LCOV - code coverage report
Current view: top level - src/test - cuckoocache_tests.cpp (source / functions) Coverage Total Hit
Test: test_bitcoin_coverage.info Lines: 100.0 % 186 186
Test Date: 2024-11-04 04:45:35 Functions: 100.0 % 16 16
Branches: 57.8 % 462 267

             Branch data     Line data    Source code
       1                 :             : // Copyright (c) 2012-2021 The Bitcoin Core developers
       2                 :             : // Distributed under the MIT software license, see the accompanying
       3                 :             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4                 :             : 
       5                 :             : #include <cuckoocache.h>
       6                 :             : #include <random.h>
       7                 :             : #include <script/sigcache.h>
       8                 :             : #include <test/util/random.h>
       9                 :             : #include <test/util/setup_common.h>
      10                 :             : 
      11                 :             : #include <boost/test/unit_test.hpp>
      12                 :             : 
      13                 :             : #include <deque>
      14                 :             : #include <mutex>
      15                 :             : #include <shared_mutex>
      16                 :             : #include <thread>
      17                 :             : #include <vector>
      18                 :             : 
      19                 :             : /** Test Suite for CuckooCache
      20                 :             :  *
      21                 :             :  *  1. All tests should have a deterministic result (using insecure rand
      22                 :             :  *  with deterministic seeds)
      23                 :             :  *  2. Some test methods are templated to allow for easier testing
      24                 :             :  *  against new versions / comparing
      25                 :             :  *  3. Results should be treated as a regression test, i.e., did the behavior
      26                 :             :  *  change significantly from what was expected. This can be OK, depending on
      27                 :             :  *  the nature of the change, but requires updating the tests to reflect the new
      28                 :             :  *  expected behavior. For example improving the hit rate may cause some tests
      29                 :             :  *  using BOOST_CHECK_CLOSE to fail.
      30                 :             :  *
      31                 :             :  */
      32                 :             : BOOST_FIXTURE_TEST_SUITE(cuckoocache_tests, BasicTestingSetup);
      33                 :             : 
      34                 :             : /* Test that no values not inserted into the cache are read out of it.
      35                 :             :  *
      36                 :             :  * There are no repeats in the first 200000 m_rng.rand256() calls
      37                 :             :  */
      38   [ +  -  +  -  :           7 : BOOST_AUTO_TEST_CASE(test_cuckoocache_no_fakes)
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
                      - ]
      39                 :             : {
      40                 :           1 :     SeedRandomForTest(SeedRand::ZEROS);
      41                 :           1 :     CuckooCache::cache<uint256, SignatureCacheHasher> cc{};
      42                 :           1 :     size_t megabytes = 4;
      43         [ +  - ]:           1 :     cc.setup_bytes(megabytes << 20);
      44         [ +  + ]:      100001 :     for (int x = 0; x < 100000; ++x) {
      45                 :      100000 :         cc.insert(m_rng.rand256());
      46                 :             :     }
      47         [ +  + ]:      100001 :     for (int x = 0; x < 100000; ++x) {
      48   [ +  -  +  - ]:      200000 :         BOOST_CHECK(!cc.contains(m_rng.rand256(), false));
      49                 :             :     }
      50                 :           1 : };
      51                 :             : 
      52                 :           2 : struct HitRateTest : BasicTestingSetup {
      53                 :             : /** This helper returns the hit rate when megabytes*load worth of entries are
      54                 :             :  * inserted into a megabytes sized cache
      55                 :             :  */
      56                 :             : template <typename Cache>
      57                 :           5 : double test_cache(size_t megabytes, double load)
      58                 :             : {
      59                 :           5 :     SeedRandomForTest(SeedRand::ZEROS);
      60                 :           5 :     std::vector<uint256> hashes;
      61         [ +  - ]:           5 :     Cache set{};
      62                 :           5 :     size_t bytes = megabytes * (1 << 20);
      63         [ +  - ]:           5 :     set.setup_bytes(bytes);
      64                 :           5 :     uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
      65         [ +  - ]:           5 :     hashes.resize(n_insert);
      66         [ +  + ]:      406326 :     for (uint32_t i = 0; i < n_insert; ++i) {
      67                 :      406321 :         uint32_t* ptr = (uint32_t*)hashes[i].begin();
      68         [ +  + ]:     3656889 :         for (uint8_t j = 0; j < 8; ++j)
      69                 :     3250568 :             *(ptr++) = m_rng.rand32();
      70                 :             :     }
      71                 :             :     /** We make a copy of the hashes because future optimizations of the
      72                 :             :      * cuckoocache may overwrite the inserted element, so the test is
      73                 :             :      * "future proofed".
