeFrac> m_ancestor_set_feerates;
     537                 :             : 
     538                 :             : public:
     539                 :             :     /** Construct an AncestorCandidateFinder for a given cluster.
     540                 :             :      *
     541                 :             :      * Complexity: O(N^2) where N=depgraph.TxCount().
     542                 :             :      */
     543                 :             :     AncestorCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
     544                 :             :         m_depgraph(depgraph),
     545                 :             :         m_todo{depgraph.Positions()},
     546                 :             :         m_ancestor_set_feerates(depgraph.PositionRange())
     547                 :             :     {
     548                 :             :         // Precompute ancestor-set feerates.
     549                 :             :         for (ClusterIndex i : m_depgraph.Positions()) {
     550                 :             :             /** The remaining ancestors for transaction i. */
     551                 :             :             SetType anc_to_add = m_depgraph.Ancestors(i);
     552                 :             :             FeeFrac anc_feerate;
     553                 :             :             // Reuse accumulated feerate from first ancestor, if usable.
     554                 :             :             Assume(anc_to_add.Any());
     555                 :             :             ClusterIndex first = anc_to_add.First();
     556                 :             :             if (first < i) {
     557                 :             :                 anc_feerate = m_ancestor_set_feerates[first];
     558                 :             :                 Assume(!anc_feerate.IsEmpty());
     559                 :             :                 anc_to_add -= m_depgraph.Ancestors(first);
     560                 :             :             }
     561                 :             :             // Add in other ancestors (which necessarily include i itself).
     562                 :             :             Assume(anc_to_add[i]);
     563                 :             :             anc_feerate += m_depgraph.FeeRate(anc_to_add);
     564                 :             :             // Store the result.
     565                 :             :             m_ancestor_set_feerates[i] = anc_feerate;
     566                 :             :         }
     567                 :             :     }
     568                 :             : 
     569                 :             :     /** Remove a set of transactions from the set of to-be-linearized ones.
     570                 :             :      *
     571                 :             :      * The same transaction may not be MarkDone()'d twice.
     572                 :             :      *
     573                 :             :      * Complexity: O(N*M) where N=depgraph.TxCount(), M=select.Count().
     574                 :             :      */
     575                 :             :     void MarkDone(SetType select) noexcept
     576                 :             :     {
     577                 :             :         Assume(select.Any());
     578                 :             :         Assume(select.IsSubsetOf(m_todo));
     579                 :             :         m_todo -= select;
     580                 :             :         for (auto i : select) {
     581                 :             :             auto feerate = m_depgraph.FeeRate(i);
     582                 :             :             for (auto j : m_depgraph.Descendants(i) & m_todo) {
     583                 :             :                 m_ancestor_set_feerates[j] -= feerate;
     584                 :             :             }
     585                 :             :         }
     586                 :             :     }
     587                 :             : 
     588                 :             :     /** Check whether any unlinearized transactions remain. */
     589                 :             :     bool AllDone() const noexcept
     590                 :             :     {
     591                 :             :         return m_todo.None();
     592                 :             :     }
     593                 :             : 
     594                 :             :     /** Count the number of remaining unlinearized transactions. */
     595                 :             :     ClusterIndex NumRemaining() const noexcept
     596                 :             :     {
     597                 :             :         return m_todo.Count();
     598                 :             :     }
     599                 :             : 
     600                 :             :     /** Find the best (highest-feerate, smallest among those in case of a tie) ancestor set
     601                 :             :      *  among the remaining transactions. Requires !AllDone().
     602                 :             :      *
     603                 :             :      * Complexity: O(N) where N=depgraph.TxCount();
     604                 :             :      */
     605                 :             :     SetInfo<SetType> FindCandidateSet() const noexcept
     606                 :             :     {
     607                 :             :         Assume(!AllDone());
     608                 :             :         std::optional<ClusterIndex> best;
     609                 :             :         for (auto i : m_todo) {
     610                 :             :             if (best.has_value()) {
     611                 :             :                 Assume(!m_ancestor_set_feerates[i].IsEmpty());
     612                 :             :                 if (!(m_ancestor_set_feerates[i] > m_ancestor_set_feerates[*best])) continue;
     613                 :             :             }
     614                 :             :             best = i;
     615                 :             :         }
     616                 :             :         Assume(best.has_value());
     617                 :             :         return {m_depgraph.Ancestors(*best) & m_todo, m_ancestor_set_feerates[*best]};
     618                 :             :     }
     619                 :             : };
     620                 :             : 
     621                 :             : /** Class encapsulating the state needed to perform search for good candidate sets.
     622                 :             :  *
     623                 :             :  * It is initialized for an entire DepGraph, and parts of the graph can be dropped by calling
     624                 :             :  * MarkDone().
     625                 :             :  *
     626                 :             :  * As long as any part of the graph remains, FindCandidateSet() can be called to perform a search
     627                 :             :  * over the set of topologically-valid subsets of that remainder, with a limit on how many
     628                 :             :  * combinations are tried.
     629                 :             :  */
     630                 :             : template<typename SetType>
     631                 :             : class SearchCandidateFinder
     632                 :             : {
     633                 :             :     /** Internal RNG. */
     634                 :             :     InsecureRandomContext m_rng;
     635                 :             :     /** m_sorted_to_original[i] is the original position that sorted transaction position i had. */
     636                 :             :     std::vector<ClusterIndex> m_sorted_to_original;
     637                 :             :     /** m_original_to_sorted[i] is the sorted position original transaction position i has. */
     638                 :             :     std::vector<ClusterIndex> m_original_to_sorted;
     639                 :             :     /** Internal dependency graph for the cluster (with transactions in decreasing individual
     640                 :             :      *  feerate order). */
     641                 :             :     DepGraph<SetType> m_sorted_depgraph;
     642                 :             :     /** Which transactions are left to do (indices in m_sorted_depgraph's order). */
     643                 :             :     SetType m_todo;
     644                 :             : 
     645                 :             :     /** Given a set of transactions with sorted indices, get their original indices. */
     646                 :             :     SetType SortedToOriginal(const SetType& arg) const noexcept
     647                 :             :     {
     648                 :             :         SetType ret;
     649                 :             :         for (auto pos : arg) ret.Set(m_sorted_to_original[pos]);
     650                 :             :         return ret;
     651                 :             :     }
     652                 :             : 
     653                 :             :     /** Given a set of transactions with original indices, get their sorted indices. */
     654                 :             :     SetType OriginalToSorted(const SetType& arg) const noexcept
     655                 :             :     {
     656                 :             :         SetType ret;
     657                 :             :         for (auto pos : arg) ret.Set(m_original_to_sorted[pos]);
     658                 :             :         return ret;
     659                 :             :     }
     660                 :             : 
     661                 :             : public:
     662                 :             :     /** Construct a candidate finder for a graph.
