LCOV - code coverage report
Current view: top level - src/script - miniscript.h (source / functions) Coverage Total Hit
Test: test_bitcoin_coverage.info Lines: 97.7 % 1280 1251
Test Date: 2026-02-04 04:43:42 Functions: 99.4 % 175 174
Branches: 54.4 % 4708 2561

             Branch data     Line data    Source code
       1                 :             : // Copyright (c) 2019-present The Bitcoin Core developers
       2                 :             : // Distributed under the MIT software license, see the accompanying
       3                 :             : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
       4                 :             : 
       5                 :             : #ifndef BITCOIN_SCRIPT_MINISCRIPT_H
       6                 :             : #define BITCOIN_SCRIPT_MINISCRIPT_H
       7                 :             : 
       8                 :             : #include <algorithm>
       9                 :             : #include <compare>
      10                 :             : #include <concepts>
      11                 :             : #include <cstdint>
      12                 :             : #include <cstdlib>
      13                 :             : #include <functional>
      14                 :             : #include <iterator>
      15                 :             : #include <memory>
      16                 :             : #include <optional>
      17                 :             : #include <set>
      18                 :             : #include <stdexcept>
      19                 :             : #include <tuple>
      20                 :             : #include <utility>
      21                 :             : #include <vector>
      22                 :             : 
      23                 :             : #include <consensus/consensus.h>
      24                 :             : #include <policy/policy.h>
      25                 :             : #include <script/interpreter.h>
      26                 :             : #include <script/parsing.h>
      27                 :             : #include <script/script.h>
      28                 :             : #include <serialize.h>
      29                 :             : #include <span.h>
      30                 :             : #include <util/check.h>
      31                 :             : #include <util/strencodings.h>
      32                 :             : #include <util/string.h>
      33                 :             : #include <util/vector.h>
      34                 :             : 
      35                 :             : namespace miniscript {
      36                 :             : 
      37                 :             : /** This type encapsulates the miniscript type system properties.
      38                 :             :  *
      39                 :             :  * Every miniscript expression is one of 4 basic types, and additionally has
      40                 :             :  * a number of boolean type properties.
      41                 :             :  *
      42                 :             :  * The basic types are:
      43                 :             :  * - "B" Base:
      44                 :             :  *   - Takes its inputs from the top of the stack.
      45                 :             :  *   - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack.
      46                 :             :  *   - When dissatisfied, pushes a 0 onto the stack.
      47                 :             :  *   - This is used for most expressions, and required for the top level one.
      48                 :             :  *   - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY.
      49                 :             :  * - "V" Verify:
      50                 :             :  *   - Takes its inputs from the top of the stack.
      51                 :             :  *   - When satisfied, pushes nothing.
      52                 :             :  *   - Cannot be dissatisfied.
      53                 :             :  *   - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode
      54                 :             :  *     of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY,
      55                 :             :  *     OP_NUMEQUAL and OP_EQUAL), or by combining a V fragment under some conditions.
      56                 :             :  *   - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY
      57                 :             :  * - "K" Key:
      58                 :             :  *   - Takes its inputs from the top of the stack.
      59                 :             :  *   - Becomes a B when followed by OP_CHECKSIG.
      60                 :             :  *   - Always pushes a public key onto the stack, for which a signature is to be
      61                 :             :  *     provided to satisfy the expression.
      62                 :             :  *   - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY
      63                 :             :  * - "W" Wrapped:
      64                 :             :  *   - Takes its input from one below the top of the stack.
      65                 :             :  *   - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below.
      66                 :             :  *   - When dissatisfied, pushes 0 op top of the stack or one below.
      67                 :             :  *   - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK".
      68                 :             :  *   - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG
      69                 :             :  *
      70                 :             :  * There are type properties that help reasoning about correctness:
      71                 :             :  * - "z" Zero-arg:
      72                 :             :  *   - Is known to always consume exactly 0 stack elements.
      73                 :             :  *   - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY
      74                 :             :  * - "o" One-arg:
      75                 :             :  *   - Is known to always consume exactly 1 stack element.
      76                 :             :  *   - Conflicts with property 'z'
      77                 :             :  *   - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL
      78                 :             :  * - "n" Nonzero:
      79                 :             :  *   - For every way this expression can be satisfied, a satisfaction exists that never needs
      80                 :             :  *     a zero top stack element.
      81                 :             :  *   - Conflicts with property 'z' and with type 'W'.
      82                 :             :  * - "d" Dissatisfiable:
      83                 :             :  *   - There is an easy way to construct a dissatisfaction for this expression.
      84                 :             :  *   - Conflicts with type 'V'.
      85                 :             :  * - "u" Unit:
      86                 :             :  *   - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero).
      87                 :             :  *   - Conflicts with type 'V'.
      88                 :             :  *
      89                 :             :  * Additional type properties help reasoning about nonmalleability:
      90                 :             :  * - "e" Expression:
      91                 :             :  *   - This implies property 'd', but the dissatisfaction is nonmalleable.
      92                 :             :  *   - This generally requires 'e' for all subexpressions which are invoked for that
      93                 :             :  *     dissatisfaction, and property 'f' for the unexecuted subexpressions in that case.
      94                 :             :  *   - Conflicts with type 'V'.
      95                 :             :  * - "f" Forced:
      96                 :             :  *   - Dissatisfactions (if any) for this expression always involve at least one signature.
      97                 :             :  *   - Is always true for type 'V'.
      98                 :             :  * - "s" Safe:
      99                 :             :  *   - Satisfactions for this expression always involve at least one signature.
     100                 :             :  * - "m" Nonmalleable:
     101                 :             :  *   - For every way this expression can be satisfied (which may be none),
     102                 :             :  *     a nonmalleable satisfaction exists.
     103                 :             :  *   - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions
     104                 :             :  *     which are dissatisfied when satisfying the parent.
     105                 :             :  *
     106                 :             :  * One type property is an implementation detail:
     107                 :             :  * - "x" Expensive verify:
     108                 :             :  *   - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG.
     109                 :             :  *   - Not having this property means that it can be converted to a V at no cost (by switching to the
     110                 :             :  *     -VERIFY version of the last opcode).
     111                 :             :  *
     112                 :             :  * Five more type properties for representing timelock information. Spend paths
     113                 :             :  * in miniscripts containing conflicting timelocks and heightlocks cannot be spent together.
     114                 :             :  * This helps users detect if miniscript does not match the semantic behaviour the
     115                 :             :  * user expects.
     116                 :             :  * - "g" Whether the branch contains a relative time timelock
     117                 :             :  * - "h" Whether the branch contains a relative height timelock
     118                 :             :  * - "i" Whether the branch contains an absolute time timelock
     119                 :             :  * - "j" Whether the branch contains an absolute height timelock
     120                 :             :  * - "k"
     121                 :             :  *   - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock
     122                 :             :  *     of the same type.
     123                 :             :  *   - If the miniscript does not have the "k" property, the miniscript template will not match
     124                 :             :  *     the user expectation of the corresponding spending policy.
     125                 :             :  * For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also
     126                 :             :  * valid in places where an X, a Y, a Z, an XY, ... is expected.
     127                 :             : */
     128                 :             : class Type {
     129                 :             :     //! Internal bitmap of properties (see ""_mst operator for details).
     130                 :             :     uint32_t m_flags;
     131                 :             : 
     132                 :             :     //! Internal constructor used by the ""_mst operator.
     133                 :      897983 :     explicit constexpr Type(uint32_t flags) : m_flags(flags) {}
     134                 :             : 
     135                 :             : public:
     136                 :             :     //! The only way to publicly construct a Type is using this literal operator.
     137                 :             :     friend consteval Type operator""_mst(const char* c, size_t l);
     138                 :             : 
     139                 :             :     //! Compute the type with the union of properties.
     140   [ +  +  +  +  :      426047 :     constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
          +  +  +  +  +  
             +  +  +  +  
                      + ]
     141                 :             : 
     142                 :             :     //! Compute the type with the intersection of properties.
     143   [ +  -  +  +  :      439806 :     constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
          +  +  +  -  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
                +  +  + ]
     144                 :             : 
     145                 :             :     //! Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
     146   [ +  -  +  -  :    25108975 :     constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
          +  -  +  -  +  
          +  +  +  +  -  
          +  +  +  -  +  
          +  +  -  +  +  
          +  -  +  +  +  
          +  +  +  +  +  
          +  +  +  +  -  
          +  +  +  +  +  
          -  +  -  -  +  
          +  -  +  +  +  
          +  -  +  -  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  -  
          +  -  -  -  +  
          -  -  -  +  -  
          -  +  +  +  -  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          -  +  +  +  +  
          -  +  +  +  +  
          -  +  -  -  +  
          +  +  -  +  +  
          -  +  +  +  +  
          -  +  +  +  +  
          +  -  +  +  +  
          -  +  +  +  -  
          +  +  +  -  +  
          +  +  -  +  +  
          +  -  +  +  +  
          -  +  +  +  -  
          +  +  +  -  +  
          +  +  -  +  +  
          +  -  +  +  +  
             -  +  +  +  
                      - ]
     147                 :             : 
     148                 :             :     //! Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
     149                 :             :     constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
     150                 :             : 
     151                 :             :     //! Equality operator.
     152                 :       36300 :     constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
     153                 :             : 
     154                 :             :     //! The empty type if x is false, itself otherwise.
     155   [ +  +  +  +  :      473347 :     constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
          +  +  +  +  +  
          -  +  +  +  +  
          +  +  +  -  +  
          -  +  -  +  +  
          +  +  +  -  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  -  +  -  
                      + ]
     156                 :             : };
     157                 :             : 
     158                 :             : //! Literal operator to construct Type objects.
     159                 :             : inline consteval Type operator""_mst(const char* c, size_t l)
     160                 :             : {
     161                 :             :     Type typ{0};
     162                 :             : 
     163                 :             :     for (const char *p = c; p < c + l; p++) {
     164                 :             :         typ = typ | Type(
     165                 :             :             *p == 'B' ? 1 << 0 : // Base type
     166                 :             :             *p == 'V' ? 1 << 1 : // Verify type
     167                 :             :             *p == 'K' ? 1 << 2 : // Key type
     168                 :             :             *p == 'W' ? 1 << 3 : // Wrapped type
     169                 :             :             *p == 'z' ? 1 << 4 : // Zero-arg property
     170                 :             :             *p == 'o' ? 1 << 5 : // One-arg property
     171                 :             :             *p == 'n' ? 1 << 6 : // Nonzero arg property
     172                 :             :             *p == 'd' ? 1 << 7 : // Dissatisfiable property
     173                 :             :             *p == 'u' ? 1 << 8 : // Unit property
     174                 :             :             *p == 'e' ? 1 << 9 : // Expression property
     175                 :             :             *p == 'f' ? 1 << 10 : // Forced property
     176                 :             :             *p == 's' ? 1 << 11 : // Safe property
     177                 :             :             *p == 'm' ? 1 << 12 : // Nonmalleable property
     178                 :             :             *p == 'x' ? 1 << 13 : // Expensive verify
     179                 :             :             *p == 'g' ? 1 << 14 : // older: contains relative time timelock   (csv_time)
     180                 :             :             *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
     181                 :             :             *p == 'i' ? 1 << 16 : // after: contains time timelock   (cltv_time)
     182                 :             :             *p == 'j' ? 1 << 17 : // after: contains height timelock   (cltv_height)
     183                 :             :             *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
     184                 :             :             (throw std::logic_error("Unknown character in _mst literal"), 0)
     185                 :             :         );
     186                 :             :     }
     187                 :             : 
     188                 :             :     return typ;
     189                 :             : }
     190                 :             : 
     191                 :             : using Opcode = std::pair<opcodetype, std::vector<unsigned char>>;
     192                 :             : 
     193                 :             : template<typename Key> class Node;
     194                 :             : 
     195                 :             : //! Unordered traversal of a miniscript node tree.
     196                 :             : template <typename Key, std::invocable<const Node<Key>&> Fn>
     197                 :         398 : void ForEachNode(const Node<Key>& root, Fn&& fn)
     198                 :             : {
     199                 :         398 :     std::vector<std::reference_wrapper<const Node<Key>>> stack{root};
     200         [ +  + ]:        2826 :     while (!stack.empty()) {
     201         [ +  - ]:        2428 :         const Node<Key>& node = stack.back();
     202                 :        2428 :         std::invoke(fn, node);
     203                 :        2428 :         stack.pop_back();
     204         [ +  + ]:        4458 :         for (const auto& sub : node.Subs()) {
     205         [ +  - ]:        2030 :             stack.emplace_back(sub);
     206                 :             :         }
     207                 :             :     }
     208                 :         398 : }
     209                 :             : 
     210                 :             : //! The different node types in miniscript.
     211                 :             : enum class Fragment {
     212                 :             :     JUST_0,    //!< OP_0
     213                 :             :     JUST_1,    //!< OP_1
     214                 :             :     PK_K,      //!< [key]
     215                 :             :     PK_H,      //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY
     216                 :             :     OLDER,     //!< [n] OP_CHECKSEQUENCEVERIFY
     217                 :             :     AFTER,     //!< [n] OP_CHECKLOCKTIMEVERIFY
     218                 :             :     SHA256,    //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL
     219                 :             :     HASH256,   //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL
     220                 :             :     RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL
     221                 :             :     HASH160,   //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL
     222                 :             :     WRAP_A,    //!< OP_TOALTSTACK [X] OP_FROMALTSTACK
     223                 :             :     WRAP_S,    //!< OP_SWAP [X]
     224                 :             :     WRAP_C,    //!< [X] OP_CHECKSIG
     225                 :             :     WRAP_D,    //!< OP_DUP OP_IF [X] OP_ENDIF
     226                 :             :     WRAP_V,    //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X)
     227                 :             :     WRAP_J,    //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF
     228                 :             :     WRAP_N,    //!< [X] OP_0NOTEQUAL
     229                 :             :     AND_V,     //!< [X] [Y]
     230                 :             :     AND_B,     //!< [X] [Y] OP_BOOLAND
     231                 :             :     OR_B,      //!< [X] [Y] OP_BOOLOR
     232                 :             :     OR_C,      //!< [X] OP_NOTIF [Y] OP_ENDIF
     233                 :             :     OR_D,      //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
     234                 :             :     OR_I,      //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF
     235                 :             :     ANDOR,     //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
     236                 :             :     THRESH,    //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL
     237                 :             :     MULTI,     //!< [k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context)
     238                 :             :     MULTI_A,   //!< [key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx)
     239                 :             :     // AND_N(X,Y) is represented as ANDOR(X,Y,0)
     240                 :             :     // WRAP_T(X) is represented as AND_V(X,1)
     241                 :             :     // WRAP_L(X) is represented as OR_I(0,X)
     242                 :             :     // WRAP_U(X) is represented as OR_I(X,0)
     243                 :             : };
     244                 :             : 
     245                 :             : enum class Availability {
     246                 :             :     NO,
     247                 :             :     YES,
     248                 :             :     MAYBE,
     249                 :             : };
     250                 :             : 
     251                 :             : enum class MiniscriptContext {
     252                 :             :     P2WSH,
     253                 :             :     TAPSCRIPT,
     254                 :             : };
     255                 :             : 
     256                 :             : /** Whether the context Tapscript, ensuring the only other possibility is P2WSH. */
     257                 :      678649 : constexpr bool IsTapscript(MiniscriptContext ms_ctx)
     258                 :             : {
     259      [ +  -  + ]:      678649 :     switch (ms_ctx) {
     260                 :             :         case MiniscriptContext::P2WSH: return false;
     261                 :      253275 :         case MiniscriptContext::TAPSCRIPT: return true;
     262                 :             :     }
     263                 :           0 :     assert(false);
     264                 :             : }
     265                 :             : 
     266                 :             : namespace internal {
     267                 :             : 
     268                 :             : //! The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with a sighash type byte.)
     269                 :             : static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65};
     270                 :             : 
     271                 :             : //! version + nLockTime
     272                 :             : constexpr uint32_t TX_OVERHEAD{4 + 4};
     273                 :             : //! prevout + nSequence + scriptSig
     274                 :             : constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1};
     275                 :             : //! nValue + script len + OP_0 + pushdata 32.
     276                 :             : constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33};
     277                 :             : //! Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout + segwit marker
     278                 :             : constexpr uint32_t TX_BODY_LEEWAY_WEIGHT{(TX_OVERHEAD + GetSizeOfCompactSize(1) + TXIN_BYTES_NO_WITNESS + GetSizeOfCompactSize(1) + P2WSH_TXOUT_BYTES) * WITNESS_SCALE_FACTOR + 2};
     279                 :             : //! Maximum possible stack size to spend a Taproot output (excluding the script itself).
     280                 :             : constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE{GetSizeOfCompactSize(MAX_STACK_SIZE) + (GetSizeOfCompactSize(MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) + MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) * MAX_STACK_SIZE + GetSizeOfCompactSize(TAPROOT_CONTROL_MAX_SIZE) + TAPROOT_CONTROL_MAX_SIZE};
     281                 :             : /** The maximum size of a script depending on the context. */
     282                 :       30584 : constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx)
     283                 :             : {
     284   [ +  +  +  +  :       30584 :     if (IsTapscript(ms_ctx)) {
           +  + ][ -  -  
          -  +  +  -  -  
                      + ]
     285                 :             :         // Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly
     286                 :             :         // bounded by the maximum standard size of a spending transaction. Let the maximum script
     287                 :             :         // size conservatively be small enough such that even a maximum sized witness and a reasonably
     288                 :             :         // sized spending transaction can spend an output paying to this script without running into
     289                 :             :         // the maximum standard tx size limit.
     290                 :             :         constexpr auto max_size{MAX_STANDARD_TX_WEIGHT - TX_BODY_LEEWAY_WEIGHT - MAX_TAPSCRIPT_SAT_SIZE};
     291                 :             :         return max_size - GetSizeOfCompactSize(max_size);
     292                 :             :     }
     293                 :        8846 :     return MAX_STANDARD_P2WSH_SCRIPT_SIZE;
     294                 :             : }
     295                 :             : 
     296                 :             : //! Helper function for Node::CalcType.
     297                 :             : Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
     298                 :             : 
     299                 :             : //! Helper function for Node::CalcScriptLen.
     300                 :             : size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx);
     301                 :             : 
     302                 :             : //! A helper sanitizer/checker for the output of CalcType.
     303                 :             : Type SanitizeType(Type x);
     304                 :             : 
     305                 :             : //! An object representing a sequence of witness stack elements.
     306                 :      470118 : struct InputStack {
     307                 :             :     /** Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node).
     308                 :             :      *  The MAYBE value is used for size estimation, when keys/preimages may actually be unavailable,
     309                 :             :      *  but may be available at signing time. This makes the InputStack structure and signing logic,
     310                 :             :      *  filled with dummy signatures/preimages usable for witness size estimation.
     311                 :             :      */
     312                 :             :     Availability available = Availability::YES;
     313                 :             :     //! Whether this stack contains a digital signature.
     314                 :             :     bool has_sig = false;
     315                 :             :     //! Whether this stack is malleable (can be turned into an equally valid other stack by a third party).
     316                 :             :     bool malleable = false;
     317                 :             :     //! Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction).
     318                 :             :     //! Note that this flag does not affect the satisfaction algorithm; it is only used for sanity checking.
     319                 :             :     bool non_canon = false;
     320                 :             :     //! Serialized witness size.
     321                 :             :     size_t size = 0;
     322                 :             :     //! Data elements.
     323                 :             :     std::vector<std::vector<unsigned char>> stack;
     324                 :             :     //! Construct an empty stack (valid).
     325                 :             :     InputStack() = default;
     326                 :             :     //! Construct a valid single-element stack (with an element up to 75 bytes).
     327         [ -  + ]:      383784 :     InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {}
     328                 :             :     //! Change availability
     329                 :             :     InputStack& SetAvailable(Availability avail);
     330                 :             :     //! Mark this input stack as having a signature.
     331                 :             :     InputStack& SetWithSig();
     332                 :             :     //! Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions).
     333                 :             :     InputStack& SetNonCanon();
     334                 :             :     //! Mark this input stack as malleable.
     335                 :             :     InputStack& SetMalleable(bool x = true);
     336                 :             :     //! Concatenate two input stacks.
     337                 :             :     friend InputStack operator+(InputStack a, InputStack b);
     338                 :             :     //! Choose between two potential input stacks.
     339                 :             :     friend InputStack operator|(InputStack a, InputStack b);
     340                 :             : };
     341                 :             : 
     342                 :             : /** A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in numeric context). */
     343                 :             : static const auto ZERO = InputStack(std::vector<unsigned char>());
     344                 :             : /** A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challenges). */
     345                 :             : static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable();
     346                 :             : /** A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric context). */
     347                 :             : static const auto ONE = InputStack(Vector((unsigned char)1));
     348                 :             : /** The empty stack. */
     349                 :             : static const auto EMPTY = InputStack();
     350                 :             : /** A stack representing the lack of any (dis)satisfactions. */
     351                 :             : static const auto INVALID = InputStack().SetAvailable(Availability::NO);
     352                 :             : 
     353                 :             : //! A pair of a satisfaction and a dissatisfaction InputStack.
     354                 :     5370702 : struct InputResult {
     355                 :             :     InputStack nsat, sat;
     356                 :             : 
     357                 :             :     template<typename A, typename B>
     358   [ +  -  -  -  :      830886 :     InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {}
          +  -  +  -  -  
           -  +  - ][ +  
             -  +  -  +  
                      - ]
     359                 :             : };
     360                 :             : 
     361                 :             : //! Class whose objects represent the maximum of a list of integers.
     362                 :             : template <typename I>
     363                 :             : class MaxInt
     364                 :             : {
     365                 :             :     bool valid;
     366                 :             :     I value;
     367                 :             : 
     368                 :             : public:
     369                 :       33443 :     MaxInt() : valid(false), value(0) {}
     370                 :       44856 :     MaxInt(I val) : valid(true), value(val) {}
     371                 :             : 
     372                 :        2325 :     bool Valid() const { return valid; }
     373                 :        2369 :     I Value() const { return value; }
     374                 :             : 
     375                 :       34393 :     friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
     376   [ +  +  +  + ]:       34393 :         if (!a.valid || !b.valid) return {};
     377                 :       21030 :         return a.value + b.value;
     378                 :             :     }
     379                 :             : 
     380                 :        2170 :     friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
     381         [ +  + ]:        2170 :         if (!a.valid) return b;
     382         [ +  + ]:        1596 :         if (!b.valid) return a;
     383         [ +  + ]:        1960 :         return std::max(a.value, b.value);
     384                 :             :     }
     385                 :             : };
     386                 :             : 
     387                 :             : struct Ops {
     388                 :             :     //! Non-push opcodes.
