Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-present The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <bitcoin-build-config.h> // IWYU pragma: keep
7 : :
8 : : #include <net.h>
9 : :
10 : : #include <addrdb.h>
11 : : #include <addrman.h>
12 : : #include <banman.h>
13 : : #include <clientversion.h>
14 : : #include <common/args.h>
15 : : #include <common/netif.h>
16 : : #include <compat/compat.h>
17 : : #include <consensus/consensus.h>
18 : : #include <crypto/sha256.h>
19 : : #include <i2p.h>
20 : : #include <key.h>
21 : : #include <logging.h>
22 : : #include <memusage.h>
23 : : #include <net_permissions.h>
24 : : #include <netaddress.h>
25 : : #include <netbase.h>
26 : : #include <node/eviction.h>
27 : : #include <node/interface_ui.h>
28 : : #include <protocol.h>
29 : : #include <random.h>
30 : : #include <scheduler.h>
31 : : #include <util/fs.h>
32 : : #include <util/sock.h>
33 : : #include <util/strencodings.h>
34 : : #include <util/thread.h>
35 : : #include <util/threadinterrupt.h>
36 : : #include <util/trace.h>
37 : : #include <util/translation.h>
38 : : #include <util/vector.h>
39 : :
40 : : #include <algorithm>
41 : : #include <array>
42 : : #include <cstring>
43 : : #include <cmath>
44 : : #include <cstdint>
45 : : #include <functional>
46 : : #include <optional>
47 : : #include <unordered_map>
48 : :
49 : : TRACEPOINT_SEMAPHORE(net, closed_connection);
50 : : TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
51 : : TRACEPOINT_SEMAPHORE(net, inbound_connection);
52 : : TRACEPOINT_SEMAPHORE(net, outbound_connection);
53 : : TRACEPOINT_SEMAPHORE(net, outbound_message);
54 : :
55 : : /** Maximum number of block-relay-only anchor connections */
56 : : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
57 : : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
58 : : /** Anchor IP address database file name */
59 : : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
60 : :
61 : : // How often to dump addresses to peers.dat
62 : : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
63 : :
64 : : /** Number of DNS seeds to query when the number of connections is low. */
65 : : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
66 : :
67 : : /** Minimum number of outbound connections under which we will keep fetching our address seeds. */
68 : : static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
69 : :
70 : : /** How long to delay before querying DNS seeds
71 : : *
72 : : * If we have more than THRESHOLD entries in addrman, then it's likely
73 : : * that we got those addresses from having previously connected to the P2P
74 : : * network, and that we'll be able to successfully reconnect to the P2P
75 : : * network via contacting one of them. So if that's the case, spend a
76 : : * little longer trying to connect to known peers before querying the
77 : : * DNS seeds.
78 : : */
79 : : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
80 : : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
81 : : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
82 : :
83 : : /** The default timeframe for -maxuploadtarget. 1 day. */
84 : : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
85 : :
86 : : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
87 : : static constexpr auto FEELER_SLEEP_WINDOW{1s};
88 : :
89 : : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
90 : : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
91 : :
92 : : /** Used to pass flags to the Bind() function */
93 : : enum BindFlags {
94 : : BF_NONE = 0,
95 : : BF_REPORT_ERROR = (1U << 0),
96 : : /**
97 : : * Do not call AddLocal() for our special addresses, e.g., for incoming
98 : : * Tor connections, to prevent gossiping them over the network.
99 : : */
100 : : BF_DONT_ADVERTISE = (1U << 1),
101 : : };
102 : :
103 : : // The set of sockets cannot be modified while waiting
104 : : // The sleep time needs to be small to avoid new sockets stalling
105 : : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
106 : :
107 : : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
108 : :
109 : : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
110 : : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
111 : : static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
112 : : //
113 : : // Global state variables
114 : : //
115 : : bool fDiscover = true;
116 : : bool fListen = true;
117 : : GlobalMutex g_maplocalhost_mutex;
118 : : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
119 : : std::string strSubVersion;
120 : :
121 : 56 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
122 : : {
123 [ + + ]: 56 : return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
124 : : }
125 : :
126 : 4 : size_t CNetMessage::GetMemoryUsage() const noexcept
127 : : {
128 : 4 : return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
129 : : }
130 : :
131 : 0 : void CConnman::AddAddrFetch(const std::string& strDest)
132 : : {
133 : 0 : LOCK(m_addr_fetches_mutex);
134 [ # # ]: 0 : m_addr_fetches.push_back(strDest);
135 : 0 : }
136 : :
137 : 27 : uint16_t GetListenPort()
138 : : {
139 : : // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
140 [ + - + + ]: 48 : for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
141 : 24 : constexpr uint16_t dummy_port = 0;
142 : :
143 [ + - + - ]: 24 : const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
144 [ + + + - : 24 : if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
+ - + - ]
145 : 48 : }
146 : :
147 : : // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
148 : : // (-whitebind= is required to have ":port").
149 [ + - - + ]: 24 : for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
150 [ # # ]: 0 : NetWhitebindPermissions whitebind;
151 [ # # ]: 0 : bilingual_str error;
152 [ # # # # ]: 0 : if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
153 [ # # ]: 0 : if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
154 [ # # ]: 0 : return whitebind.m_service.GetPort();
155 : : }
156 : : }
157 : 24 : }
158 : :
159 : : // Otherwise, if -port= is provided, use that. Otherwise use the default port.
160 [ + - ]: 24 : return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
161 : : }
162 : :
163 : : // Determine the "best" local address for a particular peer.
164 : 25 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
165 : : {
166 [ - + ]: 25 : if (!fListen) return std::nullopt;
167 : :
168 : 25 : std::optional<CService> addr;
169 : 25 : int nBestScore = -1;
170 : 25 : int nBestReachability = -1;
171 : 25 : {
172 [ + - ]: 25 : LOCK(g_maplocalhost_mutex);
173 [ + - + + ]: 96 : for (const auto& [local_addr, local_service_info] : mapLocalHost) {
174 : : // For privacy reasons, don't advertise our privacy-network address
175 : : // to other networks and don't advertise our other-network address
176 : : // to privacy networks.