     663                 :             :      *
     664                 :             :      * @param[in] depgraph   Dependency graph for the to-be-linearized cluster.
     665                 :             :      * @param[in] rng_seed   A random seed to control the search order.
     666                 :             :      *
     667                 :             :      * Complexity: O(N^2) where N=depgraph.Count().
     668                 :             :      */
     669                 :             :     SearchCandidateFinder(const DepGraph<SetType>& depgraph, uint64_t rng_seed) noexcept :
     670                 :             :         m_rng(rng_seed),
     671                 :             :         m_sorted_to_original(depgraph.TxCount()),
     672                 :             :         m_original_to_sorted(depgraph.PositionRange())
     673                 :             :     {
     674                 :             :         // Determine reordering mapping, by sorting by decreasing feerate. Unused positions are
     675                 :             :         // not included, as they will never be looked up anyway.
     676                 :             :         ClusterIndex sorted_pos{0};
     677                 :             :         for (auto i : depgraph.Positions()) {
     678                 :             :             m_sorted_to_original[sorted_pos++] = i;
     679                 :             :         }
     680                 :             :         std::sort(m_sorted_to_original.begin(), m_sorted_to_original.end(), [&](auto a, auto b) {
     681                 :             :             auto feerate_cmp = depgraph.FeeRate(a) <=> depgraph.FeeRate(b);
     682                 :             :             if (feerate_cmp == 0) return a < b;
     683                 :             :             return feerate_cmp > 0;
     684                 :             :         });
     685                 :             :         // Compute reverse mapping.
     686                 :             :         for (ClusterIndex i = 0; i < m_sorted_to_original.size(); ++i) {
     687                 :             :             m_original_to_sorted[m_sorted_to_original[i]] = i;
     688                 :             :         }
     689                 :             :         // Compute reordered dependency graph.
     690                 :             :         m_sorted_depgraph = DepGraph(depgraph, m_original_to_sorted, m_sorted_to_original.size());
     691                 :             :         m_todo = m_sorted_depgraph.Positions();
     692                 :             :     }
     693                 :             : 
     694                 :             :     /** Check whether any unlinearized transactions remain. */
     695                 :             :     bool AllDone() const noexcept
     696                 :             :     {
     697                 :             :         return m_todo.None();
     698                 :             :     }
     699                 :             : 
     700                 :             :     /** Find a high-feerate topologically-valid subset of what remains of the cluster.
     701                 :             :      *  Requires !AllDone().
     702                 :             :      *
     703                 :             :      * @param[in] max_iterations  The maximum number of optimization steps that will be performed.
     704                 :             :      * @param[in] best            A set/feerate pair with an already-known good candidate. This may
     705                 :             :      *                            be empty.
     706                 :             :      * @return                    A pair of:
     707                 :             :      *                            - The best (highest feerate, smallest size as tiebreaker)
     708                 :             :      *                              topologically valid subset (and its feerate) that was
     709                 :             :      *                              encountered during search. It will be at least as good as the
     710                 :             :      *                              best passed in (if not empty).
     711                 :             :      *                            - The number of optimization steps that were performed. This will
     712                 :             :      *                              be <= max_iterations. If strictly < max_iterations, the
     713                 :             :      *                              returned subset is optimal.
     714                 :             :      *
     715                 :             :      * Complexity: possibly O(N * min(max_iterations, sqrt(2^N))) where N=depgraph.TxCount().
     716                 :             :      */
     717                 :             :     std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations, SetInfo<SetType> best) noexcept
     718                 :             :     {
     719                 :             :         Assume(!AllDone());
     720                 :             : 
     721                 :             :         // Convert the provided best to internal sorted indices.
     722                 :             :         best.transactions = OriginalToSorted(best.transactions);
     723                 :             : 
     724                 :             :         /** Type for work queue items. */
     725                 :             :         struct WorkItem
     726                 :             :         {
     727                 :             :             /** Set of transactions definitely included (and its feerate). This must be a subset
     728                 :             :              *  of m_todo, and be topologically valid (includes all in-m_todo ancestors of
     729                 :             :              *  itself). */
     730                 :             :             SetInfo<SetType> inc;
     731                 :             :             /** Set of undecided transactions. This must be a subset of m_todo, and have no overlap
     732                 :             :              *  with inc. The set (inc | und) must be topologically valid. */
     733                 :             :             SetType und;
     734                 :             :             /** (Only when inc is not empty) The best feerate of any superset of inc that is also a
     735                 :             :              *  subset of (inc | und), without requiring it to be topologically valid. It forms a
     736                 :             :              *  conservative upper bound on how good a set this work item can give rise to.
     737                 :             :              *  Transactions whose feerate is below best's are ignored when determining this value,
     738                 :             :              *  which means it may technically be an underestimate, but if so, this work item
     739                 :             :              *  cannot result in something that beats best anyway. */
     740                 :             :             FeeFrac pot_feerate;
     741                 :             : 
     742                 :             :             /** Construct a new work item. */
     743                 :             :             WorkItem(SetInfo<SetType>&& i, SetType&& u, FeeFrac&& p_f) noexcept :
     744                 :             :                 inc(std::move(i)), und(std::move(u)), pot_feerate(std::move(p_f))
     745                 :             :             {
     746                 :             :                 Assume(pot_feerate.IsEmpty() == inc.feerate.IsEmpty());
     747                 :             :             }
     748                 :             : 
     749                 :             :             /** Swap two WorkItems. */
     750                 :             :             void Swap(WorkItem& other) noexcept
     751                 :             :             {
     752                 :             :                 swap(inc, other.inc);
     753                 :             :                 swap(und, other.und);
     754                 :             :                 swap(pot_feerate, other.pot_feerate);
     755                 :             :             }
     756                 :             :         };
     757                 :             : 
     758                 :             :         /** The queue of work items. */
     759                 :             :         VecDeque<WorkItem> queue;
     760                 :             :         queue.reserve(std::max<size_t>(256, 2 * m_todo.Count()));
     761                 :             : 
     762                 :             :         // Create initial entries per connected component of m_todo. While clusters themselves are
     763                 :             :         // generally connected, this is not necessarily true after some parts have already been
     764                 :             :         // removed from m_todo. Without this, effort can be wasted on searching "inc" sets that
     765                 :             :         // span multiple components.