     389                 :             :     uint32_t count;
     390                 :             :     //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
     391                 :             :     MaxInt<uint32_t> sat;
     392                 :             :     //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
     393                 :             :     MaxInt<uint32_t> dsat;
     394                 :             : 
     395                 :      409999 :     Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
     396                 :             : };
     397                 :             : 
     398                 :             : /** A data structure to help the calculation of stack size limits.
     399                 :             :  *
     400                 :             :  * Conceptually, every SatInfo object corresponds to a (possibly empty) set of script execution
     401                 :             :  * traces (sequences of opcodes).
     402                 :             :  * - SatInfo{} corresponds to the empty set.
     403                 :             :  * - SatInfo{n, e} corresponds to a single trace whose net effect is removing n elements from the
     404                 :             :  *   stack (may be negative for a net increase), and reaches a maximum of e stack elements more
     405                 :             :  *   than it ends with.
     406                 :             :  * - operator| is the union operation: (a | b) corresponds to the union of the traces in a and the
     407                 :             :  *   traces in b.
     408                 :             :  * - operator+ is the concatenation operator: (a + b) corresponds to the set of traces formed by
     409                 :             :  *   concatenating any trace in a with any trace in b.
     410                 :             :  *
     411                 :             :  * Its fields are:
     412                 :             :  * - valid is true if the set is non-empty.
     413                 :             :  * - netdiff (if valid) is the largest difference between stack size at the beginning and at the
     414                 :             :  *   end of the script across all traces in the set.
     415                 :             :  * - exec (if valid) is the largest difference between stack size anywhere during execution and at
     416                 :             :  *   the end of the script, across all traces in the set (note that this is not necessarily due
     417                 :             :  *   to the same trace as the one that resulted in the value for netdiff).
     418                 :             :  *
     419                 :             :  * This allows us to build up stack size limits for any script efficiently, by starting from the
     420                 :             :  * individual opcodes miniscripts correspond to, using concatenation to construct scripts, and
     421                 :             :  * using the union operation to choose between execution branches. Since any top-level script
     422                 :             :  * satisfaction ends with a single stack element, we know that for a full script:
     423                 :             :  * - netdiff+1 is the maximal initial stack size (relevant for P2WSH stack limits).
     424                 :             :  * - exec+1 is the maximal stack size reached during execution (relevant for P2TR stack limits).
     425                 :             :  *
     426                 :             :  * Mathematically, SatInfo forms a semiring:
     427                 :             :  * - operator| is the semiring addition operator, with identity SatInfo{}, and which is commutative
     428                 :             :  *   and associative.
     429                 :             :  * - operator+ is the semiring multiplication operator, with identity SatInfo{0}, and which is
     430                 :             :  *   associative.
     431                 :             :  * - operator+ is distributive over operator|, so (a + (b | c)) = (a+b | a+c). This means we do not
     432                 :             :  *   need to actually materialize all possible full execution traces over the whole script (which
     433                 :             :  *   may be exponential in the length of the script); instead we can use the union operation at the
     434                 :             :  *   individual subexpression level, and concatenate the result with subexpressions before and
     435                 :             :  *   after it.
     436                 :             :  * - It is not a commutative semiring, because a+b can differ from b+a. For example, "OP_1 OP_DROP"
     437                 :             :  *   has exec=1, while "OP_DROP OP_1" has exec=0.
     438                 :             :  */
     439                 :             : class SatInfo
     440                 :             : {
     441                 :             :     //! Whether a canonical satisfaction/dissatisfaction is possible at all.
     442                 :             :     bool valid;
     443                 :             :     //! How much higher the stack size at start of execution can be compared to at the end.
     444                 :             :     int32_t netdiff;
     445                 :             :     //! How much higher the stack size can be during execution compared to at the end.
     446                 :             :     int32_t exec;
     447                 :             : 
     448                 :             : public:
     449                 :             :     /** Empty script set. */
     450                 :             :     constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {}
     451                 :             : 
     452                 :             :     /** Script set with a single script in it, with specified netdiff and exec. */
     453                 :       26055 :     constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept :
     454                 :       26055 :         valid{true}, netdiff{in_netdiff}, exec{in_exec} {}
     455                 :             : 
     456                 :        6577 :     bool Valid() const { return valid; }
     457                 :        2312 :     int32_t NetDiff() const { return netdiff; }
     458                 :        4247 :     int32_t Exec() const { return exec; }
     459                 :             : 
     460                 :             :     /** Script set union. */
     461                 :        1085 :     constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept
     462                 :             :     {
     463                 :             :         // Union with an empty set is itself.
     464         [ +  + ]:        1085 :         if (!a.valid) return b;
     465         [ +  + ]:         800 :         if (!b.valid) return a;
     466                 :             :         // Otherwise the netdiff and exec of the union is the maximum of the individual values.
     467   [ +  +  +  + ]:        1314 :         return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)};
     468                 :             :     }
     469                 :             : 
     470                 :             :     /** Script set concatenation. */
     471                 :       38023 :     constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept
     472                 :             :     {
     473                 :             :         // Concatenation with an empty set yields an empty set.
     474   [ +  +  +  + ]:       38023 :         if (!a.valid || !b.valid) return {};
     475                 :             :         // Otherwise, the maximum stack size difference for the combined scripts is the sum of the
     476                 :             :         // netdiffs, and the maximum stack size difference anywhere is either b.exec (if the
     477                 :             :         // maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a).
     478         [ +  + ]:       38930 :         return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)};
     479                 :             :     }
     480                 :             : 
     481                 :             :     /** The empty script. */
     482                 :             :     static constexpr SatInfo Empty() noexcept { return {0, 0}; }
     483                 :             :     /** A script consisting of a single push opcode. */
     484                 :             :     static constexpr SatInfo Push() noexcept { return {-1, 0}; }
     485                 :             :     /** A script consisting of a single hash opcode. */
     486                 :             :     static constexpr SatInfo Hash() noexcept { return {0, 0}; }
     487                 :             :     /** A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY). */
     488                 :             :     static constexpr SatInfo Nop() noexcept { return {0, 0}; }
     489                 :             :     /** A script consisting of just OP_IF or OP_NOTIF. Note that OP_ELSE and OP_ENDIF have no stack effect. */
     490                 :             :     static constexpr SatInfo If() noexcept { return {1, 1}; }
     491                 :             :     /** A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD). */
     492                 :             :     static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; }
     493                 :             : 
     494                 :             :     // Scripts for specific individual opcodes.
     495                 :             :     static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; }
     496                 :             :     static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; }
     497                 :             :     static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; }
     498                 :             :     static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; }
     499                 :             :     static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; }
     500                 :             :     static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; }
     501                 :             :     static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; }
     502                 :             :     static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; }
     503                 :             : };
     504                 :             : 
     505                 :             : class StackSize
     506                 :             : {
     507                 :             :     SatInfo sat, dsat;
     508                 :             : 
     509                 :             : public:
     510                 :       10699 :     constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {};
     511                 :         146 :     constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {};
     512                 :             : 
     513   [ #  #  #  # ]:        1345 :     const SatInfo& Sat() const { return sat; }
           [ +  -  +  -  
             +  -  +  - ]
     514   [ #  #  #  # ]:         716 :     const SatInfo& Dsat() const { return dsat; }
           [ +  -  +  -  
             +  -  +  - ]
     515                 :             : };
     516                 :             : 
     517                 :             : struct WitnessSize {
     518                 :             :     //! Maximum witness size to satisfy;
     519                 :             :     MaxInt<uint32_t> sat;
     520                 :             :     //! Maximum witness size to dissatisfy;
     521                 :             :     MaxInt<uint32_t> dsat;
     522                 :             : 
     523                 :        8629 :     WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
     524                 :             : };
     525                 :             : 
     526                 :             : struct NoDupCheck {};
     527                 :             : 
     528                 :             : } // namespace internal
     529                 :             : 
     530                 :             : //! A node in a miniscript expression.
     531                 :             : template <typename Key>
     532                 :             : class Node
     533                 :             : {
     534                 :             :     //! What node type this node is.
     535                 :             :     enum Fragment fragment;
     536                 :             :     //! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
     537                 :             :     uint32_t k = 0;
     538                 :             :     //! The keys used by this expression (only for PK_K/PK_H/MULTI)
     539                 :             :     std::vector<Key> keys;
     540                 :             :     //! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD160).
     541                 :             :     std::vector<unsigned char> data;
     542                 :             :     //! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH)
     543                 :             :     std::vector<Node> subs;
     544                 :             :     //! The Script context for this node. Either P2WSH or Tapscript.
     545                 :             :     MiniscriptContext m_script_ctx;
     546                 :             : 
     547                 :             : public:
     548                 :             :     // Permit 1 level deep recursion since we own instances of our own type.
     549                 :             :     // NOLINTBEGIN(misc-no-recursion)
     550                 :     1276227 :     ~Node()
     551                 :             :     {
     552                 :             :         // Destroy the subexpressions iteratively after moving out their
     553                 :             :         // subexpressions to avoid a stack-overflow due to recursive calls to
     554                 :             :         // the subs' destructors.
     555                 :     1276227 :         std::vector<std::vector<Node>> queue;
     556                 :     1276227 :         queue.push_back(std::move(subs));
     557                 :             :         do {
     558                 :     1693059 :             auto flattening{std::move(queue.back())};
     559                 :     1693059 :             queue.pop_back();
     560         [ +  + ]:     2119376 :             for (Node& n : flattening) {
     561         [ +  + ]:      426317 :                 if (!n.subs.empty()) queue.push_back(std::move(n.subs));
     562                 :             :             }
     563         [ +  + ]:     1693059 :         } while (!queue.empty());
     564                 :     1276227 :     }
     565                 :             :     // NOLINTEND(misc-no-recursion)
     566                 :             : 
     567                 :          79 :     Node<Key> Clone() const
     568                 :             :     {
     569                 :             :         // Use TreeEval() to avoid a stack-overflow due to recursion
     570                 :      200461 :         auto upfn = [](const Node& node, std::span<Node> children) {
     571                 :      200461 :             std::vector<Node> new_subs;
     572   [ +  -  +  + ]:      400843 :             for (auto& child : children) {
     573                 :             :                 // It's fine to move from children as they are new nodes having
     574                 :             :                 // been produced by calling this function one level down.
     575                 :      200382 :                 new_subs.push_back(std::move(child));
     576                 :             :             }
     577   [ +  -  +  -  :      601383 :             return Node{internal::NoDupCheck{}, node.m_script_ctx, node.fragment, std::move(new_subs), node.keys, node.data, node.k};
                   +  - ]
     578                 :      200461 :         };
     579   [ +  -  +  - ]:          79 :         return TreeEval<Node>(upfn);
                 [ +  - ]
     580                 :             :     }
     581                 :             : 
     582 [ +  + ][ +  +  :       10899 :     enum Fragment Fragment() const { return fragment; }
             +  +  +  +  
                      + ]
     583         [ +  + ]:        2238 :     uint32_t K() const { return k; }
           [ +  -  +  - ]
     584                 :        8471 :     const std::vector<Key>& Keys() const { return keys; }
     585   [ +  -  +  -  :          48 :     const std::vector<unsigned char>& Data() const { return data; }
             +  -  +  - ]
     586                 :       10899 :     const std::vector<Node>& Subs() const { return subs; }
     587                 :             : 
     588                 :             : private:
     589                 :             :     //! Cached ops counts.
     590                 :             :     internal::Ops ops;
     591                 :             :     //! Cached stack size bounds.
     592                 :             :     internal::StackSize ss;
     593                 :             :     //! Cached witness size bounds.
     594                 :             :     internal::WitnessSize ws;
     595                 :             :     //! Cached expression type (computed by CalcType and fed through SanitizeType).
     596                 :             :     Type typ;
     597                 :             :     //! Cached script length (computed by CalcScriptLen).
     598                 :             :     size_t scriptlen;
     599                 :             :     //! Whether a public key appears more than once in this node. This value is initialized
     600                 :             :     //! by all constructors except the NoDupCheck ones. The NoDupCheck ones skip the
     601                 :             :     //! computation, requiring it to be done manually by invoking DuplicateKeyCheck().
     602                 :             :     //! DuplicateKeyCheck(), or a non-NoDupCheck constructor, will compute has_duplicate_keys
     603                 :             :     //! for all subnodes as well.
     604                 :             :     mutable std::optional<bool> has_duplicate_keys;
     605                 :             : 
     606                 :             :     // Constructor which takes all of the data that a Node could possibly contain.
     607                 :             :     // This is kept private as no valid fragment has all of these arguments.
     608                 :             :     // Only used by Clone()
     609                 :      200461 :     Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, std::vector<Key> key, std::vector<unsigned char> arg, uint32_t val)
     610   [ +  -  +  -  :      200461 :         : fragment(nt), k(val), keys(key), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
          +  -  +  -  +  
                      - ]
     611                 :             : 
     612                 :             :     //! Compute the length of the script for this miniscript (including children).
     613                 :      428980 :     size_t CalcScriptLen() const
     614                 :             :     {
     615                 :      428980 :         size_t subsize = 0;
     616         [ +  + ]:      855298 :         for (const auto& sub : subs) {
     617                 :      426318 :             subsize += sub.ScriptSize();
     618                 :             :         }
     619   [ -  +  +  + ]:      428980 :         Type sub0type = subs.size() > 0 ? subs[0].GetType() : ""_mst;
     620         [ -  + ]:      428980 :         return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx);
     621                 :             :     }
     622                 :             : 
     623                 :             :     /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
     624                 :             :      *
     625                 :             :      * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
     626                 :             :      * result can be thought of as first using downfn to compute a "state" for each node,
     627                 :             :      * from the root down to the leaves. Then upfn is used to compute a "result" for each
     628                 :             :      * node, from the leaves back up to the root, which is then returned. In the actual
     629                 :             :      * implementation, both functions are invoked in an interleaved fashion, performing a
     630                 :             :      * depth-first traversal of the tree.
     631                 :             :      *
     632                 :             :      * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
     633                 :             :      * - root is the state of the root node, of type State.
     634                 :             :      * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
     635                 :             :      *   node, its state, and an index of one of its children, computes the state of that
     636                 :             :      *   child. It can modify the state. Children of a given node will have downfn()
     637                 :             :      *   called in order.
     638                 :             :      * - upfn is a callable (State&&, const Node&, std::span<Result>) -> std::optional<Result>,
     639                 :             :      *   which given a node, its state, and a span of the results of its children,
     640                 :             :      *   computes the result of the node. If std::nullopt is returned by upfn,
     641                 :             :      *   TreeEvalMaybe() immediately returns std::nullopt.
     642                 :             :      * The return value of TreeEvalMaybe is the result of the root node.
     643                 :             :      *
     644                 :             :      * Result type cannot be bool due to the std::vector<bool> specialization.
     645                 :             :      */
     646                 :             :     template<typename Result, typename State, typename DownFn, typename UpFn>
     647                 :        7676 :     std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
     648                 :             :     {
     649                 :             :         /** Entries of the explicit stack tracked in this algorithm. */
     650                 :             :         struct StackElem
     651                 :             :         {
     652                 :             :             const Node& node; //!< The node being evaluated.
     653                 :             :             size_t expanded; //!< How many children of this node have been expanded.
     654                 :             :             State state; //!< The state for that node.
     655                 :             : 
     656                 :     1901016 :             StackElem(const Node& node_, size_t exp_, State&& state_) :
     657                 :     1901016 :                 node(node_), expanded(exp_), state(std::move(state_)) {}
     658                 :             :         };
     659                 :             :         /* Stack of tree nodes being explored. */
     660                 :        7676 :         std::vector<StackElem> stack;
     661                 :             :         /* Results of subtrees so far. Their order and mapping to tree nodes
     662                 :             :          * is implicitly defined by stack. */
     663                 :        7676 :         std::vector<Result> results;
     664         [ +  - ]:        7676 :         stack.emplace_back(*this, 0, std::move(root_state));
     665                 :             : 
     666                 :             :         /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
     667                 :             :          * State variables are omitted for simplicity.
     668                 :             :          *
     669                 :             :          * First: stack=[(A,0)] results=[]
     670                 :             :          *        stack=[(A,1),(B,0)] results=[]
     671                 :             :          *        stack=[(A,1)] results=[B]
     672                 :             :          *        stack=[(A,2),(C,0)] results=[B]
     673                 :             :          *        stack=[(A,2),(C,1),(D,0)] results=[B]
     674                 :             :          *        stack=[(A,2),(C,1)] results=[B,D]
     675                 :             :          *        stack=[(A,2),(C,2),(E,0)] results=[B,D]
     676                 :             :          *        stack=[(A,2),(C,2)] results=[B,D,E]
     677                 :             :          *        stack=[(A,2)] results=[B,C]
     678                 :             :          *        stack=[(A,3),(F,0)] results=[B,C]
     679                 :             :          *        stack=[(A,3)] results=[B,C,F]
     680                 :             :          * Final: stack=[] results=[A]
     681                 :             :          */
     682   [ -  +  +  + ]:     5677526 :         while (stack.size()) {
     683                 :     3794356 :             const Node& node = stack.back().node;
     684   [ -  +  +  + ]:     3794356 :             if (stack.back().expanded < node.subs.size()) {
     685                 :             :                 /* We encounter a tree node with at least one unexpanded child.
     686                 :             :                  * Expand it. By the time we hit this node again, the result of
     687                 :             :                  * that child (and all earlier children) will be at the end of `results`. */
     688                 :     1893340 :                 size_t child_index = stack.back().expanded++;
     689                 :     1922511 :                 State child_state = downfn(stack.back().state, node, child_index);
     690         [ +  - ]:     1893340 :                 stack.emplace_back(node.subs[child_index], 0, std::move(child_state));
     691                 :     1893340 :                 continue;
     692                 :     1893340 :             }
     693                 :             :             // Invoke upfn with the last node.subs.size() elements of results as input.
     694         [ -  + ]:     1901016 :             assert(results.size() >= node.subs.size());
     695         [ -  + ]:     1901016 :             std::optional<Result> result{upfn(std::move(stack.back().state), node,
     696         [ +  - ]:     1901016 :                 std::span<Result>{results}.last(node.subs.size()))};
     697                 :             :             // If evaluation returns std::nullopt, abort immediately.
     698         [ -  + ]:     1901016 :             if (!result) return {};
           [ -  +  -  - ]
     699                 :             :             // Replace the last node.subs.size() elements of results with the new result.
     700   [ +  +  +  - ]:     1901016 :             results.erase(results.end() - node.subs.size(), results.end());
     701         [ +  - ]:     1901016 :             results.push_back(std::move(*result));
           [ +  -  +  - ]
     702         [ +  - ]:     1901016 :             stack.pop_back();
     703                 :             :         }
     704                 :             :         // The final remaining results element is the root result, return it.
     705         [ -  + ]:        7676 :         assert(results.size() >= 1);
     706         [ +  - ]:        7676 :         CHECK_NONFATAL(results.size() == 1);
     707                 :        7676 :         return std::move(results[0]);
     708                 :        7676 :     }
     709                 :             : 
     710                 :             :     /** Like TreeEvalMaybe, but without downfn or State type.
     711                 :             :      * upfn takes (const Node&, std::span<Result>) and returns std::optional<Result>. */
     712                 :             :     template<typename Result, typename UpFn>
     713                 :             :     std::optional<Result> TreeEvalMaybe(UpFn upfn) const
     714                 :             :     {
     715                 :             :         struct DummyState {};
     716                 :             :         return TreeEvalMaybe<Result>(DummyState{},
     717                 :             :             [](DummyState, const Node&, size_t) { return DummyState{}; },
     718                 :             :             [&upfn](DummyState, const Node& node, std::span<Result> subs) {
     719                 :             :                 return upfn(node, subs);
     720                 :             :             }
     721                 :             :         );
     722                 :             :     }
     723                 :             : 
     724                 :             :     /** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */
     725                 :             :     template<typename Result, typename State, typename DownFn, typename UpFn>
     726                 :        1178 :     Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
     727                 :             :     {
     728                 :             :         // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
     729                 :             :         // unconditionally dereference the result (it cannot be std::nullopt).
     730                 :        1178 :         return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
     731                 :             :             std::forward<DownFn>(downfn),
     732                 :       30349 :             [&upfn](State&& state, const Node& node, std::span<Result> subs) {
     733                 :       30349 :                 Result res{upfn(std::move(state), node, subs)};
     734                 :       30349 :                 return std::optional<Result>(std::move(res));
     735                 :       30349 :             }
     736                 :        1178 :         ));
     737                 :             :     }
     738                 :             : 
     739                 :             :     /** Like TreeEval, but without downfn or State type.
     740                 :             :      *  upfn takes (const Node&, std::span<Result>) and returns Result. */
     741                 :             :     template<typename Result, typename UpFn>
     742                 :        6256 :     Result TreeEval(UpFn upfn) const
     743                 :             :     {
     744                 :             :         struct DummyState {};
     745                 :        6256 :         return std::move(*TreeEvalMaybe<Result>(DummyState{},
     746                 :             :             [](DummyState, const Node&, size_t) { return DummyState{}; },
     747                 :     1869169 :             [&upfn](DummyState, const Node& node, std::span<Result> subs) {
     748                 :     1869169 :                 Result res{upfn(node, subs)};
     749                 :     1643186 :                 return std::optional<Result>(std::move(res));
     750                 :      201925 :             }
     751         [ +  - ]:        6256 :         ));
     752                 :             :     }
     753                 :             : 
     754                 :             :     /** Compare two miniscript subtrees, using a non-recursive algorithm. */
     755                 :             :     friend int Compare(const Node<Key>& node1, const Node<Key>& node2)
     756                 :             :     {
     757                 :             :         std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue;
     758                 :             :         queue.emplace_back(node1, node2);
     759                 :             :         while (!queue.empty()) {
     760                 :             :             const auto& [a, b] = queue.back();
     761                 :             :             queue.pop_back();
     762                 :             :             if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1;
     763                 :             :             if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1;
     764                 :             :             if (a.subs.size() < b.subs.size()) return -1;
     765                 :             :             if (b.subs.size() < a.subs.size()) return 1;
     766                 :             :             size_t n = a.subs.size();
     767                 :             :             for (size_t i = 0; i < n; ++i) {
     768                 :             :                 queue.emplace_back(a.subs[n - 1 - i], b.subs[n - 1 - i]);
     769                 :             :             }
     770                 :             :         }
     771                 :             :         return 0;
     772                 :             :     }
     773                 :             : 
     774                 :             :     //! Compute the type for this miniscript.
