Branch data Line data Source code
1 : : // Copyright (c) 2022 The Bitcoin Core developers
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : #ifndef BITCOIN_SUPPORT_ALLOCATORS_POOL_H
6 : : #define BITCOIN_SUPPORT_ALLOCATORS_POOL_H
7 : :
8 : : #include <array>
9 : : #include <cassert>
10 : : #include <cstddef>
11 : : #include <list>
12 : : #include <memory>
13 : : #include <new>
14 : : #include <type_traits>
15 : : #include <utility>
16 : :
17 : : #include <util/check.h>
18 : :
19 : : /**
20 : : * A memory resource similar to std::pmr::unsynchronized_pool_resource, but
21 : : * optimized for node-based containers. It has the following properties:
22 : : *
23 : : * * Owns the allocated memory and frees it on destruction, even when deallocate
24 : : * has not been called on the allocated blocks.
25 : : *
26 : : * * Consists of a number of pools, each one for a different block size.
27 : : * Each pool holds blocks of uniform size in a freelist.
28 : : *
29 : : * * Exhausting memory in a freelist causes a new allocation of a fixed size chunk.
30 : : * This chunk is used to carve out blocks.
31 : : *
32 : : * * Block sizes or alignments that can not be served by the pools are allocated
33 : : * and deallocated by operator new().
34 : : *
35 : : * PoolResource is not thread-safe. It is intended to be used by PoolAllocator.
36 : : *
37 : : * @tparam MAX_BLOCK_SIZE_BYTES Maximum size to allocate with the pool. If larger
38 : : * sizes are requested, allocation falls back to new().
39 : : *
40 : : * @tparam ALIGN_BYTES Required alignment for the allocations.
41 : : *
42 : : * An example: If you create a PoolResource<128, 8>(262144) and perform a bunch of
43 : : * allocations and deallocate 2 blocks with size 8 bytes, and 3 blocks with size 16,
44 : : * the members will look like this:
45 : : *
46 : : * m_free_lists m_allocated_chunks
47 : : * ┌───┐ ┌───┐ ┌────────────-------──────┐
48 : : * │ │ blocks │ ├─►│ 262144 B │
49 : : * │ │ ┌─────┐ ┌─────┐ └─┬─┘ └────────────-------──────┘
50 : : * │ 1 ├─►│ 8 B ├─►│ 8 B │ │
51 : : * │ │ └─────┘ └─────┘ :
52 : : * │ │ │
53 : : * │ │ ┌─────┐ ┌─────┐ ┌─────┐ ▼
54 : : * │ 2 ├─►│16 B ├─►│16 B ├─►│16 B │ ┌───┐ ┌─────────────────────────┐
55 : : * │ │ └─────┘ └─────┘ └─────┘ │ ├─►│ ▲ │ ▲
56 : : * │ │ └───┘ └──────────┬──────────────┘ │
57 : : * │ . │ │ m_available_memory_end
58 : : * │ . │ m_available_memory_it
59 : : * │ . │
60 : : * │ │
61 : : * │ │
62 : : * │16 │
63 : : * └───┘
64 : : *
65 : : * Here m_free_lists[1] holds the 2 blocks of size 8 bytes, and m_free_lists[2]
66 : : * holds the 3 blocks of size 16. The blocks came from the data stored in the
67 : : * m_allocated_chunks list. Each chunk has bytes 262144. The last chunk has still
68 : : * some memory available for the blocks, and when m_available_memory_it is at the
69 : : * end, a new chunk will be allocated and added to the list.
70 : : */
71 : : template <std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES>
72 : : class PoolResource final
73 : : {
74 : : static_assert(ALIGN_BYTES > 0, "ALIGN_BYTES must be nonzero");
75 : : static_assert((ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0, "ALIGN_BYTES must be a power of two");
76 : :
77 : : /**
78 : : * In-place linked list of the allocations, used for the freelist.
79 : : */
80 : : struct ListNode {
81 : : ListNode* m_next;
82 : :
83 : 24429967 : explicit ListNode(ListNode* next) : m_next(next) {}
84 : : };
85 : : static_assert(std::is_trivially_destructible_v<ListNode>, "Make sure we don't need to manually call a destructor");
86 : :
87 : : /**
88 : : * Internal alignment value. The larger of the requested ALIGN_BYTES and alignof(FreeList).