     766                 :             :         auto to_cover = m_todo;
     767                 :             :         do {
     768                 :             :             auto component = m_sorted_depgraph.FindConnectedComponent(to_cover);
     769                 :             :             to_cover -= component;
     770                 :             :             // If best is not provided, set it to the first component, so that during the work
     771                 :             :             // processing loop below, and during the add_fn/split_fn calls, we do not need to deal
     772                 :             :             // with the best=empty case.
     773                 :             :             if (best.feerate.IsEmpty()) best = SetInfo(m_sorted_depgraph, component);
     774                 :             :             queue.emplace_back(/*inc=*/SetInfo<SetType>{},
     775                 :             :                                /*und=*/std::move(component),
     776                 :             :                                /*pot_feerate=*/FeeFrac{});
     777                 :             :         } while (to_cover.Any());
     778                 :             : 
     779                 :             :         /** Local copy of the iteration limit. */
     780                 :             :         uint64_t iterations_left = max_iterations;
     781                 :             : 
     782                 :             :         /** The set of transactions in m_todo which have feerate > best's. */
     783                 :             :         SetType imp = m_todo;
     784                 :             :         while (imp.Any()) {
     785                 :             :             ClusterIndex check = imp.Last();
     786                 :             :             if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
     787                 :             :             imp.Reset(check);
     788                 :             :         }
     789                 :             : 
     790                 :             :         /** Internal function to add an item to the queue of elements to explore if there are any
     791                 :             :          *  transactions left to split on, possibly improving it before doing so, and to update
     792                 :             :          *  best/imp.
     793                 :             :          *
     794                 :             :          * - inc: the "inc" value for the new work item (must be topological).
     795                 :             :          * - und: the "und" value for the new work item ((inc | und) must be topological).
     796                 :             :          */
     797                 :             :         auto add_fn = [&](SetInfo<SetType> inc, SetType und) noexcept {
     798                 :             :             /** SetInfo object with the set whose feerate will become the new work item's
     799                 :             :              *  pot_feerate. It starts off equal to inc. */
     800                 :             :             auto pot = inc;
     801                 :             :             if (!inc.feerate.IsEmpty()) {
     802                 :             :                 // Add entries to pot. We iterate over all undecided transactions whose feerate is
     803                 :             :                 // higher than best. While undecided transactions of lower feerate may improve pot,
     804                 :             :                 // the resulting pot feerate cannot possibly exceed best's (and this item will be
     805                 :             :                 // skipped in split_fn anyway).
     806                 :             :                 for (auto pos : imp & und) {
     807                 :             :                     // Determine if adding transaction pos to pot (ignoring topology) would improve
     808                 :             :                     // it. If not, we're done updating pot. This relies on the fact that
     809                 :             :                     // m_sorted_depgraph, and thus the transactions iterated over, are in decreasing
     810                 :             :                     // individual feerate order.
     811                 :             :                     if (!(m_sorted_depgraph.FeeRate(pos) >> pot.feerate)) break;
     812                 :             :                     pot.Set(m_sorted_depgraph, pos);
     813                 :             :                 }
     814                 :             : 
     815                 :             :                 // The "jump ahead" optimization: whenever pot has a topologically-valid subset,
     816                 :             :                 // that subset can be added to inc. Any subset of (pot - inc) has the property that
     817                 :             :                 // its feerate exceeds that of any set compatible with this work item (superset of
     818                 :             :                 // inc, subset of (inc | und)). Thus, if T is a topological subset of pot, and B is
     819                 :             :                 // the best topologically-valid set compatible with this work item, and (T - B) is
     820                 :             :                 // non-empty, then (T | B) is better than B and also topological. This is in
     821                 :             :                 // contradiction with the assumption that B is best. Thus, (T - B) must be empty,
     822                 :             :                 // or T must be a subset of B.
     823                 :             :                 //
     824                 :             :                 // See https://delvingbitcoin.org/t/how-to-linearize-your-cluster/303 section 2.4.
     825                 :             :                 const auto init_inc = inc.transactions;
     826                 :             :                 for (auto pos : pot.transactions - inc.transactions) {
     827                 :             :                     // If the transaction's ancestors are a subset of pot, we can add it together
     828                 :             :                     // with its ancestors to inc. Just update the transactions here; the feerate
     829                 :             :                     // update happens below.
     830                 :             :                     auto anc_todo = m_sorted_depgraph.Ancestors(pos) & m_todo;
     831                 :             :                     if (anc_todo.IsSubsetOf(pot.transactions)) inc.transactions |= anc_todo;
     832                 :             :                 }
     833                 :             :                 // Finally update und and inc's feerate to account for the added transactions.
     834                 :             :                 und -= inc.transactions;
     835                 :             :                 inc.feerate += m_sorted_depgraph.FeeRate(inc.transactions - init_inc);
     836                 :             : 
     837                 :             :                 // If inc's feerate is better than best's, remember it as our new best.
     838                 :             :                 if (inc.feerate > best.feerate) {
     839                 :             :                     best = inc;
     840                 :             :                     // See if we can remove any entries from imp now.
     841                 :             :                     while (imp.Any()) {
     842                 :             :                         ClusterIndex check = imp.Last();
     843                 :             :                         if (m_sorted_depgraph.FeeRate(check) >> best.feerate) break;
     844                 :             :                         imp.Reset(check);
     845                 :             :                     }
     846                 :             :                 }
     847                 :             : 
     848                 :             :                 // If no potential transactions exist beyond the already included ones, no
     849                 :             :                 // improvement is possible anymore.
     850                 :             :                 if (pot.feerate.size == inc.feerate.size) return;
     851                 :             :                 // At this point und must be non-empty. If it were empty then pot would equal inc.
     852                 :             :                 Assume(und.Any());
     853                 :             :             } else {
     854                 :             :                 Assume(inc.transactions.None());
     855                 :             :                 // If inc is empty, we just make sure there are undecided transactions left to
     856                 :             :                 // split on.