     775                 :      428980 :     Type CalcType() const {
     776                 :             :         using namespace internal;
     777                 :             : 
     778                 :             :         // THRESH has a variable number of subexpressions
     779                 :      428980 :         std::vector<Type> sub_types;
     780         [ +  + ]:      428980 :         if (fragment == Fragment::THRESH) {
     781         [ +  + ]:         603 :             for (const auto& sub : subs) sub_types.push_back(sub.GetType());
     782                 :             :         }
     783                 :             :         // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
     784   [ -  +  +  + ]:      428980 :         Type x = subs.size() > 0 ? subs[0].GetType() : ""_mst;
     785         [ +  + ]:      428980 :         Type y = subs.size() > 1 ? subs[1].GetType() : ""_mst;
     786         [ +  + ]:      428980 :         Type z = subs.size() > 2 ? subs[2].GetType() : ""_mst;
     787                 :             : 
     788   [ -  +  -  +  :      428980 :         return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx));
             +  -  +  - ]
     789                 :      428980 :     }
     790                 :             : 
     791                 :             : public:
     792                 :             :     template<typename Ctx>
     793                 :        1178 :     CScript ToScript(const Ctx& ctx) const
     794                 :             :     {
     795                 :             :         // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
     796                 :             :         // The State is a boolean: whether or not the node's script expansion is followed
     797                 :             :         // by an OP_VERIFY (which may need to be combined with the last script opcode).
     798                 :       29171 :         auto downfn = [](bool verify, const Node& node, size_t index) {
     799                 :             :             // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
     800         [ +  + ]:       29171 :             if (node.fragment == Fragment::WRAP_V) return true;
     801                 :             :             // The subexpression of WRAP_S, and the last subexpression of AND_V
     802                 :             :             // inherit the followed-by-OP_VERIFY property from the parent.
     803   [ +  +  +  + ]:       28337 :             if (node.fragment == Fragment::WRAP_S ||
     804         [ +  + ]:        1428 :                 (node.fragment == Fragment::AND_V && index == 1)) return verify;
     805                 :             :             return false;
     806                 :             :         };
     807                 :             :         // The upward function computes for a node, given its followed-by-OP_VERIFY status
     808                 :             :         // and the CScripts of its child nodes, the CScript of the node.
     809                 :        1178 :         const bool is_tapscript{IsTapscript(m_script_ctx)};
     810                 :       31527 :         auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, std::span<CScript> subs) -> CScript {
     811   [ +  +  +  +  :       30349 :             switch (node.fragment) {
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  +  +  - ]
     812                 :        2035 :                 case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
     813         [ +  - ]:         518 :                 case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
     814                 :        6385 :                 case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY);
     815                 :         285 :                 case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY);
     816         [ +  + ]:         177 :                 case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
     817         [ +  + ]:         129 :                 case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
     818         [ +  + ]:         192 :                 case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
     819         [ +  + ]:          84 :                 case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
     820                 :        7518 :                 case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK);
     821                 :          90 :                 case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
     822         [ +  + ]:        4351 :                 case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
     823                 :         135 :                 case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF);
     824                 :         834 :                 case Fragment::WRAP_V: {
     825         [ +  + ]:         834 :                     if (node.subs[0].GetType() << "x"_mst) {
     826                 :         312 :                         return BuildScript(std::move(subs[0]), OP_VERIFY);
     827                 :             :                     } else {
     828                 :         522 :                         return std::move(subs[0]);
     829                 :             :                     }
     830                 :             :                 }
     831                 :          24 :                 case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF);
     832                 :         255 :                 case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
     833                 :         231 :                 case Fragment::JUST_1: return BuildScript(OP_1);
     834                 :         491 :                 case Fragment::JUST_0: return BuildScript(OP_0);
     835                 :         669 :                 case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
     836                 :        7254 :                 case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
     837                 :          24 :                 case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
     838                 :         106 :                 case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
     839                 :          18 :                 case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
     840                 :         359 :                 case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
     841                 :         207 :                 case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
     842                 :         186 :                 case Fragment::MULTI: {
     843                 :         186 :                     CHECK_NONFATAL(!is_tapscript);
     844                 :         186 :                     CScript script = BuildScript(node.k);
     845         [ +  + ]:         555 :                     for (const auto& key : node.keys) {
     846         [ +  - ]:         369 :                         script = BuildScript(std::move(script), ctx.ToPKBytes(key));
     847                 :             :                     }
     848   [ +  +  -  +  :         360 :                     return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
                   +  - ]
     849                 :         186 :                 }
     850                 :           6 :                 case Fragment::MULTI_A: {
     851                 :           6 :                     CHECK_NONFATAL(is_tapscript);
     852         [ +  - ]:           6 :                     CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG);
     853         [ +  + ]:          69 :                     for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) {
     854   [ +  -  +  - ]:         126 :                         script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD);
     855                 :             :                     }
     856   [ +  +  +  - ]:           9 :                     return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL);
     857                 :           6 :                 }
     858                 :         258 :                 case Fragment::THRESH: {
     859                 :         258 :                     CScript script = std::move(subs[0]);
     860         [ +  + ]:         588 :                     for (size_t i = 1; i < subs.size(); ++i) {
     861         [ +  - ]:         660 :                         script = BuildScript(std::move(script), subs[i], OP_ADD);
     862                 :             :                     }
     863   [ +  -  +  - ]:         516 :                     return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
     864                 :         258 :                 }
     865                 :             :             }
     866                 :           0 :             assert(false);
     867                 :             :         };
     868                 :        1178 :         return TreeEval<CScript>(false, downfn, upfn);
     869                 :             :     }
     870                 :             : 
     871                 :             :     template<typename CTx>
     872                 :          13 :     std::optional<std::string> ToString(const CTx& ctx) const {
     873                 :          13 :         bool dummy{false};
     874         [ +  - ]:          13 :         return ToString(ctx, dummy);
     875                 :             :     }
     876                 :             : 
     877                 :             :     template<typename CTx>
     878                 :         242 :     std::optional<std::string> ToString(const CTx& ctx, bool& has_priv_key) const {
     879                 :             :         // To construct the std::string representation for a Miniscript object, we use
     880                 :             :         // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
     881                 :             :         // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
     882                 :        1256 :         auto downfn = [](bool, const Node& node, size_t) {
     883                 :        1256 :             return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S ||
     884   [ +  +  +  -  :        1149 :                     node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V ||
             +  +  +  - ]
           [ +  -  +  - ]
     885   [ +  -  +  +  :         971 :                     node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N ||
             +  +  +  + ]
           [ +  -  +  - ]
     886   [ +  +  +  + ]:         653 :                     node.fragment == Fragment::WRAP_C ||
                 [ -  + ]
     887   [ +  -  +  +  :         653 :                     (node.fragment == Fragment::AND_V && node.subs[1].fragment == Fragment::JUST_1) ||
             +  -  +  + ]
           [ -  -  -  + ]
     888   [ +  +  +  -  :        1909 :                     (node.fragment == Fragment::OR_I && node.subs[0].fragment == Fragment::JUST_0) ||
          +  +  +  +  -  
           +  -  + ][ +  
             +  -  -  -  
                      + ]
     889   [ -  +  -  - ]:           4 :                     (node.fragment == Fragment::OR_I && node.subs[1].fragment == Fragment::JUST_0));
                 [ #  # ]
     890                 :             :         };
     891                 :         840 :         auto toString = [&ctx, &has_priv_key](Key key) -> std::optional<std::string> {
     892                 :         598 :             bool fragment_has_priv_key{false};
     893   [ +  -  +  - ]:         598 :             auto key_str{ctx.ToString(key, fragment_has_priv_key)};
                 [ #  # ]
     894   [ +  -  +  -  :        1080 :             if (key_str) has_priv_key = has_priv_key || fragment_has_priv_key;
          +  -  +  -  +  
           +  +  + ][ #  
             #  #  #  #  
                      # ]
     895                 :         598 :             return key_str;
     896                 :             :         };
     897                 :             :         // The upward function computes for a node, given whether its parent is a wrapper,
     898                 :             :         // and the string representations of its child nodes, the string representation of the node.
     899                 :         242 :         const bool is_tapscript{IsTapscript(m_script_ctx)};
     900                 :        1740 :         auto upfn = [is_tapscript, &toString](bool wrapped, const Node& node, std::span<std::string> subs) -> std::optional<std::string> {
     901   [ +  +  +  + ]:        2325 :             std::string ret = wrapped ? ":" : "";
                 [ +  + ]
     902                 :             : 
     903   [ +  +  +  -  :        1498 :             switch (node.fragment) {
          +  -  -  +  +  
          +  +  +  +  +  
          +  -  +  +  +  
           + ][ +  -  -  
          -  -  -  -  -  
                   -  + ]
     904   [ +  -  +  - ]:         112 :                 case Fragment::WRAP_A: return "a" + std::move(subs[0]);
                 [ +  - ]
     905   [ +  -  +  - ]:          32 :                 case Fragment::WRAP_S: return "s" + std::move(subs[0]);
                 [ #  # ]
     906                 :         248 :                 case Fragment::WRAP_C:
     907   [ +  +  +  + ]:         248 :                     if (node.subs[0].fragment == Fragment::PK_K) {
                 [ #  # ]
     908                 :             :                         // pk(K) is syntactic sugar for c:pk_k(K)
     909   [ +  -  +  - ]:         199 :                         auto key_str = toString(node.subs[0].keys[0]);
                 [ #  # ]
     910   [ -  +  -  + ]:         199 :                         if (!key_str) return {};
                 [ #  # ]
     911   [ +  -  +  -  :         597 :                         return std::move(ret) + "pk(" + std::move(*key_str) + ")";
             +  -  +  - ]
           [ #  #  #  # ]
     912                 :         199 :                     }
     913   [ +  +  +  - ]:          49 :                     if (node.subs[0].fragment == Fragment::PK_H) {
                 [ #  # ]
     914                 :             :                         // pkh(K) is syntactic sugar for c:pk_h(K)
     915   [ +  -  +  - ]:          47 :                         auto key_str = toString(node.subs[0].keys[0]);
                 [ #  # ]
     916   [ -  +  -  + ]:          47 :                         if (!key_str) return {};
                 [ #  # ]
     917   [ +  -  +  -  :         141 :                         return std::move(ret) + "pkh(" + std::move(*key_str) + ")";
             +  -  +  - ]
           [ #  #  #  # ]
     918                 :          47 :                     }
     919   [ +  -  -  - ]:           4 :                     return "c" + std::move(subs[0]);
                 [ #  # ]
     920   [ -  -  +  - ]:          70 :                 case Fragment::WRAP_D: return "d" + std::move(subs[0]);
                 [ #  # ]
     921   [ +  -  +  - ]:         356 :                 case Fragment::WRAP_V: return "v" + std::move(subs[0]);
                 [ #  # ]
     922   [ #  #  #  # ]:           0 :                 case Fragment::WRAP_J: return "j" + std::move(subs[0]);
                 [ #  # ]
     923   [ -  -  +  - ]:         140 :                 case Fragment::WRAP_N: return "n" + std::move(subs[0]);
                 [ #  # ]
     924                 :         139 :                 case Fragment::AND_V:
     925                 :             :                     // t:X is syntactic sugar for and_v(X,1).
     926   [ -  +  -  -  :         139 :                     if (node.subs[1].fragment == Fragment::JUST_1) return "t" + std::move(subs[0]);
             -  +  -  - ]
           [ #  #  #  # ]
     927                 :             :                     break;
     928                 :          36 :                 case Fragment::OR_I:
     929   [ -  +  -  -  :          70 :                     if (node.subs[0].fragment == Fragment::JUST_0) return "l" + std::move(subs[1]);
             +  -  +  - ]
           [ #  #  #  # ]
     930   [ -  +  -  -  :           2 :                     if (node.subs[1].fragment == Fragment::JUST_0) return "u" + std::move(subs[0]);
             -  -  -  - ]
           [ #  #  #  # ]
     931                 :             :                     break;
     932                 :             :                 default: break;
     933                 :             :             }
     934   [ +  +  +  +  :         861 :             switch (node.fragment) {
          -  -  +  -  -  
          -  +  +  +  -  
          -  +  +  -  -  
          -  -  +  +  +  
          +  +  +  +  +  
          -  +  +  -  -  
          +  -  -  +  +  
           -  +  - ][ -  
          -  +  -  -  -  
          -  -  -  -  -  
          +  -  -  -  -  
             -  -  -  -  
                      - ]
     935                 :         205 :                 case Fragment::PK_K: {
     936   [ +  -  +  - ]:         205 :                     auto key_str = toString(node.keys[0]);
                 [ #  # ]
     937   [ -  +  -  + ]:         205 :                     if (!key_str) return {};
                 [ #  # ]
     938   [ +  -  +  -  :         615 :                     return std::move(ret) + "pk_k(" + std::move(*key_str) + ")";
             +  -  +  - ]
           [ #  #  #  # ]
     939                 :         205 :                 }
     940                 :          47 :                 case Fragment::PK_H: {
     941   [ +  -  +  - ]:          47 :                     auto key_str = toString(node.keys[0]);
                 [ #  # ]
     942   [ -  +  -  + ]:          47 :                     if (!key_str) return {};
                 [ #  # ]
     943   [ +  -  +  -  :         141 :                     return std::move(ret) + "pk_h(" + std::move(*key_str) + ")";
             +  -  +  - ]
           [ #  #  #  # ]
     944                 :          47 :                 }
     945   [ +  -  +  -  :         102 :                 case Fragment::AFTER: return std::move(ret) + "after(" + util::ToString(node.k) + ")";
             +  -  +  - ]
           [ +  -  +  - ]
     946   [ +  -  +  -  :         240 :                 case Fragment::OLDER: return std::move(ret) + "older(" + util::ToString(node.k) + ")";
             +  -  +  - ]
           [ #  #  #  # ]
     947   [ -  -  -  -  :          90 :                 case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
          -  -  -  +  +  
           -  +  - ][ #  
             #  #  #  #  
                      # ]
     948   [ -  -  -  -  :          60 :                 case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
          -  -  -  +  +  
           -  +  - ][ #  
             #  #  #  #  
                      # ]
     949   [ -  +  +  -  :          66 :                 case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
          +  -  -  +  +  
           -  +  - ][ #  
             #  #  #  #  
                      # ]
     950   [ -  -  -  -  :          90 :                 case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
          -  -  -  +  +  
           -  +  - ][ #  
             #  #  #  #  
                      # ]
     951   [ #  #  #  # ]:           0 :                 case Fragment::JUST_1: return std::move(ret) + "1";
                 [ #  # ]
     952   [ -  -  +  - ]:         148 :                 case Fragment::JUST_0: return std::move(ret) + "0";
                 [ #  # ]
     953   [ +  -  +  -  :         556 :                 case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
          +  -  +  -  +  
           -  +  - ][ #  
             #  #  #  #  
                      # ]
     954   [ +  -  +  -  :          28 :                 case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
          +  -  -  -  -  
           -  -  - ][ +  
             -  +  -  +  
                      - ]
     955   [ +  -  +  -  :          16 :                 case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
          +  -  -  -  -  
           -  -  - ][ #  
             #  #  #  #  
                      # ]
     956   [ -  -  -  -  :          68 :                 case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
          -  -  +  -  +  
           -  +  - ][ #  
             #  #  #  #  
                      # ]
     957   [ #  #  #  #  :           0 :                 case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
          #  #  #  #  #  
           #  #  # ][ #  
             #  #  #  #  
                      # ]
     958   [ +  -  +  -  :           8 :                 case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
          +  -  -  -  -  
           -  -  - ][ #  
             #  #  #  #  
                      # ]
     959                 :          42 :                 case Fragment::ANDOR:
     960                 :             :                     // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
     961   [ -  +  -  -  :         162 :                     if (node.subs[2].fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
          -  -  -  -  +  
          -  +  -  +  -  
           +  - ][ #  #  
          #  #  #  #  #  
                      # ]
     962   [ +  -  +  -  :          10 :                     return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
          +  -  +  -  -  
          -  -  -  -  -  
           -  - ][ #  #  
          #  #  #  #  #  
                      # ]
     963                 :          50 :                 case Fragment::MULTI: {
     964   [ -  -  +  - ]:          50 :                     CHECK_NONFATAL(!is_tapscript);
                 [ #  # ]
     965   [ -  -  -  -  :         150 :                     auto str = std::move(ret) + "multi(" + util::ToString(node.k);
             +  -  +  - ]
           [ #  #  #  # ]
     966   [ -  -  +  + ]:         150 :                     for (const auto& key : node.keys) {
                 [ #  # ]
     967   [ -  -  +  - ]:         100 :                         auto key_str = toString(key);
                 [ #  # ]
     968   [ -  -  -  + ]:         100 :                         if (!key_str) return {};
                 [ #  # ]
     969   [ -  -  +  - ]:         200 :                         str += "," + std::move(*key_str);
                 [ #  # ]
     970                 :             :                     }
     971                 :          50 :                     return std::move(str) + ")";
     972                 :          50 :                 }
     973                 :           0 :                 case Fragment::MULTI_A: {
     974   [ #  #  #  # ]:           0 :                     CHECK_NONFATAL(is_tapscript);
                 [ #  # ]
     975   [ #  #  #  #  :           0 :                     auto str = std::move(ret) + "multi_a(" + util::ToString(node.k);
             #  #  #  # ]
           [ #  #  #  # ]
     976   [ #  #  #  # ]:           0 :                     for (const auto& key : node.keys) {
                 [ #  # ]
     977   [ #  #  #  # ]:           0 :                         auto key_str = toString(key);
                 [ #  # ]
     978   [ #  #  #  # ]:           0 :                         if (!key_str) return {};
                 [ #  # ]
     979   [ #  #  #  # ]:           0 :                         str += "," + std::move(*key_str);
                 [ #  # ]
     980                 :             :                     }
     981                 :           0 :                     return std::move(str) + ")";
     982                 :           0 :                 }
     983                 :          58 :                 case Fragment::THRESH: {
     984   [ -  -  -  -  :         174 :                     auto str = std::move(ret) + "thresh(" + util::ToString(node.k);
             +  -  +  - ]
           [ #  #  #  # ]
     985   [ -  -  +  + ]:         179 :                     for (auto& sub : subs) {
                 [ #  # ]
     986   [ -  -  +  - ]:         242 :                         str += "," + std::move(sub);
                 [ #  # ]
     987                 :             :                     }
     988                 :          58 :                     return std::move(str) + ")";
     989                 :          58 :                 }
     990                 :             :                 default: break;
     991                 :             :             }
     992                 :           0 :             assert(false);
     993                 :        1498 :         };
     994                 :             : 
     995                 :         242 :         return TreeEvalMaybe<std::string>(false, downfn, upfn);
     996                 :             :     }
     997                 :             : 
     998                 :             : private:
     999                 :      428980 :     internal::Ops CalcOps() const {
    1000   [ +  +  +  +  :      428980 :         switch (fragment) {
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
                +  +  - ]
    1001                 :         234 :             case Fragment::JUST_1: return {0, 0, {}};
    1002                 :         374 :             case Fragment::JUST_0: return {0, {}, 0};
    1003                 :        1746 :             case Fragment::PK_K: return {0, 0, 0};
    1004                 :         177 :             case Fragment::PK_H: return {3, 0, 0};
    1005                 :        7946 :             case Fragment::OLDER:
    1006                 :        7946 :             case Fragment::AFTER: return {1, 0, {}};
    1007                 :         335 :             case Fragment::SHA256:
    1008                 :             :             case Fragment::RIPEMD160:
    1009                 :             :             case Fragment::HASH256:
    1010                 :         335 :             case Fragment::HASH160: return {4, 0, {}};
    1011                 :         502 :             case Fragment::AND_V: return {subs[0].ops.count + subs[1].ops.count, subs[0].ops.sat + subs[1].ops.sat, {}};
    1012                 :        6853 :             case Fragment::AND_B: {
    1013                 :        6853 :                 const auto count{1 + subs[0].ops.count + subs[1].ops.count};
    1014                 :        6853 :                 const auto sat{subs[0].ops.sat + subs[1].ops.sat};
    1015                 :        6853 :                 const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat};
    1016                 :        6853 :                 return {count, sat, dsat};
    1017                 :             :             }
    1018                 :          33 :             case Fragment::OR_B: {
    1019                 :          33 :                 const auto count{1 + subs[0].ops.count + subs[1].ops.count};
    1020                 :          33 :                 const auto sat{(subs[0].ops.sat + subs[1].ops.dsat) | (subs[1].ops.sat + subs[0].ops.dsat)};
    1021                 :          33 :                 const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat};
    1022                 :          33 :                 return {count, sat, dsat};
    1023                 :             :             }
    1024                 :          77 :             case Fragment::OR_D: {
    1025                 :          77 :                 const auto count{3 + subs[0].ops.count + subs[1].ops.count};
    1026                 :          77 :                 const auto sat{subs[0].ops.sat | (subs[1].ops.sat + subs[0].ops.dsat)};
    1027                 :          77 :                 const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat};
    1028                 :          77 :                 return {count, sat, dsat};
    1029                 :             :             }
    1030                 :          20 :             case Fragment::OR_C: {
    1031                 :          20 :                 const auto count{2 + subs[0].ops.count + subs[1].ops.count};
    1032                 :          20 :                 const auto sat{subs[0].ops.sat | (subs[1].ops.sat + subs[0].ops.dsat)};
    1033                 :          20 :                 return {count, sat, {}};
    1034                 :             :             }
    1035                 :         248 :             case Fragment::OR_I: {
    1036                 :         248 :                 const auto count{3 + subs[0].ops.count + subs[1].ops.count};
    1037                 :         248 :                 const auto sat{subs[0].ops.sat | subs[1].ops.sat};
    1038                 :         248 :                 const auto dsat{subs[0].ops.dsat | subs[1].ops.dsat};
    1039                 :         248 :                 return {count, sat, dsat};
    1040                 :             :             }
    1041                 :         163 :             case Fragment::ANDOR: {
    1042                 :         163 :                 const auto count{3 + subs[0].ops.count + subs[1].ops.count + subs[2].ops.count};
    1043                 :         163 :                 const auto sat{(subs[1].ops.sat + subs[0].ops.sat) | (subs[0].ops.dsat + subs[2].ops.sat)};