177 [ + - + - ]: 71 : if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
178 [ + + + - : 104 : && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
+ + ]
179 : 36 : continue;
180 : : }
181 : 35 : const int nScore{local_service_info.nScore};
182 [ + - ]: 35 : const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
183 [ + + - + ]: 35 : if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
184 [ + - ]: 18 : addr.emplace(CService{local_addr, local_service_info.nPort});
185 : 18 : nBestReachability = nReachability;
186 : 18 : nBestScore = nScore;
187 : : }
188 : : }
189 : 0 : }
190 [ + + ]: 40 : return addr;
191 : 25 : }
192 : :
193 : : //! Convert the serialized seeds into usable address objects.
194 : 0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
195 : : {
196 : : // It'll only connect to one or two seed nodes because once it connects,
197 : : // it'll get a pile of addresses with newer timestamps.
198 : : // Seed nodes are given a random 'last seen time' of between one and two
199 : : // weeks ago.
200 : 0 : const auto one_week{7 * 24h};
201 : 0 : std::vector<CAddress> vSeedsOut;
202 : 0 : FastRandomContext rng;
203 [ # # ]: 0 : ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
204 [ # # ]: 0 : while (!s.eof()) {
205 [ # # ]: 0 : CService endpoint;
206 [ # # ]: 0 : s >> endpoint;
207 : 0 : CAddress addr{endpoint, SeedsServiceFlags()};
208 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
209 [ # # # # : 0 : LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
# # # # ]
210 [ # # ]: 0 : vSeedsOut.push_back(addr);
211 : 0 : }
212 : 0 : return vSeedsOut;
213 : 0 : }
214 : :
215 : : // Determine the "best" local address for a particular peer.
216 : : // If none, return the unroutable 0.0.0.0 but filled in with
217 : : // the normal parameters, since the IP may be changed to a useful
218 : : // one by discovery.
219 : 25 : CService GetLocalAddress(const CNode& peer)
220 : : {
221 [ + - + - : 25 : return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
+ - ]
222 : : }
223 : :
224 : 0 : static int GetnScore(const CService& addr)
225 : : {
226 : 0 : LOCK(g_maplocalhost_mutex);
227 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
228 [ # # # # ]: 0 : return (it != mapLocalHost.end()) ? it->second.nScore : 0;
229 : 0 : }
230 : :
231 : : // Is our peer's addrLocal potentially useful as an external IP source?
232 : 4 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
233 : : {
234 : 4 : CService addrLocal = pnode->GetAddrLocal();
235 [ + - + - : 8 : return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
+ - + - +
- - + ]
236 [ + - ]: 8 : g_reachable_nets.Contains(addrLocal);
237 : 4 : }
238 : :
239 : 4 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
240 : : {
241 : 4 : CService addrLocal{GetLocalAddress(node)};
242 : : // If discovery is enabled, sometimes give our peer the address it
243 : : // tells us that it sees us as in case it has a better idea of our
244 : : // address than we do.
245 : 4 : FastRandomContext rng;
246 [ + - + - : 4 : if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
+ - - + -
- ]
247 [ # # # # ]: 0 : rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
248 : : {
249 [ + + ]: 4 : if (node.IsInboundConn()) {
250 : : // For inbound connections, assume both the address and the port
251 : : // as seen from the peer.
252 [ + - ]: 2 : addrLocal = CService{node.GetAddrLocal()};
253 : : } else {
254 : : // For outbound connections, assume just the address as seen from
255 : : // the peer and leave the port in `addrLocal` as returned by
256 : : // `GetLocalAddress()` above. The peer has no way to observe our
257 : : // listening port when we have initiated the connection.
258 [ + - + - ]: 6 : addrLocal.SetIP(node.GetAddrLocal());
259 : : }
260 : : }
261 [ + - + - ]: 4 : if (addrLocal.IsRoutable()) {
262 [ + - + - : 8 : LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
+ - + - ]
263 : 4 : return addrLocal;
264 : : }
265 : : // Address is unroutable. Don't advertise.
266 : 0 : return std::nullopt;
267 : 4 : }
268 : :
269 : : // learn a new local address
270 : 11 : bool AddLocal(const CService& addr_, int nScore)
271 : : {
272 : 11 : CService addr{MaybeFlipIPv6toCJDNS(addr_)};
273 : :
274 [ + - + - ]: 11 : if (!addr.IsRoutable())
275 : : return false;
276 : :
277 [ - + - - ]: 11 : if (!fDiscover && nScore < LOCAL_MANUAL)
278 : : return false;
279 : :
280 [ + - + - ]: 11 : if (!g_reachable_nets.Contains(addr))
281 : : return false;
282 : :
283 [ + - + - ]: 11 : LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
284 : :
285 : 11 : {
286 [ + - ]: 11 : LOCK(g_maplocalhost_mutex);
287 [ + - - + ]: 11 : const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
288 [ - + ]: 11 : LocalServiceInfo &info = it->second;
289 [ - + - - ]: 11 : if (is_newly_added || nScore >= info.nScore) {
290 [ - + ]: 11 : info.nScore = nScore + (is_newly_added ? 0 : 1);
291 [ + - ]: 11 : info.nPort = addr.GetPort();
292 : : }
293 : 0 : }
294 : :
295 : 11 : return true;
296 : 11 : }
297 : :
298 : 0 : bool AddLocal(const CNetAddr &addr, int nScore)
299 : : {
300 [ # # ]: 0 : return AddLocal(CService(addr, GetListenPort()), nScore);
301 : : }
302 : :
303 : 11 : void RemoveLocal(const CService& addr)
304 : : {
305 : 11 : LOCK(g_maplocalhost_mutex);
306 [ + - + - ]: 11 : LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
307 [ + - + - ]: 11 : mapLocalHost.erase(addr);
308 : 11 : }
309 : :
310 : : /** vote for a local address */
311 : 0 : bool SeenLocal(const CService& addr)
312 : : {
313 : 0 : LOCK(g_maplocalhost_mutex);
314 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
315 [ # # ]: 0 : if (it == mapLocalHost.end()) return false;
316 : 0 : ++it->second.nScore;
317 : 0 : return true;
318 : 0 : }
319 : :
320 : :
321 : : /** check whether a given address is potentially local */
322 : 3 : bool IsLocal(const CService& addr)
323 : : {
324 : 3 : LOCK(g_maplocalhost_mutex);
325 [ + - + - ]: 3 : return mapLocalHost.count(addr) > 0;
326 : 3 : }
327 : :
328 : 12 : CNode* CConnman::FindNode(const CNetAddr& ip)
329 : : {
330 : 12 : LOCK(m_nodes_mutex);
331 [ + - ]: 42 : for (CNode* pnode : m_nodes) {
332 [ + - + + ]: 42 : if (static_cast<CNetAddr>(pnode->addr) == ip) {
333 : : return pnode;
334 : : }
335 : : }
336 : : return nullptr;
337 : 12 : }
338 : :
339 : 0 : CNode* CConnman::FindNode(const std::string& addrName)
340 : : {
341 : 0 : LOCK(m_nodes_mutex);