     857                 :             :                 if (und.None()) return;
     858                 :             :             }
     859                 :             : 
     860                 :             :             // Actually construct a new work item on the queue. Due to the switch to DFS when queue
     861                 :             :             // space runs out (see below), we know that no reallocation of the queue should ever
     862                 :             :             // occur.
     863                 :             :             Assume(queue.size() < queue.capacity());
     864                 :             :             queue.emplace_back(/*inc=*/std::move(inc),
     865                 :             :                                /*und=*/std::move(und),
     866                 :             :                                /*pot_feerate=*/std::move(pot.feerate));
     867                 :             :         };
     868                 :             : 
     869                 :             :         /** Internal process function. It takes an existing work item, and splits it in two: one
     870                 :             :          *  with a particular transaction (and its ancestors) included, and one with that
     871                 :             :          *  transaction (and its descendants) excluded. */
     872                 :             :         auto split_fn = [&](WorkItem&& elem) noexcept {
     873                 :             :             // Any queue element must have undecided transactions left, otherwise there is nothing
     874                 :             :             // to explore anymore.
     875                 :             :             Assume(elem.und.Any());
     876                 :             :             // The included and undecided set are all subsets of m_todo.
     877                 :             :             Assume(elem.inc.transactions.IsSubsetOf(m_todo) && elem.und.IsSubsetOf(m_todo));
     878                 :             :             // Included transactions cannot be undecided.
     879                 :             :             Assume(!elem.inc.transactions.Overlaps(elem.und));
     880                 :             :             // If pot is empty, then so is inc.
     881                 :             :             Assume(elem.inc.feerate.IsEmpty() == elem.pot_feerate.IsEmpty());
     882                 :             : 
     883                 :             :             const ClusterIndex first = elem.und.First();
     884                 :             :             if (!elem.inc.feerate.IsEmpty()) {
     885                 :             :                 // If no undecided transactions remain with feerate higher than best, this entry
     886                 :             :                 // cannot be improved beyond best.
     887                 :             :                 if (!elem.und.Overlaps(imp)) return;
     888                 :             :                 // We can ignore any queue item whose potential feerate isn't better than the best
     889                 :             :                 // seen so far.
     890                 :             :                 if (elem.pot_feerate <= best.feerate) return;
     891                 :             :             } else {
     892                 :             :                 // In case inc is empty use a simpler alternative check.
     893                 :             :                 if (m_sorted_depgraph.FeeRate(first) <= best.feerate) return;
     894                 :             :             }
     895                 :             : 
     896                 :             :             // Decide which transaction to split on. Splitting is how new work items are added, and
     897                 :             :             // how progress is made. One split transaction is chosen among the queue item's
     898                 :             :             // undecided ones, and:
     899                 :             :             // - A work item is (potentially) added with that transaction plus its remaining
     900                 :             :             //   descendants excluded (removed from the und set).
     901                 :             :             // - A work item is (potentially) added with that transaction plus its remaining
     902                 :             :             //   ancestors included (added to the inc set).
     903                 :             :             //
     904                 :             :             // To decide what to split on, consider the undecided ancestors of the highest
     905                 :             :             // individual feerate undecided transaction. Pick the one which reduces the search space
     906                 :             :             // most. Let I(t) be the size of the undecided set after including t, and E(t) the size
     907                 :             :             // of the undecided set after excluding t. Then choose the split transaction t such
     908                 :             :             // that 2^I(t) + 2^E(t) is minimal, tie-breaking by highest individual feerate for t.
     909                 :             :             ClusterIndex split = 0;
     910                 :             :             const auto select = elem.und & m_sorted_depgraph.Ancestors(first);
     911                 :             :             Assume(select.Any());
     912                 :             :             std::optional<std::pair<ClusterIndex, ClusterIndex>> split_counts;
     913                 :             :             for (auto t : select) {
     914                 :             :                 // Call max = max(I(t), E(t)) and min = min(I(t), E(t)). Let counts = {max,min}.
     915                 :             :                 // Sorting by the tuple counts is equivalent to sorting by 2^I(t) + 2^E(t). This
     916                 :             :                 // expression is equal to 2^max + 2^min = 2^max * (1 + 1/2^(max - min)). The second
     917                 :             :                 // factor (1 + 1/2^(max - min)) there is in (1,2]. Thus increasing max will always
     918                 :             :                 // increase it, even when min decreases. Because of this, we can first sort by max.
     919                 :             :                 std::pair<ClusterIndex, ClusterIndex> counts{
     920                 :             :                     (elem.und - m_sorted_depgraph.Ancestors(t)).Count(),
     921                 :             :                     (elem.und - m_sorted_depgraph.Descendants(t)).Count()};
     922                 :             :                 if (counts.first < counts.second) std::swap(counts.first, counts.second);
     923                 :             :                 // Remember the t with the lowest counts.
     924                 :             :                 if (!split_counts.has_value() || counts < *split_counts) {
     925                 :             :                     split = t;
     926                 :             :                     split_counts = counts;
     927                 :             :                 }
     928                 :             :             }
     929                 :             :             // Since there was at least one transaction in select, we must always find one.
     930                 :             :             Assume(split_counts.has_value());
     931                 :             : 
     932                 :             :             // Add a work item corresponding to exclusion of the split transaction.
     933                 :             :             const auto& desc = m_sorted_depgraph.Descendants(split);
     934                 :             :             add_fn(/*inc=*/elem.inc,
     935                 :             :                    /*und=*/elem.und - desc);
     936                 :             : 
     937                 :             :             // Add a work item corresponding to inclusion of the split transaction.
     938                 :             :             const auto anc = m_sorted_depgraph.Ancestors(split) & m_todo;
     939                 :             :             add_fn(/*inc=*/elem.inc.Add(m_sorted_depgraph, anc),
     940                 :             :                    /*und=*/elem.und - anc);
     941                 :             : 
     942                 :             :             // Account for the performed split.
     943                 :             :             --iterations_left;
     944                 :             :         };
     945                 :             : 
     946                 :             :         // Work processing loop.
     947                 :             :         //
     948                 :             :         // New work items are always added at the back of the queue, but items to process use a
     949                 :             :         // hybrid approach where they can be taken from the front or the back.
     950                 :             :         //
     951                 :             :         // Depth-first search (DFS) corresponds to always taking from the back of the queue. This
     952                 :             :         // is very memory-efficient (linear in the number of transactions). Breadth-first search
     953                 :             :         // (BFS) corresponds to always taking from the front, which potentially uses more memory
     954                 :             :         // (up to exponential in the transaction count), but seems to work better in practice.