89 : : */
90 : : static constexpr std::size_t ELEM_ALIGN_BYTES = std::max(alignof(ListNode), ALIGN_BYTES);
91 : : static_assert((ELEM_ALIGN_BYTES & (ELEM_ALIGN_BYTES - 1)) == 0, "ELEM_ALIGN_BYTES must be a power of two");
92 : : static_assert(sizeof(ListNode) <= ELEM_ALIGN_BYTES, "Units of size ELEM_SIZE_ALIGN need to be able to store a ListNode");
93 : : static_assert((MAX_BLOCK_SIZE_BYTES & (ELEM_ALIGN_BYTES - 1)) == 0, "MAX_BLOCK_SIZE_BYTES needs to be a multiple of the alignment.");
94 : :
95 : : /**
96 : : * Size in bytes to allocate per chunk
97 : : */
98 : : const size_t m_chunk_size_bytes;
99 : :
100 : : /**
101 : : * Contains all allocated pools of memory, used to free the data in the destructor.
102 : : */
103 : : std::list<std::byte*> m_allocated_chunks{};
104 : :
105 : : /**
106 : : * Single linked lists of all data that came from deallocating.
107 : : * m_free_lists[n] will serve blocks of size n*ELEM_ALIGN_BYTES.
108 : : */
109 : : std::array<ListNode*, MAX_BLOCK_SIZE_BYTES / ELEM_ALIGN_BYTES + 1> m_free_lists{};
110 : :
111 : : /**
112 : : * Points to the beginning of available memory for carving out allocations.
113 : : */
114 : : std::byte* m_available_memory_it = nullptr;
115 : :
116 : : /**
117 : : * Points to the end of available memory for carving out allocations.
118 : : *
119 : : * That member variable is redundant, and is always equal to `m_allocated_chunks.back() + m_chunk_size_bytes`
120 : : * whenever it is accessed, but `m_available_memory_end` caches this for clarity and efficiency.
121 : : */
122 : : std::byte* m_available_memory_end = nullptr;
123 : :
124 : : /**
125 : : * How many multiple of ELEM_ALIGN_BYTES are necessary to fit bytes. We use that result directly as an index
126 : : * into m_free_lists. Round up for the special case when bytes==0.
127 : : */
128 : 49031580 : [[nodiscard]] static constexpr std::size_t NumElemAlignBytes(std::size_t bytes)
129 : : {
130 : 49031580 : return (bytes + ELEM_ALIGN_BYTES - 1) / ELEM_ALIGN_BYTES + (bytes == 0);
131 : : }
132 : :
133 : : /**
134 : : * True when it is possible to make use of the freelist
135 : : */
136 : 48869661 : [[nodiscard]] static constexpr bool IsFreeListUsable(std::size_t bytes, std::size_t alignment)
137 : : {
138 : 48869661 : return alignment <= ELEM_ALIGN_BYTES && bytes <= MAX_BLOCK_SIZE_BYTES;
139 : : }
140 : :
141 : : /**
142 : : * Replaces node with placement constructed ListNode that points to the previous node
143 : : */
144 : 24429967 : void PlacementAddToList(void* p, ListNode*& node)
145 : : {
146 : 24429967 : node = new (p) ListNode{node};
147 : 425 : }
148 : :
149 : : /**
150 : : * Allocate one full memory chunk which will be used to carve out allocations.
151 : : * Also puts any leftover bytes into the freelist.
152 : : *
153 : : * Precondition: leftover bytes are either 0 or few enough to fit into a place in the freelist
154 : : */
155 : 173017 : void AllocateChunk()
156 : : {
157 : : // if there is still any available memory left, put it into the freelist.
158 [ + + ]: 173017 : size_t remaining_available_bytes = std::distance(m_available_memory_it, m_available_memory_end);
159 [ + + ]: 173017 : if (0 != remaining_available_bytes) {
160 : : ASAN_UNPOISON_MEMORY_REGION(m_available_memory_it, sizeof(ListNode));
161 : 425 : PlacementAddToList(m_available_memory_it, m_free_lists[remaining_available_bytes / ELEM_ALIGN_BYTES]);
162 : : ASAN_POISON_MEMORY_REGION(m_available_memory_it, sizeof(ListNode));
163 : : }
164 : :
165 : 173017 : void* storage = ::operator new (m_chunk_size_bytes, std::align_val_t{ELEM_ALIGN_BYTES});
166 : 173017 : m_available_memory_it = new (storage) std::byte[m_chunk_size_bytes];
167 : 173017 : m_available_memory_end = m_available_memory_it + m_chunk_size_bytes;
168 : : ASAN_POISON_MEMORY_REGION(m_available_memory_it, m_chunk_size_bytes);
169 : 173017 : m_allocated_chunks.emplace_back(m_available_memory_it);
170 : 173017 : }
171 : :
172 : : /**
173 : : * Access to internals for testing purpose only
174 : : */
175 : : friend class PoolResourceTester;
176 : :
177 : : public:
178 : : /**
179 : : * Construct a new PoolResource object which allocates the first chunk.