342 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
343 [ # # ]: 0 : if (pnode->m_addr_name == addrName) {
344 : : return pnode;
345 : : }
346 : : }
347 : : return nullptr;
348 : 0 : }
349 : :
350 : 10 : CNode* CConnman::FindNode(const CService& addr)
351 : : {
352 : 10 : LOCK(m_nodes_mutex);
353 [ + - ]: 10 : for (CNode* pnode : m_nodes) {
354 [ + - - + ]: 10 : if (static_cast<CService>(pnode->addr) == addr) {
355 : : return pnode;
356 : : }
357 : : }
358 : : return nullptr;
359 : 10 : }
360 : :
361 : 12 : bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
362 : : {
363 [ + - ]: 12 : return FindNode(static_cast<CNetAddr>(addr));
364 : : }
365 : :
366 : 0 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
367 : : {
368 : 0 : LOCK(m_nodes_mutex);
369 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
370 [ # # # # : 0 : if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
# # ]
371 : : return false;
372 : : }
373 : : return true;
374 : 0 : }
375 : :
376 : : /** Get the bind address for a socket as CService. */
377 : 0 : static CService GetBindAddress(const Sock& sock)
378 : : {
379 : 0 : CService addr_bind;
380 : 0 : struct sockaddr_storage sockaddr_bind;
381 : 0 : socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
382 [ # # # # ]: 0 : if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
383 [ # # ]: 0 : addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
384 : : } else {
385 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
# # ]
386 : : }
387 : 0 : return addr_bind;
388 : 0 : }
389 : :
390 : 10 : CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
391 : : {
392 : 10 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
393 [ - + ]: 10 : assert(conn_type != ConnectionType::INBOUND);
394 : :
395 [ - + ]: 10 : if (pszDest == nullptr) {
396 [ # # ]: 0 : if (IsLocal(addrConnect))
397 : : return nullptr;
398 : :
399 : : // Look for an existing connection
400 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
401 [ # # ]: 0 : if (pnode)
402 : : {
403 : 0 : LogPrintf("Failed to open new connection, already connected\n");
404 : 0 : return nullptr;
405 : : }
406 : : }
407 : :
408 [ + - + - : 20 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
+ - - + +
- ]
409 : : use_v2transport ? "v2" : "v1",
410 : : pszDest ? pszDest : addrConnect.ToStringAddrPort(),
411 : : Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
412 : :
413 : : // Resolve
414 [ + - + - ]: 20 : const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
415 : 10 : m_params.GetDefaultPort()};
416 : :
417 : : // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
418 : 10 : std::vector<CAddress> connect_to{};
419 [ + - ]: 10 : if (pszDest) {
420 [ + - + - : 20 : std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
+ - - + +
- + - ]
421 [ + - ]: 10 : if (!resolved.empty()) {
422 : 10 : std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
423 : : // If the connection is made by name, it can be the case that the name resolves to more than one address.
424 : : // We don't want to connect any more of them if we are already connected to one
425 [ + - ]: 10 : for (const auto& r : resolved) {
426 [ + - ]: 10 : addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
427 [ + - - + ]: 10 : if (!addrConnect.IsValid()) {
428 [ # # # # : 0 : LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
# # # # ]
429 : 0 : return nullptr;
430 : : }
431 : : // It is possible that we already have a connection to the IP/port pszDest resolved to.
432 : : // In that case, drop the connection that was just created.
433 [ + - ]: 10 : LOCK(m_nodes_mutex);
434 [ + - ]: 10 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
435 [ + - ]: 10 : if (pnode) {
436 [ + - + - ]: 10 : LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
437 [ + - ]: 10 : return nullptr;
438 : : }
439 : : // Add the address to the resolved addresses vector so we can try to connect to it later on
440 [ # # ]: 0 : connect_to.push_back(addrConnect);
441 : 10 : }
442 : : } else {
443 : : // For resolution via proxy
444 [ # # ]: 0 : connect_to.push_back(addrConnect);
445 : : }
446 : 10 : } else {
447 : : // Connect via addrConnect directly
448 [ # # ]: 0 : connect_to.push_back(addrConnect);
449 : : }
450 : :
451 : : // Connect
452 : 0 : std::unique_ptr<Sock> sock;
453 [ # # ]: 0 : Proxy proxy;
454 [ # # ]: 0 : CService addr_bind;
455 [ # # # # ]: 0 : assert(!addr_bind.IsValid());
456 : 0 : std::unique_ptr<i2p::sam::Session> i2p_transient_session;
457 : :
458 [ # # ]: 0 : for (auto& target_addr: connect_to) {
459 [ # # # # ]: 0 : if (target_addr.IsValid()) {
460 [ # # # # ]: 0 : const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
461 : 0 : bool proxyConnectionFailed = false;
462 : :
463 [ # # # # ]: 0 : if (target_addr.IsI2P() && use_proxy) {
464 [ # # ]: 0 : i2p::Connection conn;
465 : 0 : bool connected{false};
466 : :
467 [ # # ]: 0 : if (m_i2p_sam_session) {
468 [ # # ]: 0 : connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
469 : : } else {
470 : 0 : {
471 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
472 [ # # ]: 0 : if (m_unused_i2p_sessions.empty()) {
473 : 0 : i2p_transient_session =
474 [ # # ]: 0 : std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
475 : : } else {
476 : 0 : i2p_transient_session.swap(m_unused_i2p_sessions.front());
477 : 0 : m_unused_i2p_sessions.pop();
478 : : }
479 : 0 : }
480 [ # # ]: 0 : connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
481 [ # # ]: 0 : if (!connected) {
482 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
483 [ # # ]: 0 : if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
484 [ # # # # ]: 0 : m_unused_i2p_sessions.emplace(i2p_transient_session.release());
485 : : }
486 : 0 : }
487 : : }
488 : :
489 [ # # ]: 0 : if (connected) {
490 : 0 : sock = std::move(conn.sock);
491 : 0 : addr_bind = conn.me;
492 : : }
493 [ # # ]: 0 : } else if (use_proxy) {
494 [ # # # # : 0 : LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
# # # # #
# ]
495 [ # # # # : 0 : sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
# # ]
496 : : } else {
497 : : // no proxy needed (none set for target network)
498 [ # # ]: 0 : sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
499 : : }
500 [ # # ]: 0 : if (!proxyConnectionFailed) {
501 : : // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
502 : : // the proxy, mark this as an attempt.