    1044                 :         163 :                 const auto dsat{subs[0].ops.dsat + subs[2].ops.dsat};
    1045                 :         163 :                 return {count, sat, dsat};
    1046                 :             :             }
    1047         [ -  + ]:         129 :             case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
    1048         [ -  + ]:          17 :             case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0};
    1049                 :      402135 :             case Fragment::WRAP_S:
    1050                 :             :             case Fragment::WRAP_C:
    1051                 :      402135 :             case Fragment::WRAP_N: return {1 + subs[0].ops.count, subs[0].ops.sat, subs[0].ops.dsat};
    1052                 :        7062 :             case Fragment::WRAP_A: return {2 + subs[0].ops.count, subs[0].ops.sat, subs[0].ops.dsat};
    1053                 :         101 :             case Fragment::WRAP_D: return {3 + subs[0].ops.count, subs[0].ops.sat, 0};
    1054                 :          16 :             case Fragment::WRAP_J: return {4 + subs[0].ops.count, subs[0].ops.sat, 0};
    1055                 :         629 :             case Fragment::WRAP_V: return {subs[0].ops.count + (subs[0].GetType() << "x"_mst), subs[0].ops.sat, {}};
    1056                 :         183 :             case Fragment::THRESH: {
    1057                 :         183 :                 uint32_t count = 0;
    1058                 :         183 :                 auto sats = Vector(internal::MaxInt<uint32_t>(0));
    1059         [ +  + ]:         603 :                 for (const auto& sub : subs) {
    1060                 :         420 :                     count += sub.ops.count + 1;
    1061         [ +  - ]:         420 :                     auto next_sats = Vector(sats[0] + sub.ops.dsat);
    1062   [ +  -  -  +  :         716 :                     for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub.ops.dsat) | (sats[j - 1] + sub.ops.sat));
                   +  + ]
    1063         [ +  - ]:         420 :                     next_sats.push_back(sats[sats.size() - 1] + sub.ops.sat);
    1064                 :         420 :                     sats = std::move(next_sats);
    1065                 :             :                 }
    1066   [ -  +  -  + ]:         183 :                 assert(k < sats.size());
    1067                 :         183 :                 return {count, sats[k], sats[0]};
    1068                 :         183 :             }
    1069                 :             :         }
    1070                 :           0 :         assert(false);
    1071                 :             :     }
    1072                 :             : 
    1073                 :      428980 :     internal::StackSize CalcStackSize() const {
    1074                 :             :         using namespace internal;
    1075   [ +  +  +  +  :      428980 :         switch (fragment) {
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
                +  +  - ]
    1076                 :         374 :             case Fragment::JUST_0: return {{}, SatInfo::Push()};
    1077                 :         234 :             case Fragment::JUST_1: return {SatInfo::Push(), {}};
    1078                 :        7946 :             case Fragment::OLDER:
    1079                 :        7946 :             case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}};
    1080                 :        1746 :             case Fragment::PK_K: return {SatInfo::Push()};
    1081                 :         177 :             case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()};
    1082                 :         335 :             case Fragment::SHA256:
    1083                 :             :             case Fragment::RIPEMD160:
    1084                 :             :             case Fragment::HASH256:
    1085                 :             :             case Fragment::HASH160: return {
    1086                 :             :                 SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(),
    1087                 :             :                 {}
    1088                 :         335 :             };
    1089                 :         163 :             case Fragment::ANDOR: {
    1090                 :         163 :                 const auto& x{subs[0].ss};
    1091                 :         163 :                 const auto& y{subs[1].ss};
    1092                 :         163 :                 const auto& z{subs[2].ss};
    1093                 :             :                 return {
    1094                 :         163 :                     (x.Sat() + SatInfo::If() + y.Sat()) | (x.Dsat() + SatInfo::If() + z.Sat()),
    1095                 :         163 :                     x.Dsat() + SatInfo::If() + z.Dsat()
    1096                 :         163 :                 };
    1097                 :             :             }
    1098                 :         502 :             case Fragment::AND_V: {
    1099                 :         502 :                 const auto& x{subs[0].ss};
    1100                 :         502 :                 const auto& y{subs[1].ss};
    1101                 :         502 :                 return {x.Sat() + y.Sat(), {}};
    1102                 :             :             }
    1103                 :        6853 :             case Fragment::AND_B: {
    1104                 :        6853 :                 const auto& x{subs[0].ss};
    1105                 :        6853 :                 const auto& y{subs[1].ss};
    1106                 :        6853 :                 return {x.Sat() + y.Sat() + SatInfo::BinaryOp(), x.Dsat() + y.Dsat() + SatInfo::BinaryOp()};
    1107                 :             :             }
    1108                 :          33 :             case Fragment::OR_B: {
    1109                 :          33 :                 const auto& x{subs[0].ss};
    1110                 :          33 :                 const auto& y{subs[1].ss};
    1111                 :             :                 return {
    1112                 :          33 :                     ((x.Sat() + y.Dsat()) | (x.Dsat() + y.Sat())) + SatInfo::BinaryOp(),
    1113                 :          33 :                     x.Dsat() + y.Dsat() + SatInfo::BinaryOp()
    1114                 :          33 :                 };
    1115                 :             :             }
    1116                 :          20 :             case Fragment::OR_C: {
    1117                 :          20 :                 const auto& x{subs[0].ss};
    1118                 :          20 :                 const auto& y{subs[1].ss};
    1119                 :          20 :                 return {(x.Sat() + SatInfo::If()) | (x.Dsat() + SatInfo::If() + y.Sat()), {}};
    1120                 :             :             }
    1121                 :          77 :             case Fragment::OR_D: {
    1122                 :          77 :                 const auto& x{subs[0].ss};
    1123                 :          77 :                 const auto& y{subs[1].ss};
    1124                 :             :                 return {
    1125                 :          77 :                     (x.Sat() + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.Dsat() + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.Sat()),
    1126                 :          77 :                     x.Dsat() + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.Dsat()
    1127                 :          77 :                 };
    1128                 :             :             }
    1129                 :         248 :             case Fragment::OR_I: {
    1130                 :         248 :                 const auto& x{subs[0].ss};
    1131                 :         248 :                 const auto& y{subs[1].ss};
    1132                 :         248 :                 return {SatInfo::If() + (x.Sat() | y.Sat()), SatInfo::If() + (x.Dsat() | y.Dsat())};
    1133                 :             :             }
    1134                 :             :             // multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k
    1135                 :             :             // signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and
    1136                 :             :             // n itself, and ends with 1 stack element (success or failure). Thus, it net removes
    1137                 :             :             // k elements (from k+1 to 1), while reaching k+n+2 more than it ends with.
    1138         [ -  + ]:         129 :             case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)};
    1139                 :             :             // multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the
    1140                 :             :             // signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net
    1141                 :             :             // removes n-1 elements (from n to 1) while reaching n more than it ends with.
    1142         [ -  + ]:          17 :             case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())};
    1143                 :      407323 :             case Fragment::WRAP_A:
    1144                 :             :             case Fragment::WRAP_N:
    1145                 :      407323 :             case Fragment::WRAP_S: return subs[0].ss;
    1146                 :        1874 :             case Fragment::WRAP_C: return {
    1147                 :        1874 :                 subs[0].ss.Sat() + SatInfo::OP_CHECKSIG(),
    1148                 :        1874 :                 subs[0].ss.Dsat() + SatInfo::OP_CHECKSIG()
    1149                 :        1874 :             };
    1150                 :         101 :             case Fragment::WRAP_D: return {
    1151                 :         101 :                 SatInfo::OP_DUP() + SatInfo::If() + subs[0].ss.Sat(),
    1152                 :             :                 SatInfo::OP_DUP() + SatInfo::If()
    1153                 :         101 :             };
    1154                 :         629 :             case Fragment::WRAP_V: return {subs[0].ss.Sat() + SatInfo::OP_VERIFY(), {}};
    1155                 :          16 :             case Fragment::WRAP_J: return {
    1156                 :          16 :                 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0].ss.Sat(),
    1157                 :             :                 SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If()
    1158                 :          16 :             };
    1159                 :         183 :             case Fragment::THRESH: {
    1160                 :             :                 // sats[j] is the SatInfo corresponding to all traces reaching j satisfactions.
    1161                 :         183 :                 auto sats = Vector(SatInfo::Empty());
    1162   [ -  +  +  + ]:         603 :                 for (size_t i = 0; i < subs.size(); ++i) {
    1163                 :             :                     // Loop over the subexpressions, processing them one by one. After adding
    1164                 :             :                     // element i we need to add OP_ADD (if i>0).
    1165         [ +  + ]:         420 :                     auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty();
    1166                 :             :                     // Construct a variable that will become the next sats, starting with index 0.
    1167         [ +  - ]:         420 :                     auto next_sats = Vector(sats[0] + subs[i].ss.Dsat() + add);
    1168                 :             :                     // Then loop to construct next_sats[1..i].
    1169   [ -  +  +  + ]:         716 :                     for (size_t j = 1; j < sats.size(); ++j) {
    1170         [ +  - ]:         296 :                         next_sats.push_back(((sats[j] + subs[i].ss.Dsat()) | (sats[j - 1] + subs[i].ss.Sat())) + add);
    1171                 :             :                     }
    1172                 :             :                     // Finally construct next_sats[i+1].
    1173         [ +  - ]:         420 :                     next_sats.push_back(sats[sats.size() - 1] + subs[i].ss.Sat() + add);
    1174                 :             :                     // Switch over.
    1175                 :         420 :                     sats = std::move(next_sats);
    1176                 :             :                 }
    1177                 :             :                 // To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both
    1178                 :             :                 // cases a push of k and an OP_EQUAL follow.
    1179                 :             :                 return {
    1180                 :         183 :                     sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(),
    1181                 :         183 :                     sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL()
    1182                 :         183 :                 };
    1183                 :         183 :             }
    1184                 :             :         }
    1185                 :           0 :         assert(false);
    1186                 :             :     }
    1187                 :             : 
    1188                 :      428980 :     internal::WitnessSize CalcWitnessSize() const {
    1189         [ +  + ]:      428980 :         const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72;
    1190         [ +  + ]:      428980 :         const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33;
    1191   [ +  +  +  +  :      428980 :         switch (fragment) {
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
                      - ]
    1192                 :         374 :             case Fragment::JUST_0: return {{}, 0};
    1193                 :        8180 :             case Fragment::JUST_1:
    1194                 :             :             case Fragment::OLDER:
    1195                 :        8180 :             case Fragment::AFTER: return {0, {}};
    1196                 :        1746 :             case Fragment::PK_K: return {sig_size, 1};
    1197                 :         177 :             case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size};
    1198                 :         335 :             case Fragment::SHA256:
    1199                 :             :             case Fragment::RIPEMD160:
    1200                 :             :             case Fragment::HASH256:
    1201                 :         335 :             case Fragment::HASH160: return {1 + 32, {}};
    1202                 :         163 :             case Fragment::ANDOR: {
    1203                 :         163 :                 const auto sat{(subs[0].ws.sat + subs[1].ws.sat) | (subs[0].ws.dsat + subs[2].ws.sat)};
    1204                 :         163 :                 const auto dsat{subs[0].ws.dsat + subs[2].ws.dsat};
    1205                 :         163 :                 return {sat, dsat};
    1206                 :             :             }
    1207                 :         502 :             case Fragment::AND_V: return {subs[0].ws.sat + subs[1].ws.sat, {}};
    1208                 :        6853 :             case Fragment::AND_B: return {subs[0].ws.sat + subs[1].ws.sat, subs[0].ws.dsat + subs[1].ws.dsat};
    1209                 :          33 :             case Fragment::OR_B: {
    1210                 :          33 :                 const auto sat{(subs[0].ws.dsat + subs[1].ws.sat) | (subs[0].ws.sat + subs[1].ws.dsat)};
    1211                 :          33 :                 const auto dsat{subs[0].ws.dsat + subs[1].ws.dsat};
    1212                 :          33 :                 return {sat, dsat};
    1213                 :             :             }
    1214                 :          20 :             case Fragment::OR_C: return {subs[0].ws.sat | (subs[0].ws.dsat + subs[1].ws.sat), {}};
    1215                 :          77 :             case Fragment::OR_D: return {subs[0].ws.sat | (subs[0].ws.dsat + subs[1].ws.sat), subs[0].ws.dsat + subs[1].ws.dsat};
    1216                 :         248 :             case Fragment::OR_I: return {(subs[0].ws.sat + 1 + 1) | (subs[1].ws.sat + 1), (subs[0].ws.dsat + 1 + 1) | (subs[1].ws.dsat + 1)};
    1217                 :         129 :             case Fragment::MULTI: return {k * sig_size + 1, k + 1};
    1218         [ -  + ]:          17 :             case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())};
    1219                 :      409197 :             case Fragment::WRAP_A:
    1220                 :             :             case Fragment::WRAP_N:
    1221                 :             :             case Fragment::WRAP_S:
    1222                 :      409197 :             case Fragment::WRAP_C: return subs[0].ws;
    1223                 :         101 :             case Fragment::WRAP_D: return {1 + 1 + subs[0].ws.sat, 1};
    1224                 :         629 :             case Fragment::WRAP_V: return {subs[0].ws.sat, {}};
    1225                 :          16 :             case Fragment::WRAP_J: return {subs[0].ws.sat, 1};
    1226                 :         183 :             case Fragment::THRESH: {
    1227                 :         183 :                 auto sats = Vector(internal::MaxInt<uint32_t>(0));
    1228         [ +  + ]:         603 :                 for (const auto& sub : subs) {
    1229         [ +  - ]:         420 :                     auto next_sats = Vector(sats[0] + sub.ws.dsat);
    1230   [ +  -  -  +  :         716 :                     for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub.ws.dsat) | (sats[j - 1] + sub.ws.sat));
                   +  + ]
    1231         [ +  - ]:         420 :                     next_sats.push_back(sats[sats.size() - 1] + sub.ws.sat);
    1232                 :         420 :                     sats = std::move(next_sats);
    1233                 :             :                 }
    1234   [ -  +  -  + ]:         183 :                 assert(k < sats.size());
    1235                 :         183 :                 return {sats[k], sats[0]};
    1236                 :         183 :             }
    1237                 :             :         }
    1238                 :           0 :         assert(false);
    1239                 :             :     }
    1240                 :             : 
    1241                 :             :     template<typename Ctx>
    1242                 :        4950 :     internal::InputResult ProduceInput(const Ctx& ctx) const {
    1243                 :             :         using namespace internal;
    1244                 :             : 
    1245                 :             :         // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions
    1246                 :             :         // given those of its subnodes.
    1247                 :     1621656 :         auto helper = [&ctx](const Node& node, std::span<InputResult> subres) -> InputResult {
    1248   [ +  +  -  +  :     1616706 :             switch (node.fragment) {
          +  +  +  +  +  
          +  +  +  -  -  
          -  -  -  +  +  
          +  -  +  +  -  
          -  +  +  +  -  
          +  +  -  -  -  
          +  -  +  -  -  
          -  -  -  -  +  
          +  -  +  -  -  
           - ][ +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
                   +  - ]
    1249                 :      374940 :                 case Fragment::PK_K: {
    1250                 :      374940 :                     std::vector<unsigned char> sig;
    1251   [ +  -  +  -  :      374940 :                     Availability avail = ctx.Sign(node.keys[0], sig);
             +  -  +  - ]
           [ +  -  +  - ]
    1252   [ +  -  +  -  :      749880 :                     return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)};
          +  -  +  -  +  
          -  +  -  +  -  
           +  - ][ +  -  
          +  -  +  -  +  
                      - ]
    1253                 :      374940 :                 }
    1254                 :         726 :                 case Fragment::PK_H: {
    1255                 :         726 :                     std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig;
    1256   [ +  -  +  - ]:         726 :                     Availability avail = ctx.Sign(node.keys[0], sig);
                 [ +  - ]
    1257   [ +  -  +  -  :        1452 :                     return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)};
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
             +  -  +  - ]
           [ +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
             -  +  -  +  
                      - ]
    1258                 :         726 :                 }
    1259                 :         168 :                 case Fragment::MULTI_A: {
    1260                 :             :                     // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
    1261                 :             :                     // In the loop below, these stacks are built up using a dynamic programming approach.
    1262                 :         168 :                     std::vector<InputStack> sats = Vector(EMPTY);
    1263   [ -  -  -  -  :        3012 :                     for (size_t i = 0; i < node.keys.size(); ++i) {
             -  +  +  + ]
           [ -  +  +  + ]
    1264                 :             :                         // Get the signature for the i'th key in reverse order (the signature for the first key needs to
    1265                 :             :                         // be at the top of the stack, contrary to CHECKMULTISIG's satisfaction).
    1266                 :        2844 :                         std::vector<unsigned char> sig;
    1267   [ -  -  -  -  :        2844 :                         Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig);
          -  -  -  +  +  
           -  +  - ][ -  
             +  +  -  +  
                      - ]
    1268                 :             :                         // Compute signature stack for just this key.
    1269   [ -  -  -  -  :        5688 :                         auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
          -  -  -  -  +  
          -  +  -  +  -  
           +  - ][ +  -  
          +  -  +  -  +  
                      - ]
    1270                 :             :                         // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
    1271                 :             :                         // next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature
    1272                 :             :                         // for the current (i'th) key. The very last element needs all signatures filled.
    1273                 :        2844 :                         std::vector<InputStack> next_sats;
    1274   [ -  -  -  -  :        5688 :                         next_sats.push_back(sats[0] + ZERO);
          -  -  +  -  +  
           -  +  - ][ +  
             -  +  -  +  
                      - ]
    1275   [ -  -  -  -  :       30600 :                         for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat));
          -  -  -  -  -  
          -  -  -  -  -  
          -  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  -  
           +  +  + ][ +  
          -  +  -  +  -  
          +  -  +  -  +  
             -  -  +  +  
                      + ]
    1276   [ -  -  -  -  :        5688 :                         next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
             -  +  +  - ]
           [ -  +  +  - ]
    1277                 :             :                         // Switch over.
    1278                 :        2844 :                         sats = std::move(next_sats);
    1279                 :             :                     }
    1280                 :             :                     // The dissatisfaction consists of as many empty vectors as there are keys, which is the same as
    1281                 :             :                     // satisfying 0 keys.
    1282                 :         168 :                     auto& nsat{sats[0]};
    1283   [ -  -  +  - ]:         168 :                     CHECK_NONFATAL(node.k != 0);
                 [ +  - ]
    1284   [ -  -  -  -  :         168 :                     assert(node.k < sats.size());
             -  +  -  + ]
           [ -  +  -  + ]
    1285                 :         168 :                     return {std::move(nsat), std::move(sats[node.k])};
    1286                 :         168 :                 }
    1287                 :         384 :                 case Fragment::MULTI: {
    1288                 :             :                     // sats[j] represents the best stack containing j valid signatures (out of the first i keys).
    1289                 :             :                     // In the loop below, these stacks are built up using a dynamic programming approach.
    1290                 :             :                     // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many.
    1291                 :         384 :                     std::vector<InputStack> sats = Vector(ZERO);
    1292   [ -  +  +  +  :        1140 :                     for (size_t i = 0; i < node.keys.size(); ++i) {
             -  -  -  - ]
           [ -  +  +  + ]
    1293                 :         756 :                         std::vector<unsigned char> sig;
    1294   [ +  -  +  -  :         756 :                         Availability avail = ctx.Sign(node.keys[i], sig);
             -  -  -  - ]
           [ +  -  +  - ]
    1295                 :             :                         // Compute signature stack for just the i'th key.
    1296   [ +  -  +  -  :        1512 :                         auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail);
          +  -  +  -  -  
          -  -  -  -  -  
           -  - ][ +  -  
          +  -  +  -  +  
                      - ]
    1297                 :             :                         // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further
    1298                 :             :                         // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the
    1299                 :             :                         // current (i'th) key. The very last element needs all signatures filled.
    1300   [ +  -  -  - ]:         756 :                         std::vector<InputStack> next_sats;
                 [ +  - ]
    1301   [ +  -  -  - ]:         756 :                         next_sats.push_back(sats[0]);
                 [ +  - ]
    1302   [ +  -  +  -  :        1200 :                         for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat));
          +  -  +  -  -  
          +  +  +  -  -  
          -  -  -  -  -  
             -  -  -  -  
           - ][ +  -  +  
          -  +  -  +  -  
             -  +  +  + ]
    1303   [ -  +  +  -  :        1512 :                         next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat));
             -  -  -  - ]
           [ -  +  +  - ]
    1304                 :             :                         // Switch over.
    1305                 :         756 :                         sats = std::move(next_sats);
    1306                 :             :                     }
    1307                 :             :                     // The dissatisfaction consists of k+1 stack elements all equal to 0.
    1308   [ +  -  -  - ]:         384 :                     InputStack nsat = ZERO;
                 [ +  - ]
    1309   [ +  -  +  -  :        1116 :                     for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO;
          +  +  -  -  -  
           -  -  - ][ +  
             -  +  -  +  
                      + ]
    1310   [ -  +  -  +  :         384 :                     assert(node.k < sats.size());
             -  -  -  - ]
           [ -  +  -  + ]
    1311                 :         768 :                     return {std::move(nsat), std::move(sats[node.k])};
    1312                 :         384 :                 }
    1313                 :         408 :                 case Fragment::THRESH: {
    1314                 :             :                     // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions.
    1315                 :             :                     // In the loop below, these stacks are built up using a dynamic programming approach.
    1316                 :             :                     // sats[0] starts off empty.
    1317                 :         408 :                     std::vector<InputStack> sats = Vector(EMPTY);
    1318   [ +  +  +  + ]:        1590 :                     for (size_t i = 0; i < subres.size(); ++i) {
                 [ +  + ]
    1319                 :             :                         // Introduce an alias for the i'th last satisfaction/dissatisfaction.
    1320   [ +  -  +  - ]:        1182 :                         auto& res = subres[subres.size() - i - 1];
                 [ +  - ]
    1321                 :             :                         // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions
    1322                 :             :                         // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat
    1323                 :             :                         // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions.