      74                 :             :      */
      75         [ +  - ]:           5 :     std::vector<uint256> hashes_insert_copy = hashes;
      76                 :             :     /** Do the insert */
      77         [ +  + ]:      406326 :     for (const uint256& h : hashes_insert_copy)
      78                 :      406321 :         set.insert(h);
      79                 :             :     /** Count the hits */
      80                 :           5 :     uint32_t count = 0;
      81         [ +  + ]:      406326 :     for (const uint256& h : hashes)
      82                 :      406321 :         count += set.contains(h, false);
      83                 :           5 :     double hit_rate = ((double)count) / ((double)n_insert);
      84                 :           5 :     return hit_rate;
      85                 :           5 : }
      86                 :             : 
      87                 :             : /** The normalized hit rate for a given load.
      88                 :             :  *
      89                 :             :  * The semantics are a little confusing, so please see the below
      90                 :             :  * explanation.
      91                 :             :  *
      92                 :             :  * Examples:
      93                 :             :  *
      94                 :             :  * 1. at load 0.5, we expect a perfect hit rate, so we multiply by
      95                 :             :  * 1.0
      96                 :             :  * 2. at load 2.0, we expect to see half the entries, so a perfect hit rate
      97                 :             :  * would be 0.5. Therefore, if we see a hit rate of 0.4, 0.4*2.0 = 0.8 is the
      98                 :             :  * normalized hit rate.
      99                 :             :  *
     100                 :             :  * This is basically the right semantics, but has a bit of a glitch depending on
     101                 :             :  * how you measure around load 1.0 as after load 1.0 your normalized hit rate
     102                 :             :  * becomes effectively perfect, ignoring freshness.
     103                 :             :  */
     104                 :           5 : static double normalize_hit_rate(double hits, double load)
     105                 :             : {
     106         [ +  + ]:           5 :     return hits * std::max(load, 1.0);
     107                 :             : }
     108                 :             : }; // struct HitRateTest
     109                 :             : 
     110                 :             : /** Check the hit rate on loads ranging from 0.1 to 1.6 */
     111   [ +  -  +  -  :           7 : BOOST_FIXTURE_TEST_CASE(cuckoocache_hit_rate_ok, HitRateTest)
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
                      - ]
     112                 :             : {
     113                 :             :     /** Arbitrarily selected Hit Rate threshold that happens to work for this test
     114                 :             :      * as a lower bound on performance.
     115                 :             :      */
     116                 :           1 :     double HitRateThresh = 0.98;
     117                 :           1 :     size_t megabytes = 4;
     118         [ +  + ]:           6 :     for (double load = 0.1; load < 2; load *= 2) {
     119                 :           5 :         double hits = test_cache<CuckooCache::cache<uint256, SignatureCacheHasher>>(megabytes, load);
     120   [ +  +  +  - ]:          11 :         BOOST_CHECK(normalize_hit_rate(hits, load) > HitRateThresh);
     121                 :             :     }
     122                 :           1 : }
     123                 :             : 
     124                 :             : 
     125                 :           2 : struct EraseTest : BasicTestingSetup {
     126                 :             : /** This helper checks that erased elements are preferentially inserted onto and
     127                 :             :  * that the hit rate of "fresher" keys is reasonable*/
     128                 :             : template <typename Cache>
     129                 :           1 : void test_cache_erase(size_t megabytes)
     130                 :             : {
     131                 :           1 :     double load = 1;
     132                 :           1 :     SeedRandomForTest(SeedRand::ZEROS);
     133                 :           1 :     std::vector<uint256> hashes;
     134         [ +  - ]:           1 :     Cache set{};
     135                 :           1 :     size_t bytes = megabytes * (1 << 20);
     136         [ +  - ]:           1 :     set.setup_bytes(bytes);
     137                 :           1 :     uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
     138         [ +  - ]:           1 :     hashes.resize(n_insert);
     139         [ +  + ]:      131073 :     for (uint32_t i = 0; i < n_insert; ++i) {
     140                 :      131072 :         uint32_t* ptr = (uint32_t*)hashes[i].begin();
     141         [ +  + ]:     1179648 :         for (uint8_t j = 0; j < 8; ++j)
     142                 :     1048576 :             *(ptr++) = m_rng.rand32();
     143                 :             :     }
     144                 :             :     /** We make a copy of the hashes because future optimizations of the
     145                 :             :      * cuckoocache may overwrite the inserted element, so the test is
     146                 :             :      * "future proofed".