503 [ # # ]: 0 : addrman.Attempt(target_addr, fCountFailure);
504 : : }
505 [ # # # # : 0 : } else if (pszDest && GetNameProxy(proxy)) {
# # ]
506 [ # # ]: 0 : std::string host;
507 : 0 : uint16_t port{default_port};
508 [ # # # # ]: 0 : SplitHostPort(std::string(pszDest), port, host);
509 : 0 : bool proxyConnectionFailed;
510 [ # # ]: 0 : sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
511 : 0 : }
512 : : // Check any other resolved address (if any) if we fail to connect
513 [ # # ]: 0 : if (!sock) {
514 : 0 : continue;
515 : : }
516 : :
517 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
518 [ # # # # ]: 0 : std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
519 [ # # ]: 0 : AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
520 : :
521 : : // Add node
522 [ # # ]: 0 : NodeId id = GetNewNodeId();
523 [ # # # # : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
# # ]
524 [ # # # # ]: 0 : if (!addr_bind.IsValid()) {
525 [ # # ]: 0 : addr_bind = GetBindAddress(*sock);
526 : : }
527 : 0 : CNode* pnode = new CNode(id,
528 : : std::move(sock),
529 : : target_addr,
530 : : CalculateKeyedNetGroup(target_addr),
531 : : nonce,
532 : : addr_bind,
533 : 0 : pszDest ? pszDest : "",
534 : : conn_type,
535 : : /*inbound_onion=*/false,
536 [ # # ]: 0 : CNodeOptions{
537 : : .permission_flags = permission_flags,
538 : : .i2p_sam_session = std::move(i2p_transient_session),
539 [ # # ]: 0 : .recv_flood_size = nReceiveFloodSize,
540 : : .use_v2transport = use_v2transport,
541 [ # # # # : 0 : });
# # # # #
# # # #
# ]
542 : 0 : pnode->AddRef();
543 : :
544 : : // We're making a new connection, harvest entropy from the time (and our peer count)
545 : 0 : RandAddEvent((uint32_t)id);
546 : :
547 : 0 : return pnode;
548 : 0 : }
549 : :
550 : : return nullptr;
551 : 10 : }
552 : :
553 : 0 : void CNode::CloseSocketDisconnect()
554 : : {
555 : 0 : fDisconnect = true;
556 : 0 : LOCK(m_sock_mutex);
557 [ # # ]: 0 : if (m_sock) {
558 [ # # # # : 0 : LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
# # # # ]
559 : 0 : m_sock.reset();
560 : :
561 : : TRACEPOINT(net, closed_connection,
562 : : GetId(),
563 : : m_addr_name.c_str(),
564 : : ConnectionTypeAsString().c_str(),
565 : : ConnectedThroughNetwork(),
566 : 0 : Ticks<std::chrono::seconds>(m_connected));
567 : : }
568 [ # # # # ]: 0 : m_i2p_sam_session.reset();
569 : 0 : }
570 : :
571 : 0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
572 [ # # ]: 0 : for (const auto& subnet : ranges) {
573 [ # # ]: 0 : if (subnet.m_subnet.Match(addr)) {
574 : 0 : NetPermissions::AddFlag(flags, subnet.m_flags);
575 : : }
576 : : }
577 [ # # ]: 0 : if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
578 [ # # ]: 0 : NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
579 [ # # ]: 0 : if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
580 [ # # ]: 0 : if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
581 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
582 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
583 : : }
584 : 0 : }
585 : :
586 : 8 : CService CNode::GetAddrLocal() const
587 : : {
588 : 8 : AssertLockNotHeld(m_addr_local_mutex);
589 : 8 : LOCK(m_addr_local_mutex);
590 [ + - ]: 8 : return m_addr_local;
591 : 8 : }
592 : :
593 : 5 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
594 : 5 : AssertLockNotHeld(m_addr_local_mutex);
595 : 5 : LOCK(m_addr_local_mutex);
596 [ + - + - ]: 5 : if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
597 : 5 : m_addr_local = addrLocalIn;
598 : : }
599 : 5 : }
600 : :
601 : 76 : Network CNode::ConnectedThroughNetwork() const
602 : : {
603 [ + + ]: 76 : return m_inbound_onion ? NET_ONION : addr.GetNetClass();
604 : : }
605 : :
606 : 33 : bool CNode::IsConnectedThroughPrivacyNet() const
607 : : {
608 [ + - + + ]: 33 : return m_inbound_onion || addr.IsPrivacyNet();
609 : : }
610 : :
611 : : #undef X
612 : : #define X(name) stats.name = name
613 : 0 : void CNode::CopyStats(CNodeStats& stats)
614 : : {
615 : 0 : stats.nodeid = this->GetId();
616 : 0 : X(addr);
617 : 0 : X(addrBind);
618 : 0 : stats.m_network = ConnectedThroughNetwork();
619 : 0 : X(m_last_send);
620 : 0 : X(m_last_recv);
621 : 0 : X(m_last_tx_time);
622 : 0 : X(m_last_block_time);
623 : 0 : X(m_connected);
624 : 0 : X(m_addr_name);
625 : 0 : X(nVersion);
626 : 0 : {
627 : 0 : LOCK(m_subver_mutex);
628 [ # # # # ]: 0 : X(cleanSubVer);
629 : 0 : }
630 : 0 : stats.fInbound = IsInboundConn();
631 : 0 : X(m_bip152_highbandwidth_to);
632 : 0 : X(m_bip152_highbandwidth_from);
633 : 0 : {
634 : 0 : LOCK(cs_vSend);
635 [ # # ]: 0 : X(mapSendBytesPerMsgType);
636 [ # # ]: 0 : X(nSendBytes);
637 : 0 : }
638 : 0 : {
639 : 0 : LOCK(cs_vRecv);
640 [ # # ]: 0 : X(mapRecvBytesPerMsgType);
641 : 0 : X(nRecvBytes);
642 : 0 : Transport::Info info = m_transport->GetInfo();
643 : 0 : stats.m_transport_type = info.transport_type;