    1324                 :        1182 :                         std::vector<InputStack> next_sats;
    1325   [ +  -  +  -  :        2364 :                         next_sats.push_back(sats[0] + res.nsat);
          +  -  +  -  +  
           -  +  - ][ +  
             -  +  -  +  
                      - ]
    1326   [ +  -  +  -  :        2382 :                         for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat));
          +  -  +  -  +  
          -  +  -  -  +  
          +  +  +  -  +  
          -  +  -  +  -  
          +  -  +  -  -  
           +  +  + ][ +  
          -  +  -  +  -  
          +  -  +  -  +  
             -  -  +  +  
                      + ]
    1327   [ -  +  +  -  :        2364 :                         next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat));
             -  +  +  - ]
           [ -  +  +  - ]
    1328                 :             :                         // Switch over.
    1329                 :        1182 :                         sats = std::move(next_sats);
    1330                 :             :                     }
    1331                 :             :                     // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction
    1332                 :             :                     // is computed by gathering all sats[i].nsat for i != k.
    1333   [ +  -  +  - ]:         408 :                     InputStack nsat = INVALID;
                 [ +  - ]
    1334   [ -  +  +  +  :        1998 :                     for (size_t i = 0; i < sats.size(); ++i) {
             -  +  +  + ]
           [ -  +  +  + ]
    1335                 :             :                         // i==k is the satisfaction; i==0 is the canonical dissatisfaction;
    1336                 :             :                         // the rest are non-canonical (a no-signature dissatisfaction - the i=0
    1337                 :             :                         // form - is always available) and malleable (due to overcompleteness).
    1338                 :             :                         // Marking the solutions malleable here is not strictly necessary, as they
    1339                 :             :                         // should already never be picked in non-malleable solutions due to the
    1340                 :             :                         // availability of the i=0 form.
    1341   [ +  +  +  +  :        1590 :                         if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon();
          +  -  +  -  +  
          +  +  +  +  -  
           +  - ][ +  +  
          +  +  +  -  +  
                      - ]
    1342                 :             :                         // Include all dissatisfactions (even these non-canonical ones) in nsat.
    1343   [ +  +  +  -  :        1590 :                         if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]);
             +  +  +  - ]
           [ +  +  +  - ]
    1344                 :             :                     }
    1345   [ -  +  -  + ]:         408 :                     assert(node.k < sats.size());
                 [ -  + ]
    1346                 :         816 :                     return {std::move(nsat), std::move(sats[node.k])};
    1347                 :         408 :                 }
    1348                 :       36948 :                 case Fragment::OLDER: {
    1349   [ +  +  +  + ]:       55410 :                     return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID};
                 [ +  + ]
    1350                 :             :                 }
    1351                 :        1326 :                 case Fragment::AFTER: {
    1352   [ +  +  -  - ]:        2008 :                     return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID};
                 [ +  + ]
    1353                 :             :                 }
    1354                 :         516 :                 case Fragment::SHA256: {
    1355                 :         516 :                     std::vector<unsigned char> preimage;
    1356   [ +  -  +  -  :         516 :                     Availability avail = ctx.SatSHA256(node.data, preimage);
             -  -  -  - ]
           [ +  -  +  - ]
    1357   [ +  -  +  -  :        1032 :                     return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
          +  -  -  -  -  
           -  -  - ][ +  
             -  +  -  +  
                      - ]
    1358                 :         516 :                 }
    1359                 :         222 :                 case Fragment::RIPEMD160: {
    1360                 :         222 :                     std::vector<unsigned char> preimage;
    1361   [ +  -  +  -  :         222 :                     Availability avail = ctx.SatRIPEMD160(node.data, preimage);
             -  -  -  - ]
           [ +  -  +  - ]
    1362   [ +  -  +  -  :         444 :                     return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
          +  -  -  -  -  
           -  -  - ][ +  
             -  +  -  +  
                      - ]
    1363                 :         222 :                 }
    1364                 :         396 :                 case Fragment::HASH256: {
    1365                 :         396 :                     std::vector<unsigned char> preimage;
    1366   [ +  -  +  -  :         396 :                     Availability avail = ctx.SatHASH256(node.data, preimage);
             +  -  +  - ]
           [ +  -  +  - ]
    1367   [ +  -  +  -  :         792 :                     return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
          +  -  +  -  +  
           -  +  - ][ +  
             -  +  -  +  
                      - ]
    1368                 :         396 :                 }
    1369                 :         168 :                 case Fragment::HASH160: {
    1370                 :         168 :                     std::vector<unsigned char> preimage;
    1371   [ +  -  +  -  :         168 :                     Availability avail = ctx.SatHASH160(node.data, preimage);
             -  -  -  - ]
           [ +  -  +  - ]
    1372   [ +  -  +  -  :         336 :                     return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)};
          +  -  -  -  -  
           -  -  - ][ +  
             -  +  -  +  
                      - ]
    1373                 :         168 :                 }
    1374                 :        1398 :                 case Fragment::AND_V: {
    1375                 :        1398 :                     auto& x = subres[0], &y = subres[1];
    1376                 :             :                     // As the dissatisfaction here only consist of a single option, it doesn't
    1377                 :             :                     // actually need to be listed (it's not required for reasoning about malleability of
    1378                 :             :                     // other options), and is never required (no valid miniscript relies on the ability
    1379                 :             :                     // to satisfy the type V left subexpression). It's still listed here for
    1380                 :             :                     // completeness, as a hypothetical (not currently implemented) satisfier that doesn't
    1381                 :             :                     // care about malleability might in some cases prefer it still.
    1382   [ +  -  +  -  :        2796 :                     return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat};
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
             -  +  -  +  
           - ][ +  -  +  
          -  +  -  +  -  
             +  -  +  - ]
    1383                 :             :                 }
    1384                 :      407640 :                 case Fragment::AND_B: {
    1385                 :      407640 :                     auto& x = subres[0], &y = subres[1];
    1386                 :             :                     // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here
    1387                 :             :                     // as malleable. While they are definitely malleable, they are also non-canonical due
    1388                 :             :                     // to the guaranteed existence of a no-signature other dissatisfaction (the 1st)
    1389                 :             :                     // option. Because of that, the 2nd and 3rd option will never be chosen, even if they
    1390                 :             :                     // weren't marked as malleable.
    1391   [ #  #  #  #  :      815280 :                     return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat};
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
           #  # ][ +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
                      - ]
    1392                 :             :                 }
    1393                 :         144 :                 case Fragment::OR_B: {
    1394                 :         144 :                     auto& x = subres[0], &z = subres[1];
    1395                 :             :                     // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat).
    1396   [ #  #  #  #  :         288 :                     return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()};
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
             #  #  #  #  
           # ][ +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
             +  -  +  - ]
    1397                 :             :                 }
    1398                 :          90 :                 case Fragment::OR_C: {
    1399                 :          90 :                     auto& x = subres[0], &z = subres[1];
    1400   [ #  #  #  #  :         180 :                     return {INVALID, std::move(x.sat) | (z.sat + x.nsat)};
          #  #  #  #  #  
           #  #  # ][ +  
             -  +  -  +  
                      - ]
    1401                 :             :                 }
    1402                 :         312 :                 case Fragment::OR_D: {
    1403                 :         312 :                     auto& x = subres[0], &z = subres[1];
    1404   [ #  #  #  #  :         624 :                     return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)};
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
             #  #  #  #  
           # ][ +  -  +  
          -  +  -  +  -  
             +  -  +  - ]
    1405                 :             :                 }
    1406                 :        1590 :                 case Fragment::OR_I: {
    1407                 :        1590 :                     auto& x = subres[0], &z = subres[1];
    1408   [ #  #  #  #  :        3180 :                     return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)};
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
          #  #  #  #  #  
           #  #  # ][ +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
             -  +  -  +  
                      - ]
    1409                 :             :                 }
    1410                 :         696 :                 case Fragment::ANDOR: {
    1411                 :         696 :                     auto& x = subres[0], &y = subres[1], &z = subres[2];
    1412   [ +  -  +  -  :        1392 :                     return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)};
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  -  -  -  -  
          -  -  -  -  -  
          -  -  -  -  -  
          -  -  -  -  -  
          -  -  -  -  -  
          -  -  -  -  -  
           - ][ +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
                   +  - ]
    1413                 :             :                 }
    1414                 :      784098 :                 case Fragment::WRAP_A:
    1415                 :             :                 case Fragment::WRAP_S:
    1416                 :             :                 case Fragment::WRAP_C:
    1417                 :             :                 case Fragment::WRAP_N:
    1418                 :      784098 :                     return std::move(subres[0]);
    1419                 :         120 :                 case Fragment::WRAP_D: {
    1420                 :         120 :                     auto &x = subres[0];
    1421   [ +  -  +  -  :         240 :                     return {ZERO, x.sat + ONE};
             +  -  +  - ]
           [ +  -  +  - ]
    1422                 :             :                 }
    1423                 :         198 :                 case Fragment::WRAP_J: {
    1424                 :         198 :                     auto &x = subres[0];
    1425                 :             :                     // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists.
    1426                 :             :                     // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even
    1427                 :             :                     // if a dissatisfaction with a top zero element is found, we don't know whether another one with a
    1428                 :             :                     // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly
    1429                 :             :                     // dissatisfiable, this alternative dissatisfaction exists and leads to malleability.
    1430   [ #  #  #  #  :         576 :                     return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)};
          #  #  #  #  #  
          #  #  #  #  #  
           #  # ][ +  +  
          -  +  +  -  +  
                      - ]
    1431                 :             :                 }
    1432                 :        1722 :                 case Fragment::WRAP_V: {
    1433                 :        1722 :                     auto &x = subres[0];
    1434                 :        1722 :                     return {INVALID, std::move(x.sat)};
    1435                 :             :                 }
    1436                 :        1524 :                 case Fragment::JUST_0: return {EMPTY, INVALID};
    1437                 :         972 :                 case Fragment::JUST_1: return {INVALID, EMPTY};
    1438                 :             :             }
    1439                 :           0 :             assert(false);
    1440                 :             :             return {INVALID, INVALID};
    1441                 :             :         };
    1442                 :             : 
    1443                 :     1621656 :         auto tester = [&helper](const Node& node, std::span<InputResult> subres) -> InputResult {
    1444                 :     1616706 :             auto ret = helper(node, subres);
    1445                 :             : 
    1446                 :             :             // Do a consistency check between the satisfaction code and the type checker
    1447                 :             :             // (the actual satisfaction code in ProduceInputHelper does not use GetType)
    1448                 :             : 
    1449                 :             :             // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0.
    1450   [ +  +  -  +  :       42582 :             if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0);
          +  -  -  +  -  
           -  -  - ][ +  
             +  -  +  +  
                      - ]
    1451   [ +  +  -  +  :       42582 :             if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0);
          +  -  +  +  -  
           +  +  - ][ +  
             +  -  +  +  
                      - ]
    1452                 :             : 
    1453                 :             :             // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1.
    1454   [ +  +  -  +  :      753438 :             if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1);
          +  -  +  +  -  
           +  +  - ][ +  
             +  -  +  +  
                      - ]
    1455   [ +  +  -  +  :      753438 :             if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1);
          +  -  +  +  -  
           +  +  - ][ +  
             +  -  +  +  
                      - ]
    1456                 :             : 
    1457                 :             :             // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions,
    1458                 :             :             // the top element cannot be 0.
    1459   [ +  +  -  +  :     1125180 :             if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1);
          +  -  +  +  -  
           +  +  - ][ +  
             +  -  +  +  
                      - ]
    1460   [ +  +  -  +  :     1125180 :             if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1);
          +  -  +  +  -  
           +  +  - ][ +  
             +  -  +  +  
                      - ]
    1461   [ +  +  +  -  :     1125180 :             if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty());
             +  +  +  - ]
           [ +  +  +  - ]
    1462                 :             : 
    1463                 :             :             // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable,
    1464                 :             :             // it must be canonical.
    1465   [ +  -  +  - ]:     1500810 :             if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
                 [ +  - ]
    1466   [ +  -  +  - ]:     1500810 :             if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig);
                 [ +  - ]
    1467   [ +  +  +  -  :     1500810 :             if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon);
             +  +  +  - ]
           [ +  +  +  - ]
    1468                 :             : 
    1469                 :             :             // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature.
    1470   [ -  +  -  -  :       43194 :             if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig);
             -  +  -  - ]
           [ +  +  +  - ]
    1471   [ +  +  +  -  :     1569510 :             if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig);
             +  +  +  - ]
           [ +  +  +  - ]
    1472                 :             : 
    1473                 :             :             // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist.
    1474   [ +  -  +  - ]:     1497906 :             if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO);
                 [ +  - ]
    1475   [ +  -  +  - ]:     1497906 :             if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable);
                 [ +  - ]
    1476                 :             : 
    1477                 :             :             // For 'm' nodes, if a satisfaction exists, it must be non-malleable.
    1478   [ +  +  +  -  :     1615158 :             if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable);
             +  +  +  - ]
           [ +  +  +  - ]
    1479                 :             : 
    1480                 :             :             // If a non-malleable satisfaction exists, it must be canonical.
    1481   [ +  +  +  -  :     1616706 :             if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon);
          +  -  +  +  +  
           -  +  - ][ +  
             +  +  +  +  
                      - ]
    1482                 :             : 
    1483                 :     1616706 :             return ret;
    1484                 :           0 :         };
    1485                 :             : 
    1486                 :        4950 :         return TreeEval<InputResult>(tester);
    1487                 :             :     }
    1488                 :             : 
    1489                 :             : public:
    1490                 :             :     /** Update duplicate key information in this Node.
    1491                 :             :      *
    1492                 :             :      * This uses a custom key comparator provided by the context in order to still detect duplicates
    1493                 :             :      * for more complicated types.
    1494                 :             :      */
    1495                 :         839 :     template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const
    1496                 :             :     {
    1497                 :             :         // We cannot use a lambda here, as lambdas are non assignable, and the set operations
    1498                 :             :         // below require moving the comparators around.
    1499                 :             :         struct Comp {
    1500                 :             :             const Ctx* ctx_ptr;
    1501                 :       26480 :             Comp(const Ctx& ctx) : ctx_ptr(&ctx) {}
    1502   [ -  +  +  -  :        7601 :             bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); }
          -  -  -  -  -  
          -  -  -  +  -  
          -  +  -  -  -  
          -  -  -  -  -  
          -  +  -  +  +  
          -  -  +  +  +  
           +  - ][ +  +  
          +  +  -  -  -  
          -  -  -  -  -  
          +  +  +  +  +  
                      + ]
    1503                 :             :         };
    1504                 :             : 
    1505                 :             :         // state in the recursive computation:
    1506                 :             :         // - std::nullopt means "this node has duplicates"
    1507                 :             :         // - an std::set means "this node has no duplicate keys, and they are: ...".
    1508                 :             :         using keyset = std::set<Key, Comp>;
    1509                 :             :         using state = std::optional<keyset>;
    1510                 :             : 
    1511                 :       27319 :         auto upfn = [&ctx](const Node& node, std::span<state> subs) -> state {
    1512                 :             :             // If this node is already known to have duplicates, nothing left to do.
    1513   [ -  +  -  - ]:       26480 :             if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {};
           [ -  +  -  -  
             -  +  -  - ]
    1514                 :             : 
    1515                 :             :             // Check if one of the children is already known to have duplicates.
    1516   [ -  +  +  + ]:       52121 :             for (auto& sub : subs) {
           [ -  +  +  +  
             -  +  +  + ]
    1517         [ -  + ]:       25641 :                 if (!sub.has_value()) {
           [ -  +  -  + ]
    1518                 :           0 :                     node.has_duplicate_keys = true;
    1519                 :           0 :                     return {};
    1520                 :             :                 }
    1521                 :             :             }
    1522                 :             : 
    1523                 :             :             // Start building the set of keys involved in this node and children.
    1524                 :             :             // Start by keys in this node directly.
    1525         [ -  + ]:       26480 :             size_t keys_count = node.keys.size();
           [ -  +  -  + ]
    1526                 :       26480 :             keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)};
    1527         [ -  + ]:       26480 :             if (key_set.size() != keys_count) {
           [ -  +  -  + ]
    1528                 :             :                 // It already has duplicates; bail out.
    1529                 :           0 :                 node.has_duplicate_keys = true;
    1530                 :           0 :                 return {};
    1531                 :             :             }
    1532                 :             : 
    1533                 :             :             // Merge the keys from the children into this set.
    1534   [ +  +  +  + ]:       52111 :             for (auto& sub : subs) {
           [ +  +  +  +  
             +  +  +  + ]
    1535         [ +  + ]:       25639 :                 keys_count += sub->size();
           [ +  +  +  + ]
    1536                 :             :                 // Small optimization: std::set::merge is linear in the size of the second arg but
    1537                 :             :                 // logarithmic in the size of the first.
    1538         [ +  + ]:       25639 :                 if (key_set.size() < sub->size()) std::swap(key_set, *sub);
           [ +  +  +  + ]
    1539         [ +  + ]:       25639 :                 key_set.merge(*sub);
           [ -  +  -  + ]
    1540         [ +  + ]:       25639 :                 if (key_set.size() != keys_count) {
           [ -  +  -  + ]
    1541                 :           8 :                     node.has_duplicate_keys = true;
    1542                 :           8 :                     return {};
    1543                 :             :                 }
    1544                 :             :             }
    1545                 :             : 
    1546                 :       26472 :             node.has_duplicate_keys = false;
    1547                 :       26472 :             return key_set;
    1548                 :       26480 :         };
    1549                 :             : 
    1550                 :         839 :         TreeEval<state>(upfn);
    1551                 :         839 :     }
    1552                 :             : 
    1553                 :             :     //! Return the size of the script for this expression (faster than ToScript().size()).
    1554   [ +  -  +  -  :      426445 :     size_t ScriptSize() const { return scriptlen; }
                   +  + ]
    1555                 :             : 
    1556                 :             :     //! Return the maximum number of ops needed to satisfy this script non-malleably.
    1557                 :        1967 :     std::optional<uint32_t> GetOps() const {
    1558         [ +  + ]:        1967 :         if (!ops.sat.Valid()) return {};
    1559                 :        1958 :         return ops.count + ops.sat.Value();
    1560                 :             :     }
    1561                 :             : 
    1562                 :             :     //! Return the number of ops in the script (not counting the dynamic ones that depend on execution).
    1563                 :             :     uint32_t GetStaticOps() const { return ops.count; }
    1564                 :             : 
    1565                 :             :     //! Check the ops limit of this script against the consensus limit.
    1566                 :        5976 :     bool CheckOpsLimit() const {
    1567         [ +  + ]:        5976 :         if (IsTapscript(m_script_ctx)) return true;
    1568         [ +  + ]:        1844 :         if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT;
    1569                 :             :         return true;
    1570                 :             :     }
    1571                 :             : 
    1572                 :             :     /** Whether this node is of type B, K or W. (That is, anything but V.) */
    1573                 :        6559 :     bool IsBKW() const {
    1574                 :        6559 :         return !((GetType() & "BKW"_mst) == ""_mst);
    1575                 :             :     }
    1576                 :             : 
    1577                 :             :     /** Return the maximum number of stack elements needed to satisfy this script non-malleably. */
    1578                 :        2321 :     std::optional<uint32_t> GetStackSize() const {
    1579         [ +  + ]:        2321 :         if (!ss.Sat().Valid()) return {};
    1580                 :        2312 :         return ss.Sat().NetDiff() + static_cast<int32_t>(IsBKW());
    1581                 :             :     }
    1582                 :             : 
    1583                 :             :     //! Return the maximum size of the stack during execution of this script.
    1584                 :        4256 :     std::optional<uint32_t> GetExecStackSize() const {
    1585         [ +  + ]:        4256 :         if (!ss.Sat().Valid()) return {};
    1586                 :        4247 :         return ss.Sat().Exec() + static_cast<int32_t>(IsBKW());
    1587                 :             :     }
    1588                 :             : 
    1589                 :             :     //! Check the maximum stack size for this script against the policy limit.
    1590                 :        5978 :     bool CheckStackSize() const {
    1591                 :             :         // Since in Tapscript there is no standardness limit on the script and witness sizes, we may run
    1592                 :             :         // into the maximum stack size while executing the script. Make sure it doesn't happen.
    1593         [ +  + ]:        5978 :         if (IsTapscript(m_script_ctx)) {
    1594         [ +  + ]:        4134 :             if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE;
    1595                 :             :             return true;
    1596                 :             :         }
    1597         [ +  + ]:        1844 :         if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS;
    1598                 :             :         return true;
    1599                 :             :     }
    1600                 :             : 
    1601                 :             :     //! Whether no satisfaction exists for this node.
    1602         [ +  - ]:          65 :     bool IsNotSatisfiable() const { return !GetStackSize(); }
    1603                 :             : 
    1604                 :             :     /** Return the maximum size in bytes of a witness to satisfy this script non-malleably. Note this does
    1605                 :             :      * not include the witness script push. */
    1606                 :         411 :     std::optional<uint32_t> GetWitnessSize() const {
    1607 [ -  + ][ -  +  :         411 :         if (!ws.sat.Valid()) return {};
             -  +  -  + ]
    1608                 :         411 :         return ws.sat.Value();
    1609                 :             :     }
    1610                 :             : 
    1611                 :             :     //! Return the expression type.
    1612   [ -  -  +  + ]:    16541575 :     Type GetType() const { return typ; }
           [ -  -  +  -  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  -  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  +  +  +  
           - ][ +  -  +  
          -  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  +  +  +  
                      - ]
    1613                 :             : 
    1614                 :             :     //! Return the script context for this node.
    1615                 :         803 :     MiniscriptContext GetMsCtx() const { return m_script_ctx; }
    1616                 :             : 
    1617                 :             :     //! Find an insane subnode which has no insane children. Nullptr if there is none.
    1618                 :          13 :     const Node* FindInsaneSub() const {
    1619         [ +  - ]:          13 :         return TreeEval<const Node*>([](const Node& node, std::span<const Node*> subs) -> const Node* {
    1620   [ +  +  +  + ]:         185 :             for (auto& sub: subs) if (sub) return sub;
    1621         [ +  + ]:          98 :             if (!node.IsSaneSubexpression()) return &node;
    1622                 :             :             return nullptr;
    1623                 :             :         });
    1624                 :             :     }
    1625                 :             : 
    1626                 :             :     //! Determine whether a Miniscript node is satisfiable. fn(node) will be invoked for all
    1627                 :             :     //! key, time, and hashing nodes, and should return their satisfiability.