     955                 :             :         //
     956                 :             :         // The approach here combines the two: use BFS (plus random swapping) until the queue grows
     957                 :             :         // too large, at which point we temporarily switch to DFS until the size shrinks again.
     958                 :             :         while (!queue.empty()) {
     959                 :             :             // Randomly swap the first two items to randomize the search order.
     960                 :             :             if (queue.size() > 1 && m_rng.randbool()) {
     961                 :             :                 queue[0].Swap(queue[1]);
     962                 :             :             }
     963                 :             : 
     964                 :             :             // Processing the first queue item, and then using DFS for everything it gives rise to,
     965                 :             :             // may increase the queue size by the number of undecided elements in there, minus 1
     966                 :             :             // for the first queue item being removed. Thus, only when that pushes the queue over
     967                 :             :             // its capacity can we not process from the front (BFS), and should we use DFS.
     968                 :             :             while (queue.size() - 1 + queue.front().und.Count() > queue.capacity()) {
     969                 :             :                 if (!iterations_left) break;
     970                 :             :                 auto elem = queue.back();
     971                 :             :                 queue.pop_back();
     972                 :             :                 split_fn(std::move(elem));
     973                 :             :             }
     974                 :             : 
     975                 :             :             // Process one entry from the front of the queue (BFS exploration)
     976                 :             :             if (!iterations_left) break;
     977                 :             :             auto elem = queue.front();
     978                 :             :             queue.pop_front();
     979                 :             :             split_fn(std::move(elem));
     980                 :             :         }
     981                 :             : 
     982                 :             :         // Return the found best set (converted to the original transaction indices), and the
     983                 :             :         // number of iterations performed.
     984                 :             :         best.transactions = SortedToOriginal(best.transactions);
     985                 :             :         return {std::move(best), max_iterations - iterations_left};
     986                 :             :     }
     987                 :             : 
     988                 :             :     /** Remove a subset of transactions from the cluster being linearized.
     989                 :             :      *
     990                 :             :      * Complexity: O(N) where N=done.Count().
     991                 :             :      */
     992                 :             :     void MarkDone(const SetType& done) noexcept
     993                 :             :     {
     994                 :             :         const auto done_sorted = OriginalToSorted(done);
     995                 :             :         Assume(done_sorted.Any());
     996                 :             :         Assume(done_sorted.IsSubsetOf(m_todo));
     997                 :             :         m_todo -= done_sorted;
     998                 :             :     }
     999                 :             : };
    1000                 :             : 
    1001                 :             : /** Find or improve a linearization for a cluster.
    1002                 :             :  *
    1003                 :             :  * @param[in] depgraph            Dependency graph of the cluster to be linearized.
    1004                 :             :  * @param[in] max_iterations      Upper bound on the number of optimization steps that will be done.
    1005                 :             :  * @param[in] rng_seed            A random number seed to control search order. This prevents peers
    1006                 :             :  *                                from predicting exactly which clusters would be hard for us to
    1007                 :             :  *                                linearize.
    1008                 :             :  * @param[in] old_linearization   An existing linearization for the cluster (which must be
    1009                 :             :  *                                topologically valid), or empty.
    1010                 :             :  * @return                        A pair of:
    1011                 :             :  *                                - The resulting linearization. It is guaranteed to be at least as
    1012                 :             :  *                                  good (in the feerate diagram sense) as old_linearization.
    1013                 :             :  *                                - A boolean indicating whether the result is guaranteed to be
    1014                 :             :  *                                  optimal.
    1015                 :             :  *
    1016                 :             :  * Complexity: possibly O(N * min(max_iterations + N, sqrt(2^N))) where N=depgraph.TxCount().
    1017                 :             :  */
    1018                 :             : template<typename SetType>
    1019                 :             : std::pair<std::vector<ClusterIndex>, bool> Linearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations, uint64_t rng_seed, Span<const ClusterIndex> old_linearization = {}) noexcept
    1020                 :             : {
    1021                 :             :     Assume(old_linearization.empty() || old_linearization.size() == depgraph.TxCount());
    1022                 :             :     if (depgraph.TxCount() == 0) return {{}, true};
    1023                 :             : 
    1024                 :             :     uint64_t iterations_left = max_iterations;
    1025                 :             :     std::vector<ClusterIndex> linearization;
    1026                 :             : 
    1027                 :             :     AncestorCandidateFinder anc_finder(depgraph);
    1028                 :             :     std::optional<SearchCandidateFinder<SetType>> src_finder;
    1029                 :             :     linearization.reserve(depgraph.TxCount());
    1030                 :             :     bool optimal = true;
    1031                 :             : 
    1032                 :             :     // Treat the initialization of SearchCandidateFinder as taking N^2/64 (rounded up) iterations
    1033                 :             :     // (largely due to the cost of constructing the internal sorted-by-feerate DepGraph inside
    1034                 :             :     // SearchCandidateFinder), a rough approximation based on benchmark. If we don't have that
    1035                 :             :     // many, don't start it.
    1036                 :             :     uint64_t start_iterations = (uint64_t{depgraph.TxCount()} * depgraph.TxCount() + 63) / 64;
    1037                 :             :     if (iterations_left > start_iterations) {
    1038                 :             :         iterations_left -= start_iterations;
    1039                 :             :         src_finder.emplace(depgraph, rng_seed);
    1040                 :             :     }
    1041                 :             : 
    1042                 :             :     /** Chunking of what remains of the old linearization. */
    1043                 :             :     LinearizationChunking old_chunking(depgraph, old_linearization);
    1044                 :             : 
    1045                 :             :     while (true) {
    1046                 :             :         // Find the highest-feerate prefix of the remainder of old_linearization.
    1047                 :             :         SetInfo<SetType> best_prefix;
    1048                 :             :         if (old_chunking.NumChunksLeft()) best_prefix = old_chunking.GetChunk(0);
    1049                 :             : 
    1050                 :             :         // Then initialize best to be either the best remaining ancestor set, or the first chunk.