644 [ # # # # ]: 0 : if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
645 : 0 : }
646 : 0 : X(m_permission_flags);
647 : :
648 : 0 : X(m_last_ping_time);
649 : 0 : X(m_min_ping_time);
650 : :
651 : : // Leave string empty if addrLocal invalid (not filled in yet)
652 : 0 : CService addrLocalUnlocked = GetAddrLocal();
653 [ # # # # : 0 : stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
# # # # ]
654 : :
655 : 0 : X(m_conn_type);
656 : 0 : }
657 : : #undef X
658 : :
659 : 3 : bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
660 : : {
661 : 3 : complete = false;
662 : 3 : const auto time = GetTime<std::chrono::microseconds>();
663 : 3 : LOCK(cs_vRecv);
664 : 3 : m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
665 : 3 : nRecvBytes += msg_bytes.size();
666 [ + + ]: 9 : while (msg_bytes.size() > 0) {
667 : : // absorb network data
668 [ + - + - ]: 3 : if (!m_transport->ReceivedBytes(msg_bytes)) {
669 : : // Serious transport problem, disconnect from the peer.
670 : : return false;
671 : : }
672 : :
673 [ + - + + ]: 3 : if (m_transport->ReceivedMessageComplete()) {
674 : : // decompose a transport agnostic CNetMessage from the deserializer
675 : 2 : bool reject_message{false};
676 [ + - ]: 2 : CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
677 [ - + ]: 2 : if (reject_message) {
678 : : // Message deserialization failed. Drop the message but don't disconnect the peer.
679 : : // store the size of the corrupt message
680 [ # # ]: 0 : mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
681 : 0 : continue;
682 : : }
683 : :
684 : : // Store received bytes per message type.
685 : : // To prevent a memory DOS, only allow known message types.
686 : 2 : auto i = mapRecvBytesPerMsgType.find(msg.m_type);
687 [ - + ]: 2 : if (i == mapRecvBytesPerMsgType.end()) {
688 : 0 : i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
689 : : }
690 [ - + ]: 2 : assert(i != mapRecvBytesPerMsgType.end());
691 [ + - ]: 2 : i->second += msg.m_raw_message_size;
692 : :
693 : : // push the message to the process queue,
694 [ + - ]: 2 : vRecvMsg.push_back(std::move(msg));
695 : :
696 : 2 : complete = true;
697 : 2 : }
698 : : }
699 : :
700 : : return true;
701 : 3 : }
702 : :
703 : 8 : std::string CNode::LogIP(bool log_ip) const
704 : : {
705 [ - + - - : 8 : return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
- - + - -
- ]
706 : : }
707 : :
708 : 4 : std::string CNode::DisconnectMsg(bool log_ip) const
709 : : {
710 : 4 : return strprintf("disconnecting peer=%d%s",
711 [ + - ]: 4 : GetId(),
712 [ + - ]: 8 : LogIP(log_ip));
713 : : }
714 : :
715 : 115 : V1Transport::V1Transport(const NodeId node_id) noexcept
716 : 115 : : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
717 : : {
718 : 115 : LOCK(m_recv_mutex);
719 [ + - ]: 115 : Reset();
720 : 115 : }
721 : :
722 : 2 : Transport::Info V1Transport::GetInfo() const noexcept
723 : : {
724 : 2 : return {.transport_type = TransportProtocolType::V1, .session_id = {}};
725 : : }
726 : :
727 : 8 : int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
728 : : {
729 : 8 : AssertLockHeld(m_recv_mutex);
730 : : // copy data to temporary parsing buffer
731 : 8 : unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
732 [ + + ]: 8 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
733 : :
734 [ + + ]: 8 : memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
735 : 8 : nHdrPos += nCopy;
736 : :
737 : : // if header incomplete, exit
738 [ + + ]: 8 : if (nHdrPos < CMessageHeader::HEADER_SIZE)
739 : 5 : return nCopy;
740 : :
741 : : // deserialize to CMessageHeader
742 : 3 : try {
743 [ + - ]: 3 : hdrbuf >> hdr;
744 : : }
745 [ - - ]: 0 : catch (const std::exception&) {
746 [ - - - - : 0 : LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
- - ]
747 : 0 : return -1;
748 : 0 : }
749 : :
750 : : // Check start string, network magic
751 [ - + ]: 3 : if (hdr.pchMessageStart != m_magic_bytes) {
752 [ # # # # ]: 0 : LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
753 : 0 : return -1;
754 : : }
755 : :
756 : : // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
757 : : // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
758 : : // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
759 [ - + ]: 3 : if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
760 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
# # ]
761 : 0 : return -1;
762 : : }
763 : :
764 : : // switch state to reading message data
765 : 3 : in_data = true;
766 : :
767 : 3 : return nCopy;
768 : : }
769 : :
770 : 1 : int V1Transport::readData(std::span<const uint8_t> msg_bytes)
771 : : {
772 : 1 : AssertLockHeld(m_recv_mutex);
773 : 1 : unsigned int nRemaining = hdr.nMessageSize - nDataPos;
774 [ + - ]: 1 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
775 : :
776 [ + - ]: 1 : if (vRecv.size() < nDataPos + nCopy) {
777 : : // Allocate up to 256 KiB ahead, but never more than the total message size.