    1628                 :             :     template<typename F>
    1629                 :         375 :     bool IsSatisfiable(F fn) const
    1630                 :             :     {
    1631                 :             :         // TreeEval() doesn't support bool as NodeType, so use int instead.
    1632         [ +  - ]:         375 :         return TreeEval<int>([&fn](const Node& node, std::span<int> subs) -> bool {
    1633   [ +  +  +  +  :       25413 :             switch (node.fragment) {
             +  +  +  + ]
    1634                 :             :                 case Fragment::JUST_0:
    1635                 :             :                     return false;
    1636                 :         231 :                 case Fragment::JUST_1:
    1637                 :         231 :                     return true;
    1638                 :        7935 :                 case Fragment::PK_K:
    1639                 :             :                 case Fragment::PK_H:
    1640                 :             :                 case Fragment::MULTI:
    1641                 :             :                 case Fragment::MULTI_A:
    1642                 :             :                 case Fragment::AFTER:
    1643                 :             :                 case Fragment::OLDER:
    1644                 :             :                 case Fragment::HASH256:
    1645                 :             :                 case Fragment::HASH160:
    1646                 :             :                 case Fragment::SHA256:
    1647                 :             :                 case Fragment::RIPEMD160:
    1648                 :        7935 :                     return bool{fn(node)};
    1649         [ +  + ]:          87 :                 case Fragment::ANDOR:
    1650   [ +  +  -  +  :          87 :                     return (subs[0] && subs[1]) || subs[2];
                   +  - ]
    1651         [ +  - ]:        7452 :                 case Fragment::AND_V:
    1652                 :             :                 case Fragment::AND_B:
    1653   [ +  -  -  + ]:        7452 :                     return subs[0] && subs[1];
    1654         [ +  + ]:         324 :                 case Fragment::OR_B:
    1655                 :             :                 case Fragment::OR_C:
    1656                 :             :                 case Fragment::OR_D:
    1657                 :             :                 case Fragment::OR_I:
    1658   [ +  +  +  + ]:         324 :                     return subs[0] || subs[1];
    1659                 :          48 :                 case Fragment::THRESH:
    1660                 :          48 :                     return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k;
    1661         [ -  + ]:        9087 :                 default: // wrappers
    1662         [ -  + ]:        9087 :                     assert(subs.size() >= 1);
    1663                 :        9087 :                     CHECK_NONFATAL(subs.size() == 1);
    1664                 :        9087 :                     return subs[0];
    1665                 :             :             }
    1666         [ +  - ]:         375 :         });
    1667                 :             :     }
    1668                 :             : 
    1669                 :             :     //! Check whether this node is valid at all.
    1670                 :       29741 :     bool IsValid() const {
    1671         [ +  + ]:       29741 :         if (GetType() == ""_mst) return false;
    1672                 :       59350 :         return ScriptSize() <= internal::MaxScriptSize(m_script_ctx);
    1673                 :             :     }
    1674                 :             : 
    1675                 :             :     //! Check whether this node is valid as a script on its own.
    1676   [ +  +  -  + ]:        6306 :     bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
    1677                 :             : 
    1678                 :             :     //! Check whether this script can always be satisfied in a non-malleable way.
    1679                 :        5812 :     bool IsNonMalleable() const { return GetType() << "m"_mst; }
    1680                 :             : 
    1681                 :             :     //! Check whether this script always needs a signature.
    1682                 :        4377 :     bool NeedsSignature() const { return GetType() << "s"_mst; }
    1683                 :             : 
    1684                 :             :     //! Check whether there is no satisfaction path that contains both timelocks and heightlocks
    1685                 :        4641 :     bool CheckTimeLocksMix() const { return GetType() << "k"_mst; }
    1686                 :             : 
    1687                 :             :     //! Check whether there is no duplicate key across this fragment and all its sub-fragments.
    1688   [ +  -  +  +  :        4378 :     bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; }
             +  -  -  + ]
           [ +  -  +  +  
          +  -  -  +  +  
          -  -  +  +  -  
          -  +  +  -  -  
             +  +  -  +  
                      - ]
    1689                 :             : 
    1690                 :             :     //! Whether successful non-malleable satisfactions are guaranteed to be valid.
    1691   [ +  +  +  -  :        5977 :     bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); }
                   +  + ]
    1692                 :             : 
    1693                 :             :     //! Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe script on its own.
    1694   [ +  +  +  +  :        5704 :     bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); }
                   +  + ]
    1695                 :             : 
    1696                 :             :     //! Check whether this node is safe as a script on its own.
    1697   [ +  +  +  +  :        5610 :     bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); }
                   +  + ]
    1698                 :             : 
    1699                 :             :     //! Produce a witness for this script, if possible and given the information available in the context.
    1700                 :             :     //! The non-malleable satisfaction is guaranteed to be valid if it exists, and ValidSatisfaction()
    1701                 :             :     //! is true. If IsSane() holds, this satisfaction is guaranteed to succeed in case the node's
    1702                 :             :     //! conditions are satisfied (private keys and hash preimages available, locktimes satisfied).
    1703                 :             :     template<typename Ctx>
    1704                 :        4950 :     Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const {
    1705                 :        4950 :         auto ret = ProduceInput(ctx);
    1706   [ +  +  +  +  :        4950 :         if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO;
                   +  + ]
    1707                 :        2751 :         stack = std::move(ret.sat.stack);
    1708                 :        2751 :         return ret.sat.available;
    1709                 :        4950 :     }
    1710                 :             : 
    1711                 :             :     //! Equality testing.
    1712                 :             :     bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; }
    1713                 :             : 
    1714                 :             :     // Constructors with various argument combinations, which bypass the duplicate key check.
    1715                 :             :     Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, std::vector<unsigned char> arg, uint32_t val = 0)
    1716                 :             :         : fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
    1717                 :         313 :     Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
    1718   [ +  -  +  -  :         313 :         : fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
          +  -  +  -  +  
                      - ]
    1719                 :             :     Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, std::vector<Key> key, uint32_t val = 0)
    1720                 :             :         : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
    1721                 :        1969 :     Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Key> key, uint32_t val = 0)
    1722   [ +  -  +  -  :        1969 :         : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
          +  -  +  -  +  
                      - ]
    1723                 :      217746 :     Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, std::vector<Node> sub, uint32_t val = 0)
    1724   [ +  -  +  -  :      217746 :         : fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
          +  -  +  -  +  
                      - ]
    1725                 :        8491 :     Node(internal::NoDupCheck, MiniscriptContext script_ctx, enum Fragment nt, uint32_t val = 0)
    1726   [ +  -  +  -  :        8491 :         : fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
          +  -  +  -  +  
                      - ]
    1727                 :             : 
    1728                 :             :     // Constructors with various argument combinations, which do perform the duplicate key check.
    1729                 :             :     template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Node> sub, std::vector<unsigned char> arg, uint32_t val = 0)
    1730                 :             :         : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); }
    1731                 :             :     template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0)
    1732                 :             :         : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);}
    1733                 :             :     template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Node> sub, std::vector<Key> key, uint32_t val = 0)
    1734                 :             :         : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); }
    1735                 :             :     template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Key> key, uint32_t val = 0)
    1736                 :             :         : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); }
    1737                 :             :     template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, std::vector<Node> sub, uint32_t val = 0)
    1738                 :             :         : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); }
    1739                 :             :     template <typename Ctx> Node(const Ctx& ctx, enum Fragment nt, uint32_t val = 0)
    1740                 :             :         : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); }
    1741                 :             : 
    1742                 :             :     // Delete copy constructor and assignment operator, use Clone() instead
    1743                 :             :     Node(const Node&) = delete;
    1744                 :             :     Node& operator=(const Node&) = delete;
    1745                 :             : 
    1746                 :             :     // subs is movable, circumventing recursion, so these are permitted.
    1747                 :      847247 :     Node(Node&&) noexcept = default;
    1748                 :      216839 :     Node& operator=(Node&&) noexcept = default;
    1749                 :             : };
    1750                 :             : 
    1751                 :             : namespace internal {
    1752                 :             : 
    1753                 :             : enum class ParseContext {
    1754                 :             :     /** An expression which may be begin with wrappers followed by a colon. */
    1755                 :             :     WRAPPED_EXPR,
    1756                 :             :     /** A miniscript expression which does not begin with wrappers. */
    1757                 :             :     EXPR,
    1758                 :             : 
    1759                 :             :     /** SWAP wraps the top constructed node with s: */
    1760                 :             :     SWAP,
    1761                 :             :     /** ALT wraps the top constructed node with a: */
    1762                 :             :     ALT,
    1763                 :             :     /** CHECK wraps the top constructed node with c: */
    1764                 :             :     CHECK,
    1765                 :             :     /** DUP_IF wraps the top constructed node with d: */
    1766                 :             :     DUP_IF,
    1767                 :             :     /** VERIFY wraps the top constructed node with v: */
    1768                 :             :     VERIFY,
    1769                 :             :     /** NON_ZERO wraps the top constructed node with j: */
    1770                 :             :     NON_ZERO,
    1771                 :             :     /** ZERO_NOTEQUAL wraps the top constructed node with n: */
    1772                 :             :     ZERO_NOTEQUAL,
    1773                 :             :     /** WRAP_U will construct an or_i(X,0) node from the top constructed node. */
    1774                 :             :     WRAP_U,
    1775                 :             :     /** WRAP_T will construct an and_v(X,1) node from the top constructed node. */
    1776                 :             :     WRAP_T,
    1777                 :             : 
    1778                 :             :     /** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */
    1779                 :             :     AND_N,
    1780                 :             :     /** AND_V will construct an and_v node from the last two constructed nodes. */
    1781                 :             :     AND_V,
    1782                 :             :     /** AND_B will construct an and_b node from the last two constructed nodes. */
    1783                 :             :     AND_B,
    1784                 :             :     /** ANDOR will construct an andor node from the last three constructed nodes. */
    1785                 :             :     ANDOR,
    1786                 :             :     /** OR_B will construct an or_b node from the last two constructed nodes. */
    1787                 :             :     OR_B,
    1788                 :             :     /** OR_C will construct an or_c node from the last two constructed nodes. */
    1789                 :             :     OR_C,
    1790                 :             :     /** OR_D will construct an or_d node from the last two constructed nodes. */
    1791                 :             :     OR_D,
    1792                 :             :     /** OR_I will construct an or_i node from the last two constructed nodes. */
    1793                 :             :     OR_I,
    1794                 :             : 
    1795                 :             :     /** THRESH will read a wrapped expression, and then look for a COMMA. If
    1796                 :             :      * no comma follows, it will construct a thresh node from the appropriate
    1797                 :             :      * number of constructed children. Otherwise, it will recurse with another
    1798                 :             :      * THRESH. */
    1799                 :             :     THRESH,
    1800                 :             : 
    1801                 :             :     /** COMMA expects the next element to be ',' and fails if not. */
    1802                 :             :     COMMA,
    1803                 :             :     /** CLOSE_BRACKET expects the next element to be ')' and fails if not. */
    1804                 :             :     CLOSE_BRACKET,
    1805                 :             : };
    1806                 :             : 
    1807                 :             : int FindNextChar(std::span<const char> in, char m);
    1808                 :             : 
    1809                 :             : /** Parse a key string ending at the end of the fragment's text representation. */
    1810                 :             : template<typename Key, typename Ctx>
    1811                 :         909 : std::optional<std::pair<Key, int>> ParseKeyEnd(std::span<const char> in, const Ctx& ctx)
    1812                 :             : {
    1813                 :         909 :     int key_size = FindNextChar(in, ')');
    1814         [ -  + ]:         909 :     if (key_size < 1) return {};
    1815         [ +  + ]:         909 :     auto key = ctx.FromString(in.begin(), in.begin() + key_size);
    1816         [ +  + ]:         909 :     if (!key) return {};
    1817                 :         905 :     return {{std::move(*key), key_size}};
    1818                 :             : }
    1819                 :             : 
    1820                 :             : /** Parse a hex string ending at the end of the fragment's text representation. */
    1821                 :             : template<typename Ctx>
    1822                 :          73 : std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(std::span<const char> in, const size_t expected_size,
    1823                 :             :                                                                          const Ctx& ctx)
    1824                 :             : {
    1825                 :          73 :     int hash_size = FindNextChar(in, ')');
    1826         [ -  + ]:          73 :     if (hash_size < 1) return {};
    1827         [ -  + ]:          73 :     std::string val = std::string(in.begin(), in.begin() + hash_size);
    1828   [ +  -  -  + ]:          73 :     if (!IsHex(val)) return {};
    1829         [ +  - ]:          73 :     auto hash = ParseHex(val);
    1830         [ -  + ]:          73 :     if (hash.size() != expected_size) return {};
    1831                 :          73 :     return {{std::move(hash), hash_size}};
    1832                 :         146 : }
    1833                 :             : 
    1834                 :             : /** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */
    1835                 :             : template<typename Key>
    1836                 :        7600 : void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<Node<Key>>& constructed, const bool reverse = false)
    1837                 :             : {
    1838                 :        7600 :     Node<Key> child{std::move(constructed.back())};
    1839                 :        7600 :     constructed.pop_back();
    1840         [ +  + ]:        7600 :     if (reverse) {
    1841   [ +  -  +  - ]:        2924 :         constructed.back() = Node<Key>{internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back()))};
    1842                 :             :     } else {
    1843   [ +  -  +  - ]:        4676 :         constructed.back() = Node<Key>{internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child))};
    1844                 :             :     }
    1845                 :        7600 : }
    1846                 :             : 
    1847                 :             : /**
    1848                 :             :  * Parse a miniscript from its textual descriptor form.
    1849                 :             :  * This does not check whether the script is valid, let alone sane. The caller is expected to use
    1850                 :             :  * the `IsValidTopLevel()` and `IsSaneTopLevel()` to check for these properties on the node.
    1851                 :             :  */
    1852                 :             : template <typename Key, typename Ctx>
    1853                 :         330 : inline std::optional<Node<Key>> Parse(std::span<const char> in, const Ctx& ctx)
    1854                 :             : {
    1855                 :             :     using namespace script;
    1856                 :             : 
    1857                 :             :     // Account for the minimum script size for all parsed fragments so far. It "borrows" 1
    1858                 :             :     // script byte from all leaf nodes, counting it instead whenever a space for a recursive
    1859                 :             :     // expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments
    1860                 :             :     // increment the script_size by at least one, except for:
    1861                 :             :     // - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0.
    1862                 :             :     //   This is not an issue however, as "space" for them has to be created by combinators,
    1863                 :             :     //   which do increment script_size.
    1864                 :             :     // - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added
    1865                 :             :     //   (instead transforming another opcode into its VERIFY form). However, the v: wrapper has
    1866                 :             :     //   to be interleaved with other fragments to be valid, so this is not a concern.
    1867                 :         330 :     size_t script_size{1};
    1868                 :         330 :     size_t max_size{internal::MaxScriptSize(ctx.MsContext())};
    1869                 :             : 
    1870                 :             :     // The two integers are used to hold state for thresh()
    1871                 :         330 :     std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
    1872                 :         330 :     std::vector<Node<Key>> constructed;
    1873                 :             : 
    1874         [ +  - ]:         330 :     to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    1875                 :             : 
    1876                 :             :     // Parses a multi() or multi_a() from its string representation. Returns false on parsing error.
    1877                 :         368 :     const auto parse_multi_exp = [&](std::span<const char>& in, const bool is_multi_a) -> bool {
    1878         [ +  + ]:          38 :         const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG};
    1879                 :          34 :         const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH};
    1880         [ +  + ]:          38 :         if (ctx.MsContext() != required_ctx) return false;
    1881                 :             :         // Get threshold
    1882                 :          26 :         int next_comma = FindNextChar(in, ',');
    1883         [ +  - ]:          26 :         if (next_comma < 1) return false;
    1884         [ +  + ]:          26 :         const auto k_to_integral{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
    1885         [ +  + ]:          26 :         if (!k_to_integral.has_value()) return false;
    1886                 :          25 :         const int64_t k{k_to_integral.value()};
    1887                 :          25 :         in = in.subspan(next_comma + 1);
    1888                 :             :         // Get keys. It is compatible for both compressed and x-only keys.
    1889                 :          25 :         std::vector<Key> keys;
    1890         [ +  + ]:          94 :         while (next_comma != -1) {
    1891         [ +  - ]:          69 :             next_comma = FindNextChar(in, ',');
    1892   [ +  +  +  - ]:          69 :             int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
    1893         [ +  - ]:          69 :             if (key_length < 1) return false;
    1894         [ +  - ]:          69 :             auto key = ctx.FromString(in.begin(), in.begin() + key_length);
    1895         [ +  - ]:          69 :             if (!key) return false;
    1896         [ +  - ]:          69 :             keys.push_back(std::move(*key));
    1897                 :          69 :             in = in.subspan(key_length + 1);
    1898                 :             :         }
    1899   [ +  -  +  - ]:          25 :         if (keys.size() < 1 || keys.size() > max_keys) return false;
    1900   [ +  -  +  - ]:          25 :         if (k < 1 || k > (int64_t)keys.size()) return false;
    1901         [ +  + ]:          25 :         if (is_multi_a) {
    1902                 :             :             // (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one.
    1903         [ +  - ]:           4 :             script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size();
    1904         [ +  - ]:           2 :             constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k);
    1905                 :             :         } else {
    1906         [ +  - ]:          23 :             script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size();
    1907         [ +  - ]:          23 :             constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k);
    1908                 :             :         }
    1909                 :             :         return true;
    1910                 :          25 :     };
    1911                 :             : 
    1912         [ +  + ]:       48004 :     while (!to_parse.empty()) {
    1913         [ +  + ]:       47404 :         if (script_size > max_size) return {};
    1914                 :             : 
    1915                 :             :         // Get the current context we are decoding within
    1916   [ +  +  +  +  :       47399 :         auto [cur_context, n, k] = to_parse.back();
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  +  +  - ]
    1917                 :       47399 :         to_parse.pop_back();
    1918                 :             : 
    1919   [ +  +  +  +  :       47399 :         switch (cur_context) {
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  +  +  - ]
    1920                 :       13293 :         case ParseContext::WRAPPED_EXPR: {
    1921                 :       13293 :             std::optional<size_t> colon_index{};
    1922         [ +  + ]:       37074 :             for (size_t i = 1; i < in.size(); ++i) {
    1923         [ +  + ]:       37058 :                 if (in[i] == ':') {
    1924                 :        6536 :                     colon_index = i;
    1925                 :        6536 :                     break;
    1926                 :             :                 }
    1927   [ +  +  +  - ]:       30522 :                 if (in[i] < 'a' || in[i] > 'z') break;
    1928                 :             :             }
    1929                 :             :             // If there is no colon, this loop won't execute
    1930                 :             :             bool last_was_v{false};
    1931   [ +  +  +  + ]:       19955 :             for (size_t j = 0; colon_index && j < *colon_index; ++j) {
    1932         [ -  + ]:        6662 :                 if (script_size > max_size) return {};
    1933         [ +  + ]:        6662 :                 if (in[j] == 'a') {
    1934                 :        6218 :                     script_size += 2;
    1935         [ +  - ]:        6218 :                     to_parse.emplace_back(ParseContext::ALT, -1, -1);
    1936         [ +  + ]:         444 :                 } else if (in[j] == 's') {
    1937                 :          33 :                     script_size += 1;
    1938         [ +  - ]:          33 :                     to_parse.emplace_back(ParseContext::SWAP, -1, -1);
    1939         [ +  + ]:         411 :                 } else if (in[j] == 'c') {
    1940                 :          65 :                     script_size += 1;
    1941         [ +  - ]:          65 :                     to_parse.emplace_back(ParseContext::CHECK, -1, -1);
    1942         [ +  + ]:         346 :                 } else if (in[j] == 'd') {
    1943                 :          16 :                     script_size += 3;
    1944         [ +  - ]:          16 :                     to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
    1945         [ +  + ]:         330 :                 } else if (in[j] == 'j') {
    1946                 :          10 :                     script_size += 4;
    1947         [ +  - ]:          10 :                     to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
    1948         [ +  + ]:         320 :                 } else if (in[j] == 'n') {
    1949                 :          30 :                     script_size += 1;
    1950         [ +  - ]:          30 :                     to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
    1951         [ +  + ]:         290 :                 } else if (in[j] == 'v') {
    1952                 :             :                     // do not permit "...vv...:"; it's not valid, and also doesn't trigger early
    1953                 :             :                     // failure as script_size isn't incremented.