     147                 :             :      */
     148         [ +  - ]:           1 :     std::vector<uint256> hashes_insert_copy = hashes;
     149                 :             : 
     150                 :             :     /** Insert the first half */
     151         [ +  + ]:       65537 :     for (uint32_t i = 0; i < (n_insert / 2); ++i)
     152                 :       65536 :         set.insert(hashes_insert_copy[i]);
     153                 :             :     /** Erase the first quarter */
     154         [ +  + ]:       32769 :     for (uint32_t i = 0; i < (n_insert / 4); ++i)
     155   [ +  -  +  - ]:       65536 :         BOOST_CHECK(set.contains(hashes[i], true));
     156                 :             :     /** Insert the second half */
     157         [ +  + ]:       65537 :     for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
     158                 :       65536 :         set.insert(hashes_insert_copy[i]);
     159                 :             : 
     160                 :             :     /** elements that we marked as erased but are still there */
     161                 :             :     size_t count_erased_but_contained = 0;
     162                 :             :     /** elements that we did not erase but are older */
     163                 :       32769 :     size_t count_stale = 0;
     164                 :             :     /** elements that were most recently inserted */
     165                 :       32769 :     size_t count_fresh = 0;
     166                 :             : 
     167         [ +  + ]:       32769 :     for (uint32_t i = 0; i < (n_insert / 4); ++i)
     168                 :       32768 :         count_erased_but_contained += set.contains(hashes[i], false);
     169         [ +  + ]:       32769 :     for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i)
     170                 :       32768 :         count_stale += set.contains(hashes[i], false);
     171         [ +  + ]:       65537 :     for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
     172                 :       65536 :         count_fresh += set.contains(hashes[i], false);
     173                 :             : 
     174                 :           1 :     double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0);
     175                 :           1 :     double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0);
     176                 :           1 :     double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0);
     177                 :             : 
     178                 :             :     // Check that our hit_rate_fresh is perfect
     179   [ +  -  +  - ]:           1 :     BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0);
     180                 :             :     // Check that we have a more than 2x better hit rate on stale elements than
     181                 :             :     // erased elements.
     182   [ +  -  +  - ]:           2 :     BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained);
     183                 :           1 : }
     184                 :             : }; // struct EraseTest
     185                 :             : 
     186   [ +  -  +  -  :           7 : BOOST_FIXTURE_TEST_CASE(cuckoocache_erase_ok, EraseTest)
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
                      - ]
     187                 :             : {
     188                 :           1 :     size_t megabytes = 4;
     189                 :           1 :     test_cache_erase<CuckooCache::cache<uint256, SignatureCacheHasher>>(megabytes);
     190                 :           1 : }
     191                 :             : 
     192                 :           2 : struct EraseParallelTest : BasicTestingSetup {
     193                 :             : template <typename Cache>
     194                 :           1 : void test_cache_erase_parallel(size_t megabytes)
     195                 :             : {
     196                 :           1 :     double load = 1;
     197                 :           1 :     SeedRandomForTest(SeedRand::ZEROS);
     198                 :           1 :     std::vector<uint256> hashes;
     199         [ +  - ]:           1 :     Cache set{};
     200                 :           1 :     size_t bytes = megabytes * (1 << 20);
     201         [ +  - ]:           1 :     set.setup_bytes(bytes);
     202                 :           1 :     uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
     203         [ +  - ]:           1 :     hashes.resize(n_insert);
     204         [ +  + ]:      131073 :     for (uint32_t i = 0; i < n_insert; ++i) {
     205                 :      131072 :         uint32_t* ptr = (uint32_t*)hashes[i].begin();
     206         [ +  + ]:     1179648 :         for (uint8_t j = 0; j < 8; ++j)
     207                 :     1048576 :             *(ptr++) = m_rng.rand32();
     208                 :             :     }
     209                 :             :     /** We make a copy of the hashes because future optimizations of the
     210                 :             :      * cuckoocache may overwrite the inserted element, so the test is
     211                 :             :      * "future proofed".