    1051                 :             :         auto best = anc_finder.FindCandidateSet();
    1052                 :             :         if (!best_prefix.feerate.IsEmpty() && best_prefix.feerate >= best.feerate) best = best_prefix;
    1053                 :             : 
    1054                 :             :         uint64_t iterations_done_now = 0;
    1055                 :             :         uint64_t max_iterations_now = 0;
    1056                 :             :         if (src_finder) {
    1057                 :             :             // Treat the invocation of SearchCandidateFinder::FindCandidateSet() as costing N/4
    1058                 :             :             // up-front (rounded up) iterations (largely due to the cost of connected-component
    1059                 :             :             // splitting), a rough approximation based on benchmarks.
    1060                 :             :             uint64_t base_iterations = (anc_finder.NumRemaining() + 3) / 4;
    1061                 :             :             if (iterations_left > base_iterations) {
    1062                 :             :                 // Invoke bounded search to update best, with up to half of our remaining
    1063                 :             :                 // iterations as limit.
    1064                 :             :                 iterations_left -= base_iterations;
    1065                 :             :                 max_iterations_now = (iterations_left + 1) / 2;
    1066                 :             :                 std::tie(best, iterations_done_now) = src_finder->FindCandidateSet(max_iterations_now, best);
    1067                 :             :                 iterations_left -= iterations_done_now;
    1068                 :             :             }
    1069                 :             :         }
    1070                 :             : 
    1071                 :             :         if (iterations_done_now == max_iterations_now) {
    1072                 :             :             optimal = false;
    1073                 :             :             // If the search result is not (guaranteed to be) optimal, run intersections to make
    1074                 :             :             // sure we don't pick something that makes us unable to reach further diagram points
    1075                 :             :             // of the old linearization.
    1076                 :             :             if (old_chunking.NumChunksLeft() > 0) {
    1077                 :             :                 best = old_chunking.IntersectPrefixes(best);
    1078                 :             :             }
    1079                 :             :         }
    1080                 :             : 
    1081                 :             :         // Add to output in topological order.
    1082                 :             :         depgraph.AppendTopo(linearization, best.transactions);
    1083                 :             : 
    1084                 :             :         // Update state to reflect best is no longer to be linearized.
    1085                 :             :         anc_finder.MarkDone(best.transactions);
    1086                 :             :         if (anc_finder.AllDone()) break;
    1087                 :             :         if (src_finder) src_finder->MarkDone(best.transactions);
    1088                 :             :         if (old_chunking.NumChunksLeft() > 0) {
    1089                 :             :             old_chunking.MarkDone(best.transactions);
    1090                 :             :         }
    1091                 :             :     }
    1092                 :             : 
    1093                 :             :     return {std::move(linearization), optimal};
    1094                 :             : }
    1095                 :             : 
    1096                 :             : /** Improve a given linearization.
    1097                 :             :  *
    1098                 :             :  * @param[in]     depgraph       Dependency graph of the cluster being linearized.
    1099                 :             :  * @param[in,out] linearization  On input, an existing linearization for depgraph. On output, a
    1100                 :             :  *                               potentially better linearization for the same graph.
    1101                 :             :  *
    1102                 :             :  * Postlinearization guarantees:
    1103                 :             :  * - The resulting chunks are connected.
    1104                 :             :  * - If the input has a tree shape (either all transactions have at most one child, or all
    1105                 :             :  *   transactions have at most one parent), the result is optimal.
    1106                 :             :  * - Given a linearization L1 and a leaf transaction T in it. Let L2 be L1 with T moved to the end,
    1107                 :             :  *   optionally with its fee increased. Let L3 be the postlinearization of L2. L3 will be at least
    1108                 :             :  *   as good as L1. This means that replacing transactions with same-size higher-fee transactions
    1109                 :             :  *   will not worsen linearizations through a "drop conflicts, append new transactions,
    1110                 :             :  *   postlinearize" process.
    1111                 :             :  */
    1112                 :             : template<typename SetType>
    1113                 :             : void PostLinearize(const DepGraph<SetType>& depgraph, Span<ClusterIndex> linearization)
    1114                 :             : {
    1115                 :             :     // This algorithm performs a number of passes (currently 2); the even ones operate from back to
    1116                 :             :     // front, the odd ones from front to back. Each results in an equal-or-better linearization
    1117                 :             :     // than the one started from.
    1118                 :             :     // - One pass in either direction guarantees that the resulting chunks are connected.
    1119                 :             :     // - Each direction corresponds to one shape of tree being linearized optimally (forward passes
    1120                 :             :     //   guarantee this for graphs where each transaction has at most one child; backward passes
    1121                 :             :     //   guarantee this for graphs where each transaction has at most one parent).
    1122                 :             :     // - Starting with a backward pass guarantees the moved-tree property.
    1123                 :             :     //
    1124                 :             :     // During an odd (forward) pass, the high-level operation is:
    1125                 :             :     // - Start with an empty list of groups L=[].
    1126                 :             :     // - For every transaction i in the old linearization, from front to back:
    1127                 :             :     //   - Append a new group C=[i], containing just i, to the back of L.
    1128                 :             :     //   - While L has at least one group before C, and the group immediately before C has feerate
    1129                 :             :     //     lower than C:
    1130                 :             :     //     - If C depends on P:
    1131                 :             :     //       - Merge P into C, making C the concatenation of P+C, continuing with the combined C.
    1132                 :             :     //     - Otherwise:
    1133                 :             :     //       - Swap P with C, continuing with the now-moved C.
    1134                 :             :     // - The output linearization is the concatenation of the groups in L.
    1135                 :             :     //
    1136                 :             :     // During even (backward) passes, i iterates from the back to the front of the existing
    1137                 :             :     // linearization, and new groups are prepended instead of appended to the list L. To enable
    1138                 :             :     // more code reuse, both passes append groups, but during even passes the meanings of
    1139                 :             :     // parent/child, and of high/low feerate are reversed, and the final concatenation is reversed
    1140                 :             :     // on output.
    1141                 :             :     //
    1142                 :             :     // In the implementation below, the groups are represented by singly-linked lists (pointing
    1143                 :             :     // from the back to the front), which are themselves organized in a singly-linked circular
    1144                 :             :     // list (each group pointing to its predecessor, with a special sentinel group at the front
    1145                 :             :     // that points back to the last group).
    1146                 :             :     //
    1147                 :             :     // Information about transaction t is stored in entries[t + 1], while the sentinel is in
    1148                 :             :     // entries[0].