    1954         [ -  + ]:         170 :                     if (last_was_v) return {};
    1955         [ +  - ]:         170 :                     to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
    1956         [ +  + ]:         120 :                 } else if (in[j] == 'u') {
    1957                 :          23 :                     script_size += 4;
    1958         [ +  - ]:          23 :                     to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
    1959         [ +  + ]:          97 :                 } else if (in[j] == 't') {
    1960                 :          44 :                     script_size += 1;
    1961         [ +  - ]:          44 :                     to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
    1962         [ +  - ]:          53 :                 } else if (in[j] == 'l') {
    1963                 :             :                     // The l: wrapper is equivalent to or_i(0,X)
    1964                 :          53 :                     script_size += 4;
    1965         [ +  - ]:          53 :                     constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0);
    1966         [ +  - ]:          53 :                     to_parse.emplace_back(ParseContext::OR_I, -1, -1);
    1967                 :             :                 } else {
    1968                 :           0 :                     return {};
    1969                 :             :                 }
    1970                 :        6662 :                 last_was_v = (in[j] == 'v');
    1971                 :             :             }
    1972         [ +  - ]:       13293 :             to_parse.emplace_back(ParseContext::EXPR, -1, -1);
    1973         [ +  + ]:       13293 :             if (colon_index) in = in.subspan(*colon_index + 1);
    1974                 :             :             break;
    1975                 :             :         }
    1976                 :       13291 :         case ParseContext::EXPR: {
    1977   [ +  -  +  -  :       13291 :             if (Const("0", in)) {
                   +  + ]
    1978         [ +  - ]:          58 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0);
    1979   [ +  -  +  -  :       13233 :             } else if (Const("1", in)) {
                   +  + ]
    1980         [ +  - ]:         112 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1);
    1981   [ +  -  +  -  :       13121 :             } else if (Const("pk(", in)) {
                   +  + ]
    1982         [ +  - ]:         795 :                 auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
    1983         [ +  + ]:         795 :                 if (!res) return {};
    1984         [ +  - ]:         793 :                 auto& [key, key_size] = *res;
    1985   [ +  -  +  -  :         793 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(Node<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key)))));
             +  -  +  - ]
    1986                 :         793 :                 in = in.subspan(key_size + 1);
    1987         [ +  + ]:        1136 :                 script_size += IsTapscript(ctx.MsContext()) ? 33 : 34;
    1988   [ +  -  +  -  :       12326 :             } else if (Const("pkh(", in)) {
                   +  + ]
    1989         [ +  - ]:          18 :                 auto res = ParseKeyEnd<Key>(in, ctx);
    1990         [ -  + ]:          18 :                 if (!res) return {};
    1991         [ +  - ]:          18 :                 auto& [key, key_size] = *res;
    1992   [ +  -  +  -  :          18 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(Node<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key)))));
             +  -  +  - ]
    1993                 :          18 :                 in = in.subspan(key_size + 1);
    1994                 :          18 :                 script_size += 24;
    1995   [ +  -  +  -  :       12308 :             } else if (Const("pk_k(", in)) {
                   +  + ]
    1996         [ +  - ]:          71 :                 auto res = ParseKeyEnd<Key>(in, ctx);
    1997         [ +  + ]:          71 :                 if (!res) return {};
    1998         [ +  - ]:          69 :                 auto& [key, key_size] = *res;
    1999   [ +  -  +  - ]:          69 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key)));
    2000                 :          69 :                 in = in.subspan(key_size + 1);
    2001         [ +  + ]:         110 :                 script_size += IsTapscript(ctx.MsContext()) ? 32 : 33;
    2002   [ +  -  +  -  :       12237 :             } else if (Const("pk_h(", in)) {
                   +  + ]
    2003         [ +  - ]:          25 :                 auto res = ParseKeyEnd<Key>(in, ctx);
    2004         [ -  + ]:          25 :                 if (!res) return {};
    2005         [ +  - ]:          25 :                 auto& [key, key_size] = *res;
    2006   [ +  -  +  - ]:          25 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key)));
    2007                 :          25 :                 in = in.subspan(key_size + 1);
    2008                 :          25 :                 script_size += 23;
    2009   [ +  -  +  -  :       12212 :             } else if (Const("sha256(", in)) {
                   +  + ]
    2010         [ +  - ]:          28 :                 auto res = ParseHexStrEnd(in, 32, ctx);
    2011         [ -  + ]:          28 :                 if (!res) return {};
    2012         [ +  - ]:          28 :                 auto& [hash, hash_size] = *res;
    2013         [ +  - ]:          28 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash));
    2014                 :          28 :                 in = in.subspan(hash_size + 1);
    2015                 :          28 :                 script_size += 38;
    2016   [ +  -  +  -  :       12212 :             } else if (Const("ripemd160(", in)) {
                   +  + ]
    2017         [ +  - ]:          13 :                 auto res = ParseHexStrEnd(in, 20, ctx);
    2018         [ -  + ]:          13 :                 if (!res) return {};
    2019         [ +  - ]:          13 :                 auto& [hash, hash_size] = *res;
    2020         [ +  - ]:          13 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash));
    2021                 :          13 :                 in = in.subspan(hash_size + 1);
    2022                 :          13 :                 script_size += 26;
    2023   [ +  -  +  -  :       12184 :             } else if (Const("hash256(", in)) {
                   +  + ]
    2024         [ +  - ]:          22 :                 auto res = ParseHexStrEnd(in, 32, ctx);
    2025         [ -  + ]:          22 :                 if (!res) return {};
    2026         [ +  - ]:          22 :                 auto& [hash, hash_size] = *res;
    2027         [ +  - ]:          22 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash));
    2028                 :          22 :                 in = in.subspan(hash_size + 1);
    2029                 :          22 :                 script_size += 38;
    2030   [ +  -  +  -  :       12171 :             } else if (Const("hash160(", in)) {
                   +  + ]
    2031         [ +  - ]:          10 :                 auto res = ParseHexStrEnd(in, 20, ctx);
    2032         [ -  + ]:          10 :                 if (!res) return {};
    2033         [ +  - ]:          10 :                 auto& [hash, hash_size] = *res;
    2034         [ +  - ]:          10 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash));
    2035                 :          10 :                 in = in.subspan(hash_size + 1);
    2036                 :          10 :                 script_size += 26;
    2037   [ +  -  +  -  :       12149 :             } else if (Const("after(", in)) {
                   +  + ]
    2038         [ +  - ]:          93 :                 int arg_size = FindNextChar(in, ')');
    2039         [ -  + ]:          93 :                 if (arg_size < 1) return {};
    2040         [ +  + ]:          93 :                 const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
    2041   [ +  +  +  +  :          93 :                 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
                   +  + ]
    2042         [ +  - ]:          87 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num);
    2043         [ +  + ]:          87 :                 in = in.subspan(arg_size + 1);
    2044         [ +  + ]:         109 :                 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
    2045   [ +  -  +  -  :       12046 :             } else if (Const("older(", in)) {
                   +  + ]
    2046         [ +  - ]:        5522 :                 int arg_size = FindNextChar(in, ')');
    2047         [ -  + ]:        5522 :                 if (arg_size < 1) return {};
    2048         [ +  - ]:        5522 :                 const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))};
    2049   [ +  -  +  +  :        5522 :                 if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {};
                   +  + ]
    2050         [ +  - ]:        5518 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num);
    2051         [ +  + ]:        5518 :                 in = in.subspan(arg_size + 1);
    2052         [ +  + ]:       10994 :                 script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff);
    2053   [ +  -  +  -  :        6524 :             } else if (Const("multi(", in)) {
                   +  + ]
    2054   [ +  -  +  + ]:          34 :                 if (!parse_multi_exp(in, /* is_multi_a = */false)) return {};
    2055   [ +  -  +  -  :        6490 :             } else if (Const("multi_a(", in)) {
                   +  + ]
    2056   [ +  -  +  + ]:           4 :                 if (!parse_multi_exp(in, /* is_multi_a = */true)) return {};
    2057   [ +  -  +  -  :        6486 :             } else if (Const("thresh(", in)) {
                   +  + ]
    2058         [ +  - ]:          39 :                 int next_comma = FindNextChar(in, ',');
    2059         [ -  + ]:          39 :                 if (next_comma < 1) return {};
    2060         [ +  - ]:          39 :                 const auto k{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))};
    2061   [ +  -  +  + ]:          39 :                 if (!k.has_value() || *k < 1) return {};
    2062         [ +  - ]:          36 :                 in = in.subspan(next_comma + 1);
    2063                 :             :                 // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
    2064         [ +  - ]:          36 :                 to_parse.emplace_back(ParseContext::THRESH, 1, *k);
    2065         [ +  - ]:          36 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    2066         [ +  - ]:          72 :                 script_size += 2 + (*k > 16) + (*k > 0x7f) + (*k > 0x7fff) + (*k > 0x7fffff);
    2067   [ +  -  +  -  :        6447 :             } else if (Const("andor(", in)) {
                   +  + ]
    2068         [ +  - ]:          41 :                 to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
    2069         [ +  - ]:          41 :                 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
    2070         [ +  - ]:          41 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    2071         [ +  - ]:          41 :                 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
    2072         [ +  - ]:          41 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    2073         [ +  - ]:          41 :                 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
    2074         [ +  - ]:          41 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    2075                 :          41 :                 script_size += 5;
    2076                 :             :             } else {
    2077   [ +  -  +  -  :        6406 :                 if (Const("and_n(", in)) {
                   +  + ]
    2078         [ +  - ]:          16 :                     to_parse.emplace_back(ParseContext::AND_N, -1, -1);
    2079                 :          16 :                     script_size += 5;
    2080   [ +  -  +  -  :        6390 :                 } else if (Const("and_b(", in)) {
                   +  + ]
    2081         [ +  - ]:        6161 :                     to_parse.emplace_back(ParseContext::AND_B, -1, -1);
    2082                 :        6161 :                     script_size += 2;
    2083   [ +  -  +  -  :         229 :                 } else if (Const("and_v(", in)) {
                   +  + ]
    2084         [ +  - ]:          98 :                     to_parse.emplace_back(ParseContext::AND_V, -1, -1);
    2085                 :          98 :                     script_size += 1;
    2086   [ +  -  +  -  :         131 :                 } else if (Const("or_b(", in)) {
                   +  + ]
    2087         [ +  - ]:          26 :                     to_parse.emplace_back(ParseContext::OR_B, -1, -1);
    2088                 :          26 :                     script_size += 2;
    2089   [ +  -  +  -  :         105 :                 } else if (Const("or_c(", in)) {
                   +  + ]
    2090         [ +  - ]:          16 :                     to_parse.emplace_back(ParseContext::OR_C, -1, -1);
    2091                 :          16 :                     script_size += 3;
    2092   [ +  -  +  -  :          89 :                 } else if (Const("or_d(", in)) {
                   +  + ]
    2093         [ +  - ]:          29 :                     to_parse.emplace_back(ParseContext::OR_D, -1, -1);
    2094                 :          29 :                     script_size += 4;
    2095   [ +  -  +  -  :          60 :                 } else if (Const("or_i(", in)) {
                   +  + ]
    2096         [ +  - ]:          37 :                     to_parse.emplace_back(ParseContext::OR_I, -1, -1);
    2097                 :          37 :                     script_size += 4;
    2098                 :             :                 } else {
    2099                 :          23 :                     return {};
    2100                 :             :                 }
    2101         [ +  - ]:        6383 :                 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
    2102         [ +  - ]:        6383 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    2103         [ +  - ]:        6383 :                 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
    2104         [ +  - ]:        6383 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    2105                 :             :             }
    2106                 :             :             break;
    2107                 :             :         }
    2108         [ +  - ]:        4496 :         case ParseContext::ALT: {
    2109   [ +  -  +  - ]:        4496 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back()))};
    2110                 :        4496 :             break;
    2111                 :             :         }
    2112         [ +  - ]:          33 :         case ParseContext::SWAP: {
    2113   [ +  -  +  - ]:          33 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back()))};
    2114                 :          33 :             break;
    2115                 :             :         }
    2116         [ +  - ]:          61 :         case ParseContext::CHECK: {
    2117   [ +  -  +  - ]:          61 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back()))};
    2118                 :          61 :             break;
    2119                 :             :         }
    2120         [ +  - ]:          16 :         case ParseContext::DUP_IF: {
    2121   [ +  -  +  - ]:          16 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back()))};
    2122                 :          16 :             break;
    2123                 :             :         }
    2124         [ +  - ]:           8 :         case ParseContext::NON_ZERO: {
    2125   [ +  -  +  - ]:           8 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back()))};
    2126                 :           8 :             break;
    2127                 :             :         }
    2128         [ +  - ]:          29 :         case ParseContext::ZERO_NOTEQUAL: {
    2129   [ +  -  +  - ]:          29 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back()))};
    2130                 :          29 :             break;
    2131                 :             :         }
    2132                 :         164 :         case ParseContext::VERIFY: {
    2133         [ +  - ]:         164 :             script_size += (constructed.back().GetType() << "x"_mst);
    2134   [ +  -  +  - ]:         164 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back()))};
    2135                 :         164 :             break;
    2136                 :             :         }
    2137         [ +  - ]:          16 :         case ParseContext::WRAP_U: {
    2138   [ +  -  +  -  :          16 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), Node<Key>{internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0})};
                   +  - ]
    2139                 :          16 :             break;
    2140                 :             :         }
    2141         [ +  - ]:          43 :         case ParseContext::WRAP_T: {
    2142   [ +  -  +  -  :          43 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), Node<Key>{internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1})};
                   +  - ]
    2143                 :          43 :             break;
    2144                 :             :         }
    2145         [ +  - ]:        4435 :         case ParseContext::AND_B: {
    2146         [ +  - ]:        4435 :             BuildBack(ctx.MsContext(), Fragment::AND_B, constructed);
    2147                 :             :             break;
    2148                 :             :         }
    2149                 :          16 :         case ParseContext::AND_N: {
    2150                 :          16 :             auto mid = std::move(constructed.back());
    2151         [ +  - ]:          16 :             constructed.pop_back();
    2152   [ +  -  +  -  :          16 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), Node<Key>{internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0})};
                   +  - ]
    2153                 :             :             break;
    2154                 :          16 :         }
    2155         [ +  - ]:          89 :         case ParseContext::AND_V: {
    2156         [ +  - ]:          89 :             BuildBack(ctx.MsContext(), Fragment::AND_V, constructed);
    2157                 :             :             break;
    2158                 :             :         }
    2159         [ +  - ]:          25 :         case ParseContext::OR_B: {
    2160         [ +  - ]:          25 :             BuildBack(ctx.MsContext(), Fragment::OR_B, constructed);
    2161                 :             :             break;
    2162                 :             :         }
    2163         [ +  - ]:          14 :         case ParseContext::OR_C: {
    2164         [ +  - ]:          14 :             BuildBack(ctx.MsContext(), Fragment::OR_C, constructed);
    2165                 :             :             break;
    2166                 :             :         }
    2167         [ +  - ]:          28 :         case ParseContext::OR_D: {
    2168         [ +  - ]:          28 :             BuildBack(ctx.MsContext(), Fragment::OR_D, constructed);
    2169                 :             :             break;
    2170                 :             :         }
    2171         [ +  - ]:          85 :         case ParseContext::OR_I: {
    2172         [ +  - ]:          85 :             BuildBack(ctx.MsContext(), Fragment::OR_I, constructed);
    2173                 :             :             break;
    2174                 :             :         }
    2175                 :          38 :         case ParseContext::ANDOR: {
    2176                 :          38 :             auto right = std::move(constructed.back());
    2177                 :          38 :             constructed.pop_back();
    2178                 :          38 :             auto mid = std::move(constructed.back());
    2179         [ +  - ]:          38 :             constructed.pop_back();
    2180   [ +  -  +  - ]:          38 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right))};
    2181                 :             :             break;
    2182                 :          38 :         }
    2183         [ -  + ]:          90 :         case ParseContext::THRESH: {
    2184         [ -  + ]:          90 :             if (in.size() < 1) return {};
    2185         [ +  + ]:          90 :             if (in[0] == ',') {
    2186                 :          55 :                 in = in.subspan(1);
    2187         [ +  - ]:          55 :                 to_parse.emplace_back(ParseContext::THRESH, n+1, k);
    2188         [ +  - ]:          55 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
    2189                 :          55 :                 script_size += 2;
    2190         [ +  - ]:          35 :             } else if (in[0] == ')') {
    2191         [ +  + ]:          35 :                 if (k > n) return {};
    2192                 :          33 :                 in = in.subspan(1);
    2193                 :             :                 // Children are constructed in reverse order, so iterate from end to beginning
    2194                 :          33 :                 std::vector<Node<Key>> subs;
    2195         [ +  + ]:         119 :                 for (int i = 0; i < n; ++i) {
    2196         [ +  - ]:          86 :                     subs.push_back(std::move(constructed.back()));
    2197                 :          86 :                     constructed.pop_back();
    2198                 :             :                 }
    2199                 :          33 :                 std::reverse(subs.begin(), subs.end());
    2200         [ +  - ]:          33 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k);
    2201                 :          33 :             } else {
    2202                 :           0 :                 return {};
    2203                 :             :             }
    2204                 :             :             break;
    2205                 :             :         }
    2206         [ +  - ]:        6448 :         case ParseContext::COMMA: {
    2207   [ +  -  +  - ]:        6448 :             if (in.size() < 1 || in[0] != ',') return {};
    2208                 :        6448 :             in = in.subspan(1);
    2209                 :        6448 :             break;
    2210                 :             :         }
    2211         [ +  - ]:        4681 :         case ParseContext::CLOSE_BRACKET: {
    2212   [ +  -  +  - ]:        4681 :             if (in.size() < 1 || in[0] != ')') return {};
    2213                 :        4681 :             in = in.subspan(1);
    2214                 :        4681 :             break;
    2215                 :             :         }
    2216                 :             :         }
    2217                 :             :     }
    2218                 :             : 
    2219                 :             :     // Sanity checks on the produced miniscript
    2220         [ -  + ]:         270 :     assert(constructed.size() >= 1);
    2221         [ +  - ]:         270 :     CHECK_NONFATAL(constructed.size() == 1);
    2222         [ -  + ]:         270 :     assert(constructed[0].ScriptSize() == script_size);
    2223         [ +  + ]:         270 :     if (in.size() > 0) return {};
    2224                 :         268 :     Node<Key> tl_node{std::move(constructed.front())};
    2225         [ +  - ]:         268 :     tl_node.DuplicateKeyCheck(ctx);
    2226                 :         268 :     return tl_node;
    2227                 :         330 : }
    2228                 :             : 
    2229                 :             : /** Decode a script into opcode/push pairs.
    2230                 :             :  *
    2231                 :             :  * Construct a vector with one element per opcode in the script, in reverse order.
    2232                 :             :  * Each element is a pair consisting of the opcode, as well as the data pushed by
    2233                 :             :  * the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY,
    2234                 :             :  * OP_NUMEQUALVERIFY and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG,
    2235                 :             :  * OP_EQUAL and OP_NUMEQUAL respectively, plus OP_VERIFY.
    2236                 :             :  */
    2237                 :             : std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script);
    2238                 :             : 
    2239                 :             : /** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */
    2240                 :             : std::optional<int64_t> ParseScriptNumber(const Opcode& in);
    2241                 :             : 
    2242                 :             : enum class DecodeContext {
    2243                 :             :     /** A single expression of type B, K, or V. Specifically, this can't be an
    2244                 :             :      * and_v or an expression of type W (a: and s: wrappers). */
    2245                 :             :     SINGLE_BKV_EXPR,
    2246                 :             :     /** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple)
    2247                 :             :      * and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */
    2248                 :             :     BKV_EXPR,
    2249                 :             :     /** An expression of type W (a: or s: wrappers). */
    2250                 :             :     W_EXPR,
    2251                 :             : 
    2252                 :             :     /** SWAP expects the next element to be OP_SWAP (inside a W-type expression that
    2253                 :             :      * didn't end with FROMALTSTACK), and wraps the top of the constructed stack
    2254                 :             :      * with s: */
    2255                 :             :     SWAP,
    2256                 :             :     /** ALT expects the next element to be TOALTSTACK (we must have already read a
    2257                 :             :      * FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */
    2258                 :             :     ALT,
    2259                 :             :     /** CHECK wraps the top constructed node with c: */
    2260                 :             :     CHECK,
    2261                 :             :     /** DUP_IF wraps the top constructed node with d: */
    2262                 :             :     DUP_IF,
    2263                 :             :     /** VERIFY wraps the top constructed node with v: */
    2264                 :             :     VERIFY,
    2265                 :             :     /** NON_ZERO wraps the top constructed node with j: */
    2266                 :             :     NON_ZERO,
    2267                 :             :     /** ZERO_NOTEQUAL wraps the top constructed node with n: */
    2268                 :             :     ZERO_NOTEQUAL,
    2269                 :             : 
    2270                 :             :     /** MAYBE_AND_V will check if the next part of the script could be a valid
    2271                 :             :      * miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR
    2272                 :             :      * to decode it and construct the and_v node. This is recursive, to deal with
    2273                 :             :      * multiple and_v nodes inside each other. */
    2274                 :             :     MAYBE_AND_V,
    2275                 :             :     /** AND_V will construct an and_v node from the last two constructed nodes. */
    2276                 :             :     AND_V,
    2277                 :             :     /** AND_B will construct an and_b node from the last two constructed nodes. */
    2278                 :             :     AND_B,
    2279                 :             :     /** ANDOR will construct an andor node from the last three constructed nodes. */
    2280                 :             :     ANDOR,
    2281                 :             :     /** OR_B will construct an or_b node from the last two constructed nodes. */
    2282                 :             :     OR_B,
    2283                 :             :     /** OR_C will construct an or_c node from the last two constructed nodes. */
    2284                 :             :     OR_C,
    2285                 :             :     /** OR_D will construct an or_d node from the last two constructed nodes. */
    2286                 :             :     OR_D,
    2287                 :             : 
    2288                 :             :     /** In a thresh expression, all sub-expressions other than the first are W-type,
    2289                 :             :      * and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR
    2290                 :             :      * or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */
    2291                 :             :     THRESH_W,
    2292                 :             :     /** THRESH_E constructs a thresh node from the appropriate number of constructed
    2293                 :             :      * children. */
    2294                 :             :     THRESH_E,
    2295                 :             : 
    2296                 :             :     /** ENDIF signals that we are inside some sort of OP_IF structure, which could be
    2297                 :             :      * or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read
    2298                 :             :      * a BKV_EXPR and then deal with the next opcode case-by-case. */
    2299                 :             :     ENDIF,
    2300                 :             :     /** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE,
    2301                 :             :      * we could either be in an or_d or an or_c node. We then check for IFDUP to
    2302                 :             :      * distinguish these cases. */
    2303                 :             :     ENDIF_NOTIF,
    2304                 :             :     /** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an
    2305                 :             :      * or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an
    2306                 :             :      * OP_NOTIF. */
    2307                 :             :     ENDIF_ELSE,
    2308                 :             : };
    2309                 :             : 
    2310                 :             : //! Parse a miniscript from a bitcoin script
    2311                 :             : template <typename Key, typename Ctx, typename I>
    2312                 :         575 : inline std::optional<Node<Key>> DecodeScript(I& in, I last, const Ctx& ctx)
    2313                 :             : {
    2314                 :             :     // The two integers are used to hold state for thresh()
    2315                 :         575 :     std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
    2316                 :         575 :     std::vector<Node<Key>> constructed;
    2317                 :             : 
    2318                 :             :     // This is the top level, so we assume the type is B
    2319                 :             :     // (in particular, disallowing top level W expressions)
    2320         [ +  - ]:         575 :     to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
    2321                 :             : 
    2322         [ +  + ]:       27698 :     while (!to_parse.empty()) {
    2323                 :             :         // Exit early if the Miniscript is not going to be valid.