     212                 :             :      */
     213         [ +  - ]:           1 :     std::vector<uint256> hashes_insert_copy = hashes;
     214         [ +  - ]:           1 :     std::shared_mutex mtx;
     215                 :             : 
     216                 :             :     {
     217                 :             :         /** Grab lock to make sure we release inserts */
     218                 :           1 :         std::unique_lock<std::shared_mutex> l(mtx);
     219                 :             :         /** Insert the first half */
     220         [ +  + ]:       65537 :         for (uint32_t i = 0; i < (n_insert / 2); ++i)
     221                 :       65536 :             set.insert(hashes_insert_copy[i]);
     222                 :           1 :     }
     223                 :             : 
     224                 :             :     /** Spin up 3 threads to run contains with erase.
     225                 :             :      */
     226                 :           1 :     std::vector<std::thread> threads;
     227                 :             :     /** Erase the first quarter */
     228         [ +  + ]:           4 :     for (uint32_t x = 0; x < 3; ++x)
     229                 :             :         /** Each thread is emplaced with x copy-by-value
     230                 :             :         */
     231         [ +  - ]:           3 :         threads.emplace_back([&, x] {
     232                 :           3 :             std::shared_lock<std::shared_mutex> l(mtx);
     233                 :           3 :             size_t ntodo = (n_insert/4)/3;
     234                 :           3 :             size_t start = ntodo*x;
     235                 :           3 :             size_t end = ntodo*(x+1);
     236         [ +  + ]:       32769 :             for (uint32_t i = start; i < end; ++i) {
     237                 :       32766 :                 bool contains = set.contains(hashes[i], true);
     238         [ -  + ]:       32766 :                 assert(contains);
     239                 :             :             }
     240                 :           3 :         });
     241                 :             : 
     242                 :             :     /** Wait for all threads to finish
     243                 :             :      */
     244         [ +  + ]:           4 :     for (std::thread& t : threads)
     245         [ +  - ]:           3 :         t.join();
     246                 :             :     /** Grab lock to make sure we observe erases */
     247                 :           1 :     std::unique_lock<std::shared_mutex> l(mtx);
     248                 :             :     /** Insert the second half */
     249         [ +  + ]:       65537 :     for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
     250                 :       65536 :         set.insert(hashes_insert_copy[i]);
     251                 :             : 
     252                 :             :     /** elements that we marked erased but that are still there */
     253                 :             :     size_t count_erased_but_contained = 0;
     254                 :             :     /** elements that we did not erase but are older */
     255                 :       32769 :     size_t count_stale = 0;
     256                 :             :     /** elements that were most recently inserted */
     257                 :       32769 :     size_t count_fresh = 0;
     258                 :             : 
     259         [ +  + ]:       32769 :     for (uint32_t i = 0; i < (n_insert / 4); ++i)
     260                 :       32768 :         count_erased_but_contained += set.contains(hashes[i], false);
     261         [ +  + ]:       32769 :     for (uint32_t i = (n_insert / 4); i < (n_insert / 2); ++i)
     262                 :       32768 :         count_stale += set.contains(hashes[i], false);
     263         [ +  + ]:       65537 :     for (uint32_t i = (n_insert / 2); i < n_insert; ++i)
     264                 :       65536 :         count_fresh += set.contains(hashes[i], false);
     265                 :             : 
     266                 :           1 :     double hit_rate_erased_but_contained = double(count_erased_but_contained) / (double(n_insert) / 4.0);
     267                 :           1 :     double hit_rate_stale = double(count_stale) / (double(n_insert) / 4.0);
     268                 :           1 :     double hit_rate_fresh = double(count_fresh) / (double(n_insert) / 2.0);
     269                 :             : 
     270                 :             :     // Check that our hit_rate_fresh is perfect
     271   [ +  -  +  - ]:           1 :     BOOST_CHECK_EQUAL(hit_rate_fresh, 1.0);
     272                 :             :     // Check that we have a more than 2x better hit rate on stale elements than
     273                 :             :     // erased elements.