    1149                 :             : 
    1150                 :             :     /** Index of the sentinel in the entries array below. */
    1151                 :             :     static constexpr ClusterIndex SENTINEL{0};
    1152                 :             :     /** Indicator that a group has no previous transaction. */
    1153                 :             :     static constexpr ClusterIndex NO_PREV_TX{0};
    1154                 :             : 
    1155                 :             : 
    1156                 :             :     /** Data structure per transaction entry. */
    1157                 :             :     struct TxEntry
    1158                 :             :     {
    1159                 :             :         /** The index of the previous transaction in this group; NO_PREV_TX if this is the first
    1160                 :             :          *  entry of a group. */
    1161                 :             :         ClusterIndex prev_tx;
    1162                 :             : 
    1163                 :             :         // The fields below are only used for transactions that are the last one in a group
    1164                 :             :         // (referred to as tail transactions below).
    1165                 :             : 
    1166                 :             :         /** Index of the first transaction in this group, possibly itself. */
    1167                 :             :         ClusterIndex first_tx;
    1168                 :             :         /** Index of the last transaction in the previous group. The first group (the sentinel)
    1169                 :             :          *  points back to the last group here, making it a singly-linked circular list. */
    1170                 :             :         ClusterIndex prev_group;
    1171                 :             :         /** All transactions in the group. Empty for the sentinel. */
    1172                 :             :         SetType group;
    1173                 :             :         /** All dependencies of the group (descendants in even passes; ancestors in odd ones). */
    1174                 :             :         SetType deps;
    1175                 :             :         /** The combined fee/size of transactions in the group. Fee is negated in even passes. */
    1176                 :             :         FeeFrac feerate;
    1177                 :             :     };
    1178                 :             : 
    1179                 :             :     // As an example, consider the state corresponding to the linearization [1,0,3,2], with
    1180                 :             :     // groups [1,0,3] and [2], in an odd pass. The linked lists would be:
    1181                 :             :     //
    1182                 :             :     //                                        +-----+
    1183                 :             :     //                                 0<-P-- | 0 S | ---\     Legend:
    1184                 :             :     //                                        +-----+    |
    1185                 :             :     //                                           ^       |     - digit in box: entries index
    1186                 :             :     //             /--------------F---------+    G       |       (note: one more than tx value)
    1187                 :             :     //             v                         \   |       |     - S: sentinel group
    1188                 :             :     //          +-----+        +-----+        +-----+    |          (empty feerate)
    1189                 :             :     //   0<-P-- | 2   | <--P-- | 1   | <--P-- | 4 T |    |     - T: tail transaction, contains
    1190                 :             :     //          +-----+        +-----+        +-----+    |          fields beyond prev_tv.
    1191                 :             :     //                                           ^       |     - P: prev_tx reference
    1192                 :             :     //                                           G       G     - F: first_tx reference
    1193                 :             :     //                                           |       |     - G: prev_group reference
    1194                 :             :     //                                        +-----+    |
    1195                 :             :     //                                 0<-P-- | 3 T | <--/
    1196                 :             :     //                                        +-----+
    1197                 :             :     //                                         ^   |
    1198                 :             :     //                                         \-F-/
    1199                 :             :     //
    1200                 :             :     // During an even pass, the diagram above would correspond to linearization [2,3,0,1], with
    1201                 :             :     // groups [2] and [3,0,1].
    1202                 :             : 
    1203                 :             :     std::vector<TxEntry> entries(depgraph.PositionRange() + 1);
    1204                 :             : 
    1205                 :             :     // Perform two passes over the linearization.
    1206                 :             :     for (int pass = 0; pass < 2; ++pass) {
    1207                 :             :         int rev = !(pass & 1);
    1208                 :             :         // Construct a sentinel group, identifying the start of the list.
    1209                 :             :         entries[SENTINEL].prev_group = SENTINEL;
    1210                 :             :         Assume(entries[SENTINEL].feerate.IsEmpty());
    1211                 :             : 
    1212                 :             :         // Iterate over all elements in the existing linearization.
    1213                 :             :         for (ClusterIndex i = 0; i < linearization.size(); ++i) {
    1214                 :             :             // Even passes are from back to front; odd passes from front to back.
    1215                 :             :             ClusterIndex idx = linearization[rev ? linearization.size() - 1 - i : i];
    1216                 :             :             // Construct a new group containing just idx. In even passes, the meaning of
    1217                 :             :             // parent/child and high/low feerate are swapped.
    1218                 :             :             ClusterIndex cur_group = idx + 1;
    1219                 :             :             entries[cur_group].group = SetType::Singleton(idx);
    1220                 :             :             entries[cur_group].deps = rev ? depgraph.Descendants(idx): depgraph.Ancestors(idx);
    1221                 :             :             entries[cur_group].feerate = depgraph.FeeRate(idx);
    1222                 :             :             if (rev) entries[cur_group].feerate.fee = -entries[cur_group].feerate.fee;
    1223                 :             :             entries[cur_group].prev_tx = NO_PREV_TX; // No previous transaction in group.
    1224                 :             :             entries[cur_group].first_tx = cur_group; // Transaction itself is first of group.
    1225                 :             :             // Insert the new group at the back of the groups linked list.
    1226                 :             :             entries[cur_group].prev_group = entries[SENTINEL].prev_group;
    1227                 :             :             entries[SENTINEL].prev_group = cur_group;
    1228                 :             : 
    1229                 :             :             // Start merge/swap cycle.
    1230                 :             :             ClusterIndex next_group = SENTINEL; // We inserted at the end, so next group is sentinel.
    1231                 :             :             ClusterIndex prev_group = entries[cur_group].prev_group;
    1232                 :             :             // Continue as long as the current group has higher feerate than the previous one.
    1233                 :             :             while (entries[cur_group].feerate >> entries[prev_group].feerate) {
    1234                 :             :                 // prev_group/cur_group/next_group refer to (the last transactions of) 3
    1235                 :             :                 // consecutive entries in groups list.
    1236                 :             :                 Assume(cur_group == entries[next_group].prev_group);
    1237                 :             :                 Assume(prev_group == entries[cur_group].prev_group);
    1238                 :             :                 // The sentinel has empty feerate, which is neither higher or lower than other
    1239                 :             :                 // feerates. Thus, the while loop we are in here guarantees that cur_group and
    1240                 :             :                 // prev_group are not the sentinel.
    1241                 :             :                 Assume(cur_group != SENTINEL);
    1242                 :             :                 Assume(prev_group != SENTINEL);
    1243                 :             :                 if (entries[cur_group].deps.Overlaps(entries[prev_group].group)) {
    1244                 :             :                     // There is a dependency between cur_group and prev_group; merge prev_group
    1245                 :             :                     // into cur_group. The group/deps/feerate fields of prev_group remain unchanged
    1246                 :             :                     // but become unused.