778 [ + - ]: 2 : vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
779 : : }
780 : :
781 : 1 : hasher.Write(msg_bytes.first(nCopy));
782 : 1 : memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
783 : 1 : nDataPos += nCopy;
784 : :
785 : 1 : return nCopy;
786 : : }
787 : :
788 : 2 : const uint256& V1Transport::GetMessageHash() const
789 : : {
790 : 2 : AssertLockHeld(m_recv_mutex);
791 [ + - - + ]: 2 : assert(CompleteInternal());
792 [ + - ]: 2 : if (data_hash.IsNull())
793 : 2 : hasher.Finalize(data_hash);
794 : 2 : return data_hash;
795 : : }
796 : :
797 : 2 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
798 : : {
799 : 2 : AssertLockNotHeld(m_recv_mutex);
800 : : // Initialize out parameter
801 : 2 : reject_message = false;
802 : : // decompose a single CNetMessage from the TransportDeserializer
803 : 2 : LOCK(m_recv_mutex);
804 [ + - ]: 2 : CNetMessage msg(std::move(vRecv));
805 : :
806 : : // store message type string, time, and sizes
807 [ + - ]: 2 : msg.m_type = hdr.GetMessageType();
808 : 2 : msg.m_time = time;
809 : 2 : msg.m_message_size = hdr.nMessageSize;
810 : 2 : msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
811 : :
812 [ + - ]: 2 : uint256 hash = GetMessageHash();
813 : :
814 : : // We just received a message off the wire, harvest entropy from the time (and the message checksum)
815 : 2 : RandAddEvent(ReadLE32(hash.begin()));
816 : :
817 : : // Check checksum and header message type string
818 [ - + ]: 2 : if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
819 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
# # # # #
# # # ]
820 : : SanitizeString(msg.m_type), msg.m_message_size,
821 : : HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
822 : : HexStr(hdr.pchChecksum),
823 : : m_node_id);
824 : 0 : reject_message = true;
825 [ + - - + ]: 2 : } else if (!hdr.IsMessageTypeValid()) {
826 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
# # # # #
# ]
827 : : SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
828 : 0 : reject_message = true;
829 : : }
830 : :
831 : : // Always reset the network deserializer (prepare for the next message)
832 [ + - ]: 2 : Reset();
833 [ + - ]: 2 : return msg;
834 : 2 : }
835 : :
836 : 8 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
837 : : {
838 : 8 : AssertLockNotHeld(m_send_mutex);
839 : : // Determine whether a new message can be set.
840 : 8 : LOCK(m_send_mutex);
841 [ + - + - ]: 8 : if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
842 : :
843 : : // create dbl-sha256 checksum
844 : 8 : uint256 hash = Hash(msg.data);
845 : :
846 : : // create header
847 : 8 : CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
848 [ + + ]: 8 : memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
849 : :
850 : : // serialize header
851 [ + + ]: 8 : m_header_to_send.clear();
852 : 8 : VectorWriter{m_header_to_send, 0, hdr};
853 : :
854 : : // update state
855 : 8 : m_message_to_send = std::move(msg);
856 : 8 : m_sending_header = true;
857 : 8 : m_bytes_sent = 0;
858 : 8 : return true;
859 : 8 : }
860 : :
861 : 50 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
862 : : {
863 : 50 : AssertLockNotHeld(m_send_mutex);
864 : 50 : LOCK(m_send_mutex);
865 [ + + ]: 50 : if (m_sending_header) {
866 [ + + ]: 29 : return {std::span{m_header_to_send}.subspan(m_bytes_sent),
867 : : // We have more to send after the header if the message has payload, or if there
868 : : // is a next message after that.
869 [ + + + + ]: 29 : have_next_message || !m_message_to_send.data.empty(),
870 : 29 : m_message_to_send.m_type
871 : 29 : };
872 : : } else {
873 : 21 : return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
874 : : // We only have more to send after this message's payload if there is another
875 : : // message.
876 : : have_next_message,
877 : 21 : m_message_to_send.m_type
878 : 21 : };
879 : : }
880 : 50 : }
881 : :
882 : 8 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
883 : : {
884 : 8 : AssertLockNotHeld(m_send_mutex);
885 : 8 : LOCK(m_send_mutex);
886 : 8 : m_bytes_sent += bytes_sent;
887 [ + + + - ]: 8 : if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
888 : : // We're done sending a message's header. Switch to sending its data bytes.
889 : 5 : m_sending_header = false;
890 : 5 : m_bytes_sent = 0;
891 [ + - + - ]: 3 : } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
892 : : // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
893 : 3 : ClearShrink(m_message_to_send.data);
894 : 3 : m_bytes_sent = 0;
895 : : }
896 : 8 : }
897 : :
898 : 28 : size_t V1Transport::GetSendMemoryUsage() const noexcept
899 : : {
900 : 28 : AssertLockNotHeld(m_send_mutex);
901 : 28 : LOCK(m_send_mutex);
902 : : // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
903 [ + - ]: 28 : return m_message_to_send.GetMemoryUsage();
904 : 28 : }
905 : :
906 : : namespace {
907 : :
908 : : /** List of short messages as defined in BIP324, in order.
909 : : *
910 : : * Only message types that are actually implemented in this codebase need to be listed, as other
911 : : * messages get ignored anyway - whether we know how to decode them or not.