180 : : * chunk_size_bytes will be rounded up to next multiple of ELEM_ALIGN_BYTES.
181 : : */
182 : 172499 : explicit PoolResource(std::size_t chunk_size_bytes)
183 [ - + ]: 172499 : : m_chunk_size_bytes(NumElemAlignBytes(chunk_size_bytes) * ELEM_ALIGN_BYTES)
184 : : {
185 [ - + ]: 172499 : assert(m_chunk_size_bytes >= MAX_BLOCK_SIZE_BYTES);
186 [ + - ]: 172499 : AllocateChunk();
187 : 172499 : }
188 : :
189 : : /**
190 : : * Construct a new Pool Resource object, defaults to 2^18=262144 chunk size.
191 : : */
192 [ + - ]: 172496 : PoolResource() : PoolResource(262144) {}
193 : :
194 : : /**
195 : : * Disable copy & move semantics, these are not supported for the resource.
196 : : */
197 : : PoolResource(const PoolResource&) = delete;
198 : : PoolResource& operator=(const PoolResource&) = delete;
199 : : PoolResource(PoolResource&&) = delete;
200 : : PoolResource& operator=(PoolResource&&) = delete;
201 : :
202 : : /**
203 : : * Deallocates all memory allocated associated with the memory resource.
204 : : */
205 : 172499 : ~PoolResource()
206 : : {
207 [ + + ]: 345516 : for (std::byte* chunk : m_allocated_chunks) {
208 : 173017 : std::destroy(chunk, chunk + m_chunk_size_bytes);
209 : 173017 : ::operator delete ((void*)chunk, std::align_val_t{ELEM_ALIGN_BYTES});
210 : : ASAN_UNPOISON_MEMORY_REGION(chunk, m_chunk_size_bytes);
211 : : }
212 : 172499 : }
213 : :
214 : : /**
215 : : * Allocates a block of bytes. If possible the freelist is used, otherwise allocation
216 : : * is forwarded to ::operator new().
217 : : */
218 : 24434833 : void* Allocate(std::size_t bytes, std::size_t alignment)
219 : : {
220 [ + + ]: 24434833 : if (IsFreeListUsable(bytes, alignment)) {
221 : 24429542 : const std::size_t num_alignments = NumElemAlignBytes(bytes);
222 [ + + ]: 24429542 : if (nullptr != m_free_lists[num_alignments]) {
223 : : // we've already got data in the pool's freelist, unlink one element and return the pointer
224 : : // to the unlinked memory. Since FreeList is trivially destructible we can just treat it as
225 : : // uninitialized memory.
226 : 23391631 : ASAN_UNPOISON_MEMORY_REGION(m_free_lists[num_alignments], sizeof(ListNode));
227 : 23391631 : auto* next{m_free_lists[num_alignments]->m_next};
228 : 23391631 : ASAN_POISON_MEMORY_REGION(m_free_lists[num_alignments], sizeof(ListNode));
229 : 23391631 : ASAN_UNPOISON_MEMORY_REGION(m_free_lists[num_alignments], bytes);
230 : 23391631 : return std::exchange(m_free_lists[num_alignments], next);
231 : : }
232 : :
233 : : // freelist is empty: get one allocation from allocated chunk memory.
234 : 1037911 : const std::ptrdiff_t round_bytes = static_cast<std::ptrdiff_t>(num_alignments * ELEM_ALIGN_BYTES);
235 [ + + ]: 1037911 : if (round_bytes > m_available_memory_end - m_available_memory_it) {
236 : : // slow path, only happens when a new chunk needs to be allocated
237 : 518 : AllocateChunk();
238 : : }
239 : :
240 : : // Make sure we use the right amount of bytes for that freelist (might be rounded up),
241 : : ASAN_UNPOISON_MEMORY_REGION(m_available_memory_it, round_bytes);
242 : 1037911 : return std::exchange(m_available_memory_it, m_available_memory_it + round_bytes);
243 : : }
244 : :
245 : : // Can't use the pool => use operator new()
246 : 5291 : return ::operator new (bytes, std::align_val_t{alignment});
247 : : }
248 : :
249 : : /**
250 : : * Returns a block to the freelists, or deletes the block when it did not come from the chunks.
251 : : */
252 : 24434833 : void Deallocate(void* p, std::size_t bytes, std::size_t alignment) noexcept
253 : : {
254 [ + + ]: 24434833 : if (IsFreeListUsable(bytes, alignment)) {
255 : 24429542 : const std::size_t num_alignments = NumElemAlignBytes(bytes);
256 : : // put the memory block into the linked list. We can placement construct the FreeList
257 : : // into the memory since we can be sure the alignment is correct.