    1247                 :             :                     entries[cur_group].group |= entries[prev_group].group;
    1248                 :             :                     entries[cur_group].deps |= entries[prev_group].deps;
    1249                 :             :                     entries[cur_group].feerate += entries[prev_group].feerate;
    1250                 :             :                     // Make the first of the current group point to the tail of the previous group.
    1251                 :             :                     entries[entries[cur_group].first_tx].prev_tx = prev_group;
    1252                 :             :                     // The first of the previous group becomes the first of the newly-merged group.
    1253                 :             :                     entries[cur_group].first_tx = entries[prev_group].first_tx;
    1254                 :             :                     // The previous group becomes whatever group was before the former one.
    1255                 :             :                     prev_group = entries[prev_group].prev_group;
    1256                 :             :                     entries[cur_group].prev_group = prev_group;
    1257                 :             :                 } else {
    1258                 :             :                     // There is no dependency between cur_group and prev_group; swap them.
    1259                 :             :                     ClusterIndex preprev_group = entries[prev_group].prev_group;
    1260                 :             :                     // If PP, P, C, N were the old preprev, prev, cur, next groups, then the new
    1261                 :             :                     // layout becomes [PP, C, P, N]. Update prev_groups to reflect that order.
    1262                 :             :                     entries[next_group].prev_group = prev_group;
    1263                 :             :                     entries[prev_group].prev_group = cur_group;
    1264                 :             :                     entries[cur_group].prev_group = preprev_group;
    1265                 :             :                     // The current group remains the same, but the groups before/after it have
    1266                 :             :                     // changed.
    1267                 :             :                     next_group = prev_group;
    1268                 :             :                     prev_group = preprev_group;
    1269                 :             :                 }
    1270                 :             :             }
    1271                 :             :         }
    1272                 :             : 
    1273                 :             :         // Convert the entries back to linearization (overwriting the existing one).
    1274                 :             :         ClusterIndex cur_group = entries[0].prev_group;
    1275                 :             :         ClusterIndex done = 0;
    1276                 :             :         while (cur_group != SENTINEL) {
    1277                 :             :             ClusterIndex cur_tx = cur_group;
    1278                 :             :             // Traverse the transactions of cur_group (from back to front), and write them in the
    1279                 :             :             // same order during odd passes, and reversed (front to back) in even passes.
    1280                 :             :             if (rev) {
    1281                 :             :                 do {
    1282                 :             :                     *(linearization.begin() + (done++)) = cur_tx - 1;
    1283                 :             :                     cur_tx = entries[cur_tx].prev_tx;
    1284                 :             :                 } while (cur_tx != NO_PREV_TX);
    1285                 :             :             } else {
    1286                 :             :                 do {
    1287                 :             :                     *(linearization.end() - (++done)) = cur_tx - 1;
    1288                 :             :                     cur_tx = entries[cur_tx].prev_tx;
    1289                 :             :                 } while (cur_tx != NO_PREV_TX);
    1290                 :             :             }
    1291                 :             :             cur_group = entries[cur_group].prev_group;
    1292                 :             :         }
    1293                 :             :         Assume(done == linearization.size());
    1294                 :             :     }
    1295                 :             : }
    1296                 :             : 
    1297                 :             : /** Merge two linearizations for the same cluster into one that is as good as both.
    1298                 :             :  *
    1299                 :             :  * Complexity: O(N^2) where N=depgraph.TxCount(); O(N) if both inputs are identical.
    1300                 :             :  */
    1301                 :             : template<typename SetType>
    1302                 :             : std::vector<ClusterIndex> MergeLinearizations(const DepGraph<SetType>& depgraph, Span<const ClusterIndex> lin1, Span<const ClusterIndex> lin2)
    1303                 :             : {
    1304                 :             :     Assume(lin1.size() == depgraph.TxCount());
    1305                 :             :     Assume(lin2.size() == depgraph.TxCount());
    1306                 :             : 
    1307                 :             :     /** Chunkings of what remains of both input linearizations. */
    1308                 :             :     LinearizationChunking chunking1(depgraph, lin1), chunking2(depgraph, lin2);
    1309                 :             :     /** Output linearization. */
    1310                 :             :     std::vector<ClusterIndex> ret;
    1311                 :             :     if (depgraph.TxCount() == 0) return ret;
    1312                 :             :     ret.reserve(depgraph.TxCount());
    1313                 :             : 
    1314                 :             :     while (true) {
    1315                 :             :         // As long as we are not done, both linearizations must have chunks left.
    1316                 :             :         Assume(chunking1.NumChunksLeft() > 0);
    1317                 :             :         Assume(chunking2.NumChunksLeft() > 0);
    1318                 :             :         // Find the set to output by taking the best remaining chunk, and then intersecting it with
    1319                 :             :         // prefixes of remaining chunks of the other linearization.
    1320                 :             :         SetInfo<SetType> best;
    1321                 :             :         const auto& lin1_firstchunk = chunking1.GetChunk(0);
    1322                 :             :         const auto& lin2_firstchunk = chunking2.GetChunk(0);
    1323                 :             :         if (lin2_firstchunk.feerate >> lin1_firstchunk.feerate) {
    1324                 :             :             best = chunking1.IntersectPrefixes(lin2_firstchunk);
    1325                 :             :         } else {
    1326                 :             :             best = chunking2.IntersectPrefixes(lin1_firstchunk);
    1327                 :             :         }
    1328                 :             :         // Append the result to the output and mark it as done.
    1329                 :             :         depgraph.AppendTopo(ret, best.transactions);
    1330                 :             :         chunking1.MarkDone(best.transactions);
    1331                 :             :         if (chunking1.NumChunksLeft() == 0) break;
    1332                 :             :         chunking2.MarkDone(best.transactions);
    1333                 :             :     }
    1334                 :             : 
    1335                 :             :     Assume(ret.size() == depgraph.TxCount());
    1336                 :             :     return ret;
    1337                 :             : }
    1338                 :             : 
    1339                 :             : } // namespace cluster_linearize
    1340                 :             : 
    1341                 :             : #endif // BITCOIN_CLUSTER_LINEARIZE_H
        

Generated by: LCOV version 2.0-1