912 : : */
913 : : const std::array<std::string, 33> V2_MESSAGE_IDS = {
914 : : "", // 12 bytes follow encoding the message type like in V1
915 : : NetMsgType::ADDR,
916 : : NetMsgType::BLOCK,
917 : : NetMsgType::BLOCKTXN,
918 : : NetMsgType::CMPCTBLOCK,
919 : : NetMsgType::FEEFILTER,
920 : : NetMsgType::FILTERADD,
921 : : NetMsgType::FILTERCLEAR,
922 : : NetMsgType::FILTERLOAD,
923 : : NetMsgType::GETBLOCKS,
924 : : NetMsgType::GETBLOCKTXN,
925 : : NetMsgType::GETDATA,
926 : : NetMsgType::GETHEADERS,
927 : : NetMsgType::HEADERS,
928 : : NetMsgType::INV,
929 : : NetMsgType::MEMPOOL,
930 : : NetMsgType::MERKLEBLOCK,
931 : : NetMsgType::NOTFOUND,
932 : : NetMsgType::PING,
933 : : NetMsgType::PONG,
934 : : NetMsgType::SENDCMPCT,
935 : : NetMsgType::TX,
936 : : NetMsgType::GETCFILTERS,
937 : : NetMsgType::CFILTER,
938 : : NetMsgType::GETCFHEADERS,
939 : : NetMsgType::CFHEADERS,
940 : : NetMsgType::GETCFCHECKPT,
941 : : NetMsgType::CFCHECKPT,
942 : : NetMsgType::ADDRV2,
943 : : // Unimplemented message types that are assigned in BIP324:
944 : : "",
945 : : "",
946 : : "",
947 : : ""
948 : : };
949 : :
950 : : class V2MessageMap
951 : : {
952 : : std::unordered_map<std::string, uint8_t> m_map;
953 : :
954 : : public:
955 : 134 : V2MessageMap() noexcept
956 : 134 : {
957 [ + + ]: 4422 : for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
958 : 4288 : m_map.emplace(V2_MESSAGE_IDS[i], i);
959 : : }
960 : 134 : }
961 : :
962 : 51 : std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
963 : : {
964 : 51 : auto it = m_map.find(message_name);
965 [ + + ]: 51 : if (it == m_map.end()) return std::nullopt;
966 : 1 : return it->second;
967 : : }
968 : : };
969 : :
970 : : const V2MessageMap V2_MESSAGE_MAP;
971 : :
972 : 75 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
973 : : {
974 : 75 : std::vector<uint8_t> ret;
975 : 75 : FastRandomContext rng;
976 : 150 : ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
977 : 75 : rng.fillrand(MakeWritableByteSpan(ret));
978 : 75 : return ret;
979 : 75 : }
980 : :
981 : : } // namespace
982 : :
983 : 74 : void V2Transport::StartSendingHandshake() noexcept
984 : : {
985 : 74 : AssertLockHeld(m_send_mutex);
986 : 74 : Assume(m_send_state == SendState::AWAITING_KEY);
987 : 74 : Assume(m_send_buffer.empty());
988 : : // Initialize the send buffer with ellswift pubkey + provided garbage.
989 : 74 : m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
990 : 74 : std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
991 : 74 : std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
992 : : // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
993 : 74 : }
994 : :
995 : 75 : V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
996 : 75 : : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
997 : 75 : m_v1_fallback{nodeid},
998 [ + + ]: 75 : m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
999 [ + + ]: 75 : m_send_garbage{std::move(garbage)},
1000 [ + + + + ]: 197 : m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1001 : : {
1002 [ + + ]: 75 : Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1003 : : // Start sending immediately if we're the initiator of the connection.
1004 [ + + ]: 75 : if (initiating) {
1005 : 28 : LOCK(m_send_mutex);
1006 [ + - ]: 28 : StartSendingHandshake();
1007 : 28 : }
1008 : 75 : }
1009 : :
1010 : 75 : V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1011 : 150 : : V2Transport{nodeid, initiating, GenerateRandomKey(),
1012 : 150 : MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1013 : :
1014 : 766 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1015 : : {
1016 : 766 : AssertLockHeld(m_recv_mutex);
1017 : : // Enforce allowed state transitions.
1018 : 766 : switch (m_recv_state) {
1019 : : case RecvState::KEY_MAYBE_V1:
1020 : : Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1021 : : break;
1022 : : case RecvState::KEY:
1023 : : Assume(recv_state == RecvState::GARB_GARBTERM);
1024 : : break;
1025 : : case RecvState::GARB_GARBTERM:
1026 : : Assume(recv_state == RecvState::VERSION);
1027 : : break;
1028 : : case RecvState::VERSION:
1029 : : Assume(recv_state == RecvState::APP);
1030 : : break;
1031 : : case RecvState::APP:
1032 : : Assume(recv_state == RecvState::APP_READY);
1033 : : break;
1034 : : case RecvState::APP_READY:
1035 : : Assume(recv_state == RecvState::APP);
1036 : : break;
1037 : 766 : case RecvState::V1:
1038 : 766 : Assume(false); // V1 state cannot be left
1039 : 766 : break;
1040 : : }
1041 : : // Change state.
1042 : 766 : m_recv_state = recv_state;
1043 : 766 : }
1044 : :
1045 : 120 : void V2Transport::SetSendState(SendState send_state) noexcept
1046 : : {
1047 : 120 : AssertLockHeld(m_send_mutex);
1048 : : // Enforce allowed state transitions.
1049 : 120 : switch (m_send_state) {
1050 : : case SendState::MAYBE_V1:
1051 : : Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1052 : : break;
1053 : : case SendState::AWAITING_KEY:
1054 : : Assume(send_state == SendState::READY);
1055 : : break;
1056 : 120 : case SendState::READY:
1057 : 120 : case SendState::V1:
1058 : 120 : Assume(false); // Final states
1059 : 120 : break;
1060 : : }
1061 : : // Change state.
1062 : 120 : m_send_state = send_state;
1063 : 120 : }
1064 : :
1065 : 2964 : bool V2Transport::ReceivedMessageComplete() const noexcept
1066 : : {
1067 : 2964 : AssertLockNotHeld(m_recv_mutex);
1068 : 2964 : LOCK(m_recv_mutex);
1069 [ + + ]: 2964 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1070 : :
1071 : 2957 : return m_recv_state == RecvState::APP_READY;
1072 : 2964 : }
1073 : :
1074 : 48 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1075 : : {
1076 : 48 : AssertLockHeld(m_recv_mutex);
1077 : 48 : AssertLockNotHeld(m_send_mutex);
1078 : 48 : Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1079 : : // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1080 : : // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1081 : : // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1082 : : // sending of the key.
1083 : 48 : std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1084 : 48 : std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1085 : 48 : Assume(m_recv_buffer.size() <= v1_prefix.size());
1086 [ + + ]: 48 : if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1087 : : // Mismatch with v1 prefix, so we can assume a v2 connection.