258 : : ASAN_UNPOISON_MEMORY_REGION(p, sizeof(ListNode));
259 [ + - + - : 24429542 : PlacementAddToList(p, m_free_lists[num_alignments]);
+ - ]
260 [ + - + - : 24429542 : ASAN_POISON_MEMORY_REGION(p, std::max(bytes, sizeof(ListNode)));
+ - ]
261 : : } else {
262 : : // Can't use the pool => forward deallocation to ::operator delete().
263 : 5291 : ::operator delete (p, std::align_val_t{alignment});
264 : : }
265 : 24434828 : }
266 : :
267 : : /**
268 : : * Number of allocated chunks
269 : : */
270 : 166891 : [[nodiscard]] std::size_t NumAllocatedChunks() const
271 : : {
272 [ + - + - : 333781 : return m_allocated_chunks.size();
+ - ][ + -
+ - # # ]
273 : : }
274 : :
275 : : /**
276 : : * Size in bytes to allocate per chunk, currently hardcoded to a fixed size.
277 : : */
278 : 167153 : [[nodiscard]] size_t ChunkSizeBytes() const
279 : : {
280 [ + - + - : 167153 : return m_chunk_size_bytes;
+ - + - +
- + - ][ +
- + - + -
# # # # #
# ][ + - ]
281 : : }
282 : : };
283 : :
284 : :
285 : : /**
286 : : * Forwards all allocations/deallocations to the PoolResource.
287 : : */
288 : : template <class T, std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES = alignof(T)>
289 : : class PoolAllocator
290 : : {
291 : : PoolResource<MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>* m_resource;
292 : :
293 : : template <typename U, std::size_t M, std::size_t A>
294 : : friend class PoolAllocator;
295 : :
296 : : public:
297 : : using value_type = T;
298 : : using ResourceType = PoolResource<MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>;
299 : :
300 : : /**
301 : : * Not explicit so we can easily construct it with the correct resource
302 : : */
303 : 172496 : PoolAllocator(ResourceType* resource) noexcept
304 [ + - # # ]: 172496 : : m_resource(resource)
[ + - + - ]
305 : : {
306 : : }
307 : :
308 : : PoolAllocator(const PoolAllocator& other) noexcept = default;
309 : : PoolAllocator& operator=(const PoolAllocator& other) noexcept = default;
310 : :
311 : : template <class U>
312 : 382084 : PoolAllocator(const PoolAllocator<U, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& other) noexcept
313 : 382084 : : m_resource(other.resource())
314 : : {
315 : : }
316 : :
317 : : /**
318 : : * The rebind struct here is mandatory because we use non type template arguments for
319 : : * PoolAllocator. See https://en.cppreference.com/w/cpp/named_req/Allocator#cite_note-2
320 : : */
321 : : template <typename U>
322 : : struct rebind {
323 : : using other = PoolAllocator<U, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>;
324 : : };
325 : :
326 : : /**
327 : : * Forwards each call to the resource.
328 : : */
329 : 24433891 : T* allocate(size_t n)
330 : : {
331 : 24433891 : return static_cast<T*>(m_resource->Allocate(n * sizeof(T), alignof(T)));
332 : : }
333 : :
334 : : /**
335 : : * Forwards each call to the resource.
336 : : */
337 : 24433891 : void deallocate(T* p, size_t n) noexcept
338 : : {
339 : 24433891 : m_resource->Deallocate(p, n * sizeof(T), alignof(T));
340 : : }
341 : :
342 : 382084 : ResourceType* resource() const noexcept
343 : : {
344 [ + - + - ]: 382084 : return m_resource;
345 : : }
346 : : };
347 : :
348 : : template <class T1, class T2, std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES>
349 : : bool operator==(const PoolAllocator<T1, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& a,
350 : : const PoolAllocator<T2, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& b) noexcept
351 : : {
352 : : return a.resource() == b.resource();
353 : : }
354 : :
355 : : template <class T1, class T2, std::size_t MAX_BLOCK_SIZE_BYTES, std::size_t ALIGN_BYTES>
356 : : bool operator!=(const PoolAllocator<T1, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& a,
357 : : const PoolAllocator<T2, MAX_BLOCK_SIZE_BYTES, ALIGN_BYTES>& b) noexcept
358 : : {
359 : : return !(a == b);
360 : : }
361 : :
362 : : #endif // BITCOIN_SUPPORT_ALLOCATORS_POOL_H
|