    2324   [ +  +  -  + ]:       27127 :         if (!constructed.empty() && !constructed.back().IsValid()) return {};
    2325                 :             : 
    2326                 :             :         // Get the current context we are decoding within
    2327   [ +  +  +  +  :       27127 :         auto [cur_context, n, k] = to_parse.back();
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  +  +  - ]
    2328                 :       27127 :         to_parse.pop_back();
    2329                 :             : 
    2330   [ +  +  +  +  :       27127 :         switch(cur_context) {
          +  +  +  +  +  
          +  +  +  +  +  
          +  +  +  +  +  
             +  +  +  - ]
    2331         [ +  + ]:        8259 :         case DecodeContext::SINGLE_BKV_EXPR: {
    2332         [ +  + ]:        8259 :             if (in >= last) return {};
    2333                 :             : 
    2334                 :             :             // Constants
    2335         [ +  + ]:        8258 :             if (in[0].first == OP_1) {
    2336                 :          77 :                 ++in;
    2337         [ +  - ]:          77 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1);
    2338                 :             :                 break;
    2339                 :             :             }
    2340         [ +  + ]:        8181 :             if (in[0].first == OP_0) {
    2341                 :         203 :                 ++in;
    2342         [ +  - ]:         203 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0);
    2343                 :             :                 break;
    2344                 :             :             }
    2345                 :             :             // Public keys
    2346   [ -  +  +  +  :        7978 :             if (in[0].second.size() == 33 || in[0].second.size() == 32) {
                   +  + ]
    2347         [ +  + ]:         813 :                 auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end());
    2348         [ +  + ]:         813 :                 if (!key) return {};
    2349         [ +  - ]:         812 :                 ++in;
    2350   [ +  -  +  - ]:        1624 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key)));
    2351                 :             :                 break;
    2352                 :             :             }
    2353   [ +  +  +  +  :        7165 :             if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
          +  +  +  +  +  
             +  -  +  -  
                      + ]
    2354         [ +  - ]:         116 :                 auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end());
           [ +  -  -  + ]
    2355         [ -  + ]:         116 :                 if (!key) return {};
    2356         [ +  - ]:         116 :                 in += 5;
    2357   [ +  -  +  - ]:         232 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key)));
    2358                 :             :                 break;
    2359                 :             :             }
    2360                 :             :             // Time locks
    2361         [ +  + ]:        7049 :             std::optional<int64_t> num;
    2362   [ +  +  +  +  :        7049 :             if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) {
             +  -  -  + ]
    2363         [ +  - ]:        2188 :                 in += 2;
    2364   [ +  -  +  - ]:        2188 :                 if (*num < 1 || *num > 0x7FFFFFFFL) return {};
    2365         [ +  - ]:        2188 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num);
    2366                 :             :                 break;
    2367                 :             :             }
    2368   [ +  +  +  +  :        4861 :             if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) {
             +  -  -  + ]
    2369                 :         119 :                 in += 2;
    2370   [ +  -  +  -  :         238 :                 if (num < 1 || num > 0x7FFFFFFFL) return {};
                   +  - ]
    2371         [ +  - ]:         119 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num);
    2372                 :             :                 break;
    2373                 :             :             }
    2374                 :             :             // Hashes
    2375   [ +  +  +  +  :        4742 :             if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) {
          +  +  +  -  +  
          -  +  -  +  -  
             +  -  +  + ]
    2376   [ +  +  -  +  :         240 :                 if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
                   -  + ]
    2377         [ +  - ]:          57 :                     constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second);
    2378                 :          57 :                     in += 7;
    2379                 :             :                     break;
    2380   [ +  +  -  +  :         183 :                 } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
                   -  + ]
    2381         [ +  - ]:          55 :                     constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second);
    2382                 :          55 :                     in += 7;
    2383                 :             :                     break;
    2384   [ +  +  -  +  :         128 :                 } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
                   -  + ]
    2385         [ +  - ]:          86 :                     constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second);
    2386                 :          86 :                     in += 7;
    2387                 :             :                     break;
    2388   [ +  -  -  +  :          42 :                 } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
                   +  - ]
    2389         [ +  - ]:          42 :                     constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second);
    2390                 :          42 :                     in += 7;
    2391                 :             :                     break;
    2392                 :             :                 }
    2393                 :             :             }
    2394                 :             :             // Multi
    2395   [ +  +  +  + ]:        4502 :             if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
    2396         [ -  + ]:          96 :                 if (IsTapscript(ctx.MsContext())) return {};
    2397         [ +  - ]:          96 :                 std::vector<Key> keys;
    2398         [ +  - ]:          96 :                 const auto n = ParseScriptNumber(in[1]);
    2399   [ +  -  +  - ]:          96 :                 if (!n || last - in < 3 + *n) return {};
    2400   [ +  -  -  + ]:          96 :                 if (*n < 1 || *n > 20) return {};
    2401         [ +  + ]:         287 :                 for (int i = 0; i < *n; ++i) {
    2402   [ -  +  -  + ]:         191 :                     if (in[2 + i].second.size() != 33) return {};
    2403         [ +  + ]:         191 :                     auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end());
    2404         [ -  + ]:         191 :                     if (!key) return {};
    2405         [ +  - ]:         191 :                     keys.push_back(std::move(*key));
    2406                 :             :                 }
    2407         [ +  - ]:          96 :                 const auto k = ParseScriptNumber(in[2 + *n]);
    2408   [ +  -  +  -  :          96 :                 if (!k || *k < 1 || *k > *n) return {};
                   +  - ]
    2409                 :          96 :                 in += 3 + *n;
    2410         [ +  - ]:          96 :                 std::reverse(keys.begin(), keys.end());
    2411         [ +  - ]:          96 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k);
    2412                 :             :                 break;
    2413                 :          96 :             }
    2414                 :             :             // Tapscript's equivalent of multi
    2415   [ +  +  +  + ]:        4406 :             if (last - in >= 4 && in[0].first == OP_NUMEQUAL) {
    2416         [ -  + ]:          16 :                 if (!IsTapscript(ctx.MsContext())) return {};
    2417                 :             :                 // The necessary threshold of signatures.
    2418         [ +  - ]:          16 :                 const auto k = ParseScriptNumber(in[1]);
    2419         [ -  + ]:          16 :                 if (!k) return {};
    2420   [ +  -  +  - ]:          16 :                 if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {};
    2421         [ -  + ]:          16 :                 if (last - in < 2 + *k * 2) return {};
    2422         [ +  - ]:          16 :                 std::vector<Key> keys;
    2423         [ +  - ]:          16 :                 keys.reserve(*k);
    2424                 :             :                 // Walk through the expected (pubkey, CHECKSIG[ADD]) pairs.
    2425                 :             :                 for (int pos = 2;; pos += 2) {
    2426         [ +  + ]:          51 :                     if (last - in < pos + 2) return {};
    2427                 :             :                     // Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key.
    2428   [ +  +  +  - ]:          50 :                     if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {};
    2429   [ -  +  -  + ]:          50 :                     if (in[pos + 1].second.size() != 32) return {};
    2430         [ +  + ]:          50 :                     auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end());
    2431         [ -  + ]:          50 :                     if (!key) return {};
    2432   [ +  -  -  + ]:          50 :                     keys.push_back(std::move(*key));
    2433                 :             :                     // Make sure early we don't parse an arbitrary large expression.
    2434         [ -  + ]:          50 :                     if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {};
    2435                 :             :                     // OP_CHECKSIG means it was the last one to parse.
    2436         [ +  + ]:          50 :                     if (in[pos].first == OP_CHECKSIG) break;
    2437                 :             :                 }
    2438         [ -  + ]:          15 :                 if (keys.size() < (size_t)*k) return {};
    2439                 :          15 :                 in += 2 + keys.size() * 2;
    2440         [ +  - ]:          15 :                 std::reverse(keys.begin(), keys.end());
    2441         [ +  - ]:          15 :                 constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k);
    2442                 :             :                 break;
    2443                 :          16 :             }
    2444                 :             :             /** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather
    2445                 :             :              * than BKV_EXPR, because and_v commutes with these wrappers. For example,
    2446                 :             :              * c:and_v(X,Y) produces the same script as and_v(X,c:Y). */
    2447                 :             :             // c: wrapper
    2448         [ +  + ]:        4390 :             if (in[0].first == OP_CHECKSIG) {
    2449                 :         913 :                 ++in;
    2450         [ +  - ]:         913 :                 to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
    2451         [ +  - ]:         913 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2452                 :             :                 break;
    2453                 :             :             }
    2454                 :             :             // v: wrapper
    2455         [ +  + ]:        3477 :             if (in[0].first == OP_VERIFY) {
    2456                 :         413 :                 ++in;
    2457         [ +  - ]:         413 :                 to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
    2458         [ +  - ]:         413 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2459                 :             :                 break;
    2460                 :             :             }
    2461                 :             :             // n: wrapper
    2462         [ +  + ]:        3064 :             if (in[0].first == OP_0NOTEQUAL) {
    2463                 :         143 :                 ++in;
    2464         [ +  - ]:         143 :                 to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
    2465         [ +  - ]:         143 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2466                 :             :                 break;
    2467                 :             :             }
    2468                 :             :             // Thresh
    2469   [ +  -  +  +  :        2921 :             if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) {
             +  -  -  + ]
    2470         [ -  + ]:         136 :                 if (*num < 1) return {};
    2471         [ +  - ]:         136 :                 in += 2;
    2472         [ +  - ]:         136 :                 to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num);
    2473                 :             :                 break;
    2474                 :             :             }
    2475                 :             :             // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
    2476         [ +  + ]:        2785 :             if (in[0].first == OP_ENDIF) {
    2477                 :         358 :                 ++in;
    2478         [ +  - ]:         358 :                 to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
    2479         [ +  - ]:         358 :                 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
    2480                 :             :                 break;
    2481                 :             :             }
    2482                 :             :             /** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because
    2483                 :             :              * or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as
    2484                 :             :              * and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as
    2485                 :             :              * miniscript, while the latter is valid. So we leave the and_v "outside"
    2486                 :             :              * while decoding. */
    2487                 :             :             // and_b
    2488         [ +  + ]:        2427 :             if (in[0].first == OP_BOOLAND) {
    2489                 :        2418 :                 ++in;
    2490         [ +  - ]:        2418 :                 to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
    2491         [ +  - ]:        2418 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2492         [ +  - ]:        2418 :                 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
    2493                 :             :                 break;
    2494                 :             :             }
    2495                 :             :             // or_b
    2496         [ +  + ]:           9 :             if (in[0].first == OP_BOOLOR) {
    2497                 :           8 :                 ++in;
    2498         [ +  - ]:           8 :                 to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
    2499         [ +  - ]:           8 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2500         [ +  - ]:           8 :                 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
    2501                 :             :                 break;
    2502                 :             :             }
    2503                 :             :             // Unrecognised expression
    2504                 :           1 :             return {};
    2505                 :             :         }
    2506                 :        4082 :         case DecodeContext::BKV_EXPR: {
    2507         [ +  - ]:        4082 :             to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
    2508         [ +  - ]:        4082 :             to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2509                 :             :             break;
    2510                 :             :         }
    2511         [ +  - ]:        2594 :         case DecodeContext::W_EXPR: {
    2512                 :             :             // a: wrapper
    2513         [ -  + ]:        2594 :             if (in >= last) return {};
    2514         [ +  + ]:        2594 :             if (in[0].first == OP_FROMALTSTACK) {
    2515                 :        2554 :                 ++in;
    2516         [ +  - ]:        2554 :                 to_parse.emplace_back(DecodeContext::ALT, -1, -1);
    2517                 :             :             } else {
    2518         [ +  - ]:          40 :                 to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
    2519                 :             :             }
    2520         [ +  - ]:        2594 :             to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
    2521                 :             :             break;
    2522                 :             :         }
    2523         [ +  + ]:        4078 :         case DecodeContext::MAYBE_AND_V: {
    2524                 :             :             // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
    2525                 :             :             // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
    2526   [ +  +  +  +  :        4078 :             if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
          +  +  +  +  +  
                +  +  + ]
    2527         [ +  - ]:         327 :                 to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
    2528                 :             :                 // BKV_EXPR can contain more AND_V nodes
    2529         [ +  - ]:         327 :                 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
    2530                 :             :             }
    2531                 :             :             break;
    2532                 :             :         }
    2533         [ +  - ]:          40 :         case DecodeContext::SWAP: {
    2534   [ +  -  +  -  :          40 :             if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
                   +  - ]
    2535         [ +  - ]:          40 :             ++in;
    2536   [ +  -  +  - ]:          40 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back()))};
    2537                 :          40 :             break;
    2538                 :             :         }
    2539         [ +  - ]:        2554 :         case DecodeContext::ALT: {
    2540   [ +  -  +  -  :        2554 :             if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
                   +  - ]
    2541         [ +  - ]:        2554 :             ++in;
    2542   [ +  -  +  - ]:        2554 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back()))};
    2543                 :        2554 :             break;
    2544                 :             :         }
    2545                 :         912 :         case DecodeContext::CHECK: {
    2546         [ -  + ]:         912 :             if (constructed.empty()) return {};
    2547   [ +  -  +  - ]:         912 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back()))};
    2548                 :         912 :             break;
    2549                 :             :         }
    2550                 :          77 :         case DecodeContext::DUP_IF: {
    2551         [ -  + ]:          77 :             if (constructed.empty()) return {};
    2552   [ +  -  +  - ]:          77 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back()))};
    2553                 :          77 :             break;
    2554                 :             :         }
    2555                 :         413 :         case DecodeContext::VERIFY: {
    2556         [ -  + ]:         413 :             if (constructed.empty()) return {};
    2557   [ +  -  +  - ]:         413 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back()))};
    2558                 :         413 :             break;
    2559                 :             :         }
    2560                 :           8 :         case DecodeContext::NON_ZERO: {
    2561         [ -  + ]:           8 :             if (constructed.empty()) return {};
    2562   [ +  -  +  - ]:           8 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back()))};
    2563                 :           8 :             break;
    2564                 :             :         }
    2565                 :         141 :         case DecodeContext::ZERO_NOTEQUAL: {
    2566         [ -  + ]:         141 :             if (constructed.empty()) return {};
    2567   [ +  -  +  - ]:         141 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back()))};
    2568                 :         141 :             break;
    2569                 :             :         }
    2570         [ -  + ]:         326 :         case DecodeContext::AND_V: {
    2571         [ -  + ]:         326 :             if (constructed.size() < 2) return {};
    2572         [ +  - ]:         326 :             BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true);
    2573                 :             :             break;
    2574                 :             :         }
    2575         [ -  + ]:        2418 :         case DecodeContext::AND_B: {
    2576         [ -  + ]:        2418 :             if (constructed.size() < 2) return {};
    2577         [ +  - ]:        2418 :             BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true);
    2578                 :             :             break;
    2579                 :             :         }
    2580         [ -  + ]:           8 :         case DecodeContext::OR_B: {
    2581         [ -  + ]:           8 :             if (constructed.size() < 2) return {};
    2582         [ +  - ]:           8 :             BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true);
    2583                 :             :             break;
    2584                 :             :         }
    2585         [ -  + ]:           6 :         case DecodeContext::OR_C: {
    2586         [ -  + ]:           6 :             if (constructed.size() < 2) return {};
    2587         [ +  - ]:           6 :             BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true);
    2588                 :             :             break;
    2589                 :             :         }
    2590         [ -  + ]:          39 :         case DecodeContext::OR_D: {
    2591         [ -  + ]:          39 :             if (constructed.size() < 2) return {};
    2592         [ +  - ]:          39 :             BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true);
    2593                 :             :             break;
    2594                 :             :         }
    2595         [ -  + ]:         101 :         case DecodeContext::ANDOR: {
    2596         [ -  + ]:         101 :             if (constructed.size() < 3) return {};
    2597                 :         101 :             Node left{std::move(constructed.back())};
    2598                 :         101 :             constructed.pop_back();
    2599                 :         101 :             Node right{std::move(constructed.back())};
    2600                 :         101 :             constructed.pop_back();
    2601         [ +  - ]:         101 :             Node mid{std::move(constructed.back())};
    2602   [ +  -  +  - ]:         101 :             constructed.back() = Node{internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right))};
    2603                 :             :             break;
    2604                 :         101 :         }
    2605         [ +  - ]:         304 :         case DecodeContext::THRESH_W: {
    2606         [ -  + ]:         304 :             if (in >= last) return {};
    2607         [ +  + ]:         304 :             if (in[0].first == OP_ADD) {
    2608                 :         168 :                 ++in;
    2609         [ +  - ]:         168 :                 to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
    2610         [ +  - ]:         168 :                 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
    2611                 :             :             } else {
    2612         [ +  - ]:         136 :                 to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
    2613                 :             :                 // All children of thresh have type modifier d, so cannot be and_v
    2614         [ +  - ]:         136 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2615                 :             :             }
    2616                 :             :             break;
    2617                 :             :         }
    2618                 :         136 :         case DecodeContext::THRESH_E: {
    2619   [ +  -  +  -  :         272 :             if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
                   +  - ]
    2620                 :         136 :             std::vector<Node<Key>> subs;
    2621         [ +  + ]:         440 :             for (int i = 0; i < n; ++i) {
    2622                 :         304 :                 Node sub{std::move(constructed.back())};
    2623         [ +  - ]:         304 :                 constructed.pop_back();
    2624                 :         304 :                 subs.push_back(std::move(sub));
    2625                 :             :             }
    2626         [ +  - ]:         136 :             constructed.emplace_back(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k);
    2627                 :             :             break;
    2628                 :         136 :         }
    2629         [ +  - ]:         358 :         case DecodeContext::ENDIF: {
    2630         [ -  + ]:         358 :             if (in >= last) return {};
    2631                 :             : 
    2632                 :             :             // could be andor or or_i
    2633         [ +  + ]:         358 :             if (in[0].first == OP_ELSE) {
    2634                 :         228 :                 ++in;
    2635         [ +  - ]:         228 :                 to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
    2636         [ +  - ]:         228 :                 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
    2637                 :             :             }
    2638                 :             :             // could be j: or d: wrapper
    2639         [ +  + ]:         130 :             else if (in[0].first == OP_IF) {
    2640   [ +  -  +  + ]:          85 :                 if (last - in >= 2 && in[1].first == OP_DUP) {
    2641                 :          77 :                     in += 2;
    2642         [ +  - ]:          77 :                     to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
    2643   [ +  -  +  -  :           8 :                 } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
                   -  + ]
    2644                 :           8 :                     in += 3;
    2645         [ +  - ]:           8 :                     to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
    2646                 :             :                 }
    2647                 :             :                 else {
    2648                 :           0 :                     return {};
    2649                 :             :                 }
    2650                 :             :             // could be or_c or or_d
    2651         [ +  - ]:          45 :             } else if (in[0].first == OP_NOTIF) {
    2652                 :          45 :                 ++in;
    2653         [ +  - ]:          45 :                 to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
    2654                 :             :             }
    2655                 :             :             else {
    2656                 :           0 :                 return {};
    2657                 :             :             }
    2658                 :             :             break;
    2659                 :             :         }
    2660         [ +  - ]:          45 :         case DecodeContext::ENDIF_NOTIF: {
    2661         [ -  + ]:          45 :             if (in >= last) return {};
    2662         [ +  + ]:          45 :             if (in[0].first == OP_IFDUP) {
    2663                 :          39 :                 ++in;
    2664         [ +  - ]:          39 :                 to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
    2665                 :             :             } else {
    2666         [ +  - ]:           6 :                 to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
    2667                 :             :             }
    2668                 :             :             // or_c and or_d both require X to have type modifier d so, can't contain and_v
    2669         [ +  - ]:          45 :             to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2670                 :             :             break;
    2671                 :             :         }
    2672         [ +  - ]:         228 :         case DecodeContext::ENDIF_ELSE: {
    2673         [ -  + ]:         228 :             if (in >= last) return {};
    2674         [ +  + ]:         228 :             if (in[0].first == OP_IF) {
    2675         [ +  - ]:         127 :                 ++in;
    2676         [ +  - ]:         127 :                 BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true);
    2677         [ +  - ]:         101 :             } else if (in[0].first == OP_NOTIF) {
    2678                 :         101 :                 ++in;
    2679         [ +  - ]:         101 :                 to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
    2680                 :             :                 // andor requires X to have type modifier d, so it can't be and_v
    2681         [ +  - ]:         101 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
    2682                 :             :             } else {
    2683                 :           0 :                 return {};
    2684                 :             :             }
    2685                 :             :             break;
    2686                 :             :         }
    2687                 :             :         }
    2688                 :             :     }
    2689         [ -  + ]:         571 :     if (constructed.size() != 1) return {};
    2690                 :         571 :     Node tl_node{std::move(constructed.front())};
    2691         [ +  - ]:         571 :     tl_node.DuplicateKeyCheck(ctx);
    2692                 :             :     // Note that due to how ComputeType works (only assign the type to the node if the
    2693                 :             :     // subs' types are valid) this would fail if any node of tree is badly typed.
    2694         [ -  + ]:         571 :     if (!tl_node.IsValidTopLevel()) return {};
    2695                 :         571 :     return tl_node;
    2696                 :         575 : }
    2697                 :             : 
    2698                 :             : } // namespace internal
    2699                 :             : 
    2700                 :             : template <typename Ctx>
    2701 [ -  + ][ -  +  :         330 : inline std::optional<Node<typename Ctx::Key>> FromString(const std::string& str, const Ctx& ctx)
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
                +  -  + ]
    2702                 :             : {
    2703 [ +  - ][ +  -  :         330 :     return internal::Parse<typename Ctx::Key>(str, ctx);
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
          -  +  -  +  -  
          +  -  +  -  +  
                      - ]
    2704                 :             : }
    2705                 :             : 
    2706                 :             : template <typename Ctx>
    2707                 :         579 : inline std::optional<Node<typename Ctx::Key>> FromScript(const CScript& script, const Ctx& ctx)
    2708                 :             : {
    2709                 :             :     using namespace internal;
    2710                 :             :     // A too large Script is necessarily invalid, don't bother parsing it.
    2711   [ +  +  -  + ]:        1639 :     if (script.size() > MaxScriptSize(ctx.MsContext())) return {};
    2712         [ +  + ]:         579 :     auto decomposed = DecomposeScript(script);
    2713         [ +  + ]:         579 :     if (!decomposed) return {};
    2714         [ +  - ]:         575 :     auto it = decomposed->begin();
    2715         [ +  - ]:         575 :     auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx);
    2716         [ +  + ]:         575 :     if (!ret) return {};
    2717         [ -  + ]:         571 :     if (it != decomposed->end()) return {};
    2718                 :         571 :     return ret;
    2719                 :        1154 : }
    2720                 :             : 
    2721                 :             : } // namespace miniscript
    2722                 :             : 
    2723                 :             : #endif // BITCOIN_SCRIPT_MINISCRIPT_H
        

Generated by: LCOV version 2.0-1