1088 : 46 : SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1089 : : // Transition the sender to AWAITING_KEY state and start sending.
1090 : 46 : LOCK(m_send_mutex);
1091 : 46 : SetSendState(SendState::AWAITING_KEY);
1092 [ + - ]: 46 : StartSendingHandshake();
1093 [ + + ]: 48 : } else if (m_recv_buffer.size() == v1_prefix.size()) {
1094 : : // Full match with the v1 prefix, so fall back to v1 behavior.
1095 : 1 : LOCK(m_send_mutex);
1096 : 1 : std::span<const uint8_t> feedback{m_recv_buffer};
1097 : : // Feed already received bytes to v1 transport. It should always accept these, because it's
1098 : : // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1099 : 1 : bool ret = m_v1_fallback.ReceivedBytes(feedback);
1100 : 1 : Assume(feedback.empty());
1101 : 1 : Assume(ret);
1102 : 1 : SetReceiveState(RecvState::V1);
1103 : 1 : SetSendState(SendState::V1);
1104 : : // Reset v2 transport buffers to save memory.
1105 : 1 : ClearShrink(m_recv_buffer);
1106 [ + - ]: 1 : ClearShrink(m_send_buffer);
1107 : 1 : } else {
1108 : : // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1109 : : }
1110 : 48 : }
1111 : :
1112 : 176 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
1113 : : {
1114 : 176 : AssertLockHeld(m_recv_mutex);
1115 : 176 : AssertLockNotHeld(m_send_mutex);
1116 : 176 : Assume(m_recv_state == RecvState::KEY);
1117 : 176 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1118 : :
1119 : : // As a special exception, if bytes 4-16 of the key on a responder connection match the
1120 : : // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1121 : : // (if they did, we'd have switched to V1 state already), assume this is a peer from
1122 : : // another network, and disconnect them. They will almost certainly disconnect us too when
1123 : : // they receive our uniformly random key and garbage, but detecting this case specially
1124 : : // means we can log it.
1125 : 176 : static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1126 : 176 : static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1127 [ + + + + ]: 176 : if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1128 [ + + ]: 113 : if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1129 [ + - ]: 1 : LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1130 : : HexStr(std::span(m_recv_buffer).first(OFFSET)));
1131 : 1 : return false;
1132 : : }
1133 : : }
1134 : :
1135 [ + + ]: 175 : if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1136 : : // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1137 : : // our key to initialize the encryption ciphers.
1138 : :
1139 : : // Initialize the ciphers.
1140 : 73 : EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1141 : 73 : LOCK(m_send_mutex);
1142 : 73 : m_cipher.Initialize(ellswift, m_initiating);
1143 : :
1144 : : // Switch receiver state to GARB_GARBTERM.
1145 : 73 : SetReceiveState(RecvState::GARB_GARBTERM);
1146 [ + - ]: 73 : m_recv_buffer.clear();
1147 : :
1148 : : // Switch sender state to READY.
1149 : 73 : SetSendState(SendState::READY);
1150 : :
1151 : : // Append the garbage terminator to the send buffer.
1152 : 73 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1153 : 73 : std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1154 : 73 : m_cipher.GetSendGarbageTerminator().end(),
1155 : 73 : MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1156 : :
1157 : : // Construct version packet in the send buffer, with the sent garbage data as AAD.
1158 : 73 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1159 : 73 : m_cipher.Encrypt(
1160 : : /*contents=*/VERSION_CONTENTS,
1161 : 73 : /*aad=*/MakeByteSpan(m_send_garbage),
1162 : : /*ignore=*/false,
1163 : 73 : /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1164 : : // We no longer need the garbage.
1165 [ + - ]: 73 : ClearShrink(m_send_garbage);
1166 : 73 : } else {
1167 : : // We still have to receive more key bytes.
1168 : : }
1169 : : return true;
1170 : : }
1171 : :
1172 : 131197 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1173 : : {
1174 : 131197 : AssertLockHeld(m_recv_mutex);
1175 : 131197 : Assume(m_recv_state == RecvState::GARB_GARBTERM);
1176 : 131197 : Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1177 [ + + ]: 131197 : if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1178 [ + + ]: 130102 : if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1179 : : // Garbage terminator received. Store garbage to authenticate it as AAD later.
1180 : 71 : m_recv_aad = std::move(m_recv_buffer);
1181 : 71 : m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1182 [ - + ]: 71 : m_recv_buffer.clear();
1183 : 71 : SetReceiveState(RecvState::VERSION);
1184 [ + + ]: 130031 : } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1185 : : // We've reached the maximum length for garbage + garbage terminator, and the
1186 : : // terminator still does not match. Abort.
1187 [ + - ]: 2 : LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1188 : 2 : return false;
1189 : : } else {
1190 : : // We still need to receive more garbage and/or garbage terminator bytes.
1191 : : }
1192 : : } else {
1193 : : // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1194 : : // more first.
1195 : : }
1196 : : return true;
1197 : : }
1198 : :
1199 : 103800 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
1200 : : {
1201 : 103800 : AssertLockHeld(m_recv_mutex);
1202 : 103800 : Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1203 : :
1204 : : // The maximum permitted contents length for a packet, consisting of:
1205 : : // - 0x00 byte: indicating long message type encoding
1206 : : // - 12 bytes of message type
1207 : : // - payload
1208 : 103800 : static constexpr size_t MAX_CONTENTS_LEN =
1209 : : 1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1210 : : std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1211 : :
1212 [ + + ]: 103800 : if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1213 : : // Length descriptor received.
1214 : 51210 : m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1215 [ + + ]: 51210 : if (m_recv_len > MAX_CONTENTS_LEN) {
1216 [ + - ]: 10 : LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1217 : 10 : return false;
1218 : : }
1219 [ + + + + ]: 52590 : } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1220 : : // Ciphertext received, decrypt it into m_recv_decode_buffer.
1221 : : // Note that it is impossible to reach this branch without hitting the branch above first,
1222 : : // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1223 : 51200 : m_recv_decode_buffer.resize(m_recv_len);
1224 : 51200 : bool ignore{false};
1225 : 102400 : bool ret = m_cipher.Decrypt(
1226 : 51200 : /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1227 : 51200 : /*aad