     274   [ +  -  +  -  :           2 :     BOOST_CHECK(hit_rate_stale > 2 * hit_rate_erased_but_contained);
                   +  - ]
     275                 :           1 : }
     276                 :             : }; // struct EraseParallelTest
     277   [ +  -  +  -  :           7 : BOOST_FIXTURE_TEST_CASE(cuckoocache_erase_parallel_ok, EraseParallelTest)
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
                      - ]
     278                 :             : {
     279                 :           1 :     size_t megabytes = 4;
     280                 :           1 :     test_cache_erase_parallel<CuckooCache::cache<uint256, SignatureCacheHasher>>(megabytes);
     281                 :           1 : }
     282                 :             : 
     283                 :             : 
     284                 :           2 : struct GenerationsTest : BasicTestingSetup {
     285                 :             : template <typename Cache>
     286                 :           1 : void test_cache_generations()
     287                 :             : {
     288                 :             :     // This test checks that for a simulation of network activity, the fresh hit
     289                 :             :     // rate is never below 99%, and the number of times that it is worse than
     290                 :             :     // 99.9% are less than 1% of the time.
     291                 :           1 :     double min_hit_rate = 0.99;
     292                 :           1 :     double tight_hit_rate = 0.999;
     293                 :           1 :     double max_rate_less_than_tight_hit_rate = 0.01;
     294                 :             :     // A cache that meets this specification is therefore shown to have a hit
     295                 :             :     // rate of at least tight_hit_rate * (1 - max_rate_less_than_tight_hit_rate) +
     296                 :             :     // min_hit_rate*max_rate_less_than_tight_hit_rate = 0.999*99%+0.99*1% == 99.89%
     297                 :             :     // hit rate with low variance.
     298                 :             : 
     299                 :             :     // We use deterministic values, but this test has also passed on many
     300                 :             :     // iterations with non-deterministic values, so it isn't "overfit" to the
     301                 :             :     // specific entropy in FastRandomContext(true) and implementation of the
     302                 :             :     // cache.
     303                 :           1 :     SeedRandomForTest(SeedRand::ZEROS);
     304                 :             : 
     305                 :             :     // block_activity models a chunk of network activity. n_insert elements are
     306                 :             :     // added to the cache. The first and last n/4 are stored for removal later
     307                 :             :     // and the middle n/2 are not stored. This models a network which uses half
     308                 :             :     // the signatures of recently (since the last block) added transactions
     309                 :             :     // immediately and never uses the other half.
     310                 :        1310 :     struct block_activity {
     311                 :             :         std::vector<uint256> reads;
     312                 :        1310 :         block_activity(uint32_t n_insert, FastRandomContext& rng, Cache& c)
     313         [ +  - ]:        1310 :         {
     314                 :        1310 :             std::vector<uint256> inserts;
     315         [ +  - ]:        1310 :             inserts.resize(n_insert);
     316         [ +  - ]:        1310 :             reads.reserve(n_insert / 2);
     317         [ +  + ]:     1311310 :             for (uint32_t i = 0; i < n_insert; ++i) {
     318                 :     1310000 :                 uint32_t* ptr = (uint32_t*)inserts[i].begin();
     319         [ +  + ]:    11790000 :                 for (uint8_t j = 0; j < 8; ++j)
     320                 :    10480000 :                     *(ptr++) = rng.rand32();
     321                 :             :             }
     322         [ +  + ]:      328810 :             for (uint32_t i = 0; i < n_insert / 4; ++i)
     323         [ +  - ]:      327500 :                 reads.push_back(inserts[i]);
     324         [ +  + ]:      328810 :             for (uint32_t i = n_insert - (n_insert / 4); i < n_insert; ++i)
     325         [ +  - ]:      327500 :                 reads.push_back(inserts[i]);
     326         [ +  + ]:     1311310 :             for (const auto& h : inserts)
     327                 :     1310000 :                 c.insert(h);
     328                 :        1310 :         }
     329                 :             :     };
     330                 :             : 
     331                 :           1 :     const uint32_t BLOCK_SIZE = 1000;
     332                 :             :     // We expect window size 60 to perform reasonably given that each epoch
     333                 :             :     // stores 45% of the cache size (~472k).
     334                 :           1 :     const uint32_t WINDOW_SIZE = 60;
     335                 :           1 :     const uint32_t POP_AMOUNT = (BLOCK_SIZE / WINDOW_SIZE) / 2;
     336                 :           1 :     const double load = 10;
     337                 :           1 :     const size_t megabytes = 4;
     338                 :           1 :     const size_t bytes = megabytes * (1 << 20);
     339                 :           1 :     const uint32_t n_insert = static_cast<uint32_t>(load * (bytes / sizeof(uint256)));
     340                 :             : 
     341                 :           1 :     std::vector<block_activity> hashes;
     342         [ +  - ]:           1 :     Cache set{};
     343         [ +  - ]:           1 :     set.setup_bytes(bytes);
     344         [ +  - ]:           1 :     hashes.reserve(n_insert / BLOCK_SIZE);
     345                 :        1311 :     std::deque<block_activity> last_few;
     346                 :             :     uint32_t out_of_tight_tolerance = 0;
     347                 :             :     uint32_t total = n_insert / BLOCK_SIZE;
     348                 :             :     // we use the deque last_few to model a sliding window of blocks. at each
     349                 :             :     // step, each of the last WINDOW_SIZE block_activities checks the cache for
     350                 :             :     // POP_AMOUNT of the hashes that they inserted, and marks these erased.
     351         [ +  + ]:        1311 :     for (uint32_t i = 0; i < total; ++i) {
     352         [ +  + ]:        1310 :         if (last_few.size() == WINDOW_SIZE)
     353                 :        1250 :             last_few.pop_front();
     354         [ +  - ]:        1310 :         last_few.emplace_back(BLOCK_SIZE, m_rng, set);
     355                 :        1310 :         uint32_t count = 0;
     356         [ +  + ]:       78140 :         for (auto& act : last_few)
     357         [ +  + ]:      691470 :             for (uint32_t k = 0; k < POP_AMOUNT; ++k) {
     358                 :      614640 :                 count += set.contains(act.reads.back(), true);
     359                 :      614640 :                 act.reads.pop_back();
     360                 :             :             }
     361                 :             :         // We use last_few.size() rather than WINDOW_SIZE for the correct
     362                 :             :         // behavior on the first WINDOW_SIZE iterations where the deque is not
     363                 :             :         // full yet.
     364         [ +  - ]:        1310 :         double hit = (double(count)) / (last_few.size() * POP_AMOUNT);
     365                 :             :         // Loose Check that hit rate is above min_hit_rate
     366   [ +  -  +  - ]:        2620 :         BOOST_CHECK(hit > min_hit_rate);
     367                 :             :         // Tighter check, count number of times we are less than tight_hit_rate
     368                 :             :         // (and implicitly, greater than min_hit_rate)
     369                 :        1310 :         out_of_tight_tolerance += hit < tight_hit_rate;
     370                 :             :     }
     371                 :             :     // Check that being out of tolerance happens less than
     372                 :             :     // max_rate_less_than_tight_hit_rate of the time
     373   [ +  -  +  - ]:           2 :     BOOST_CHECK(double(out_of_tight_tolerance) / double(total) < max_rate_less_than_tight_hit_rate);
     374                 :           1 : }
     375                 :             : }; // struct GenerationsTest
     376   [ +  -  +  -  :           7 : BOOST_FIXTURE_TEST_CASE(cuckoocache_generations, GenerationsTest)
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
                      - ]
     377                 :             : {
     378                 :           1 :     test_cache_generations<CuckooCache::cache<uint256, SignatureCacheHasher>>();
     379                 :           1 : }
     380                 :             : 
     381                 :             : BOOST_AUTO_TEST_SUITE_END();
        

Generated by: LCOV version 2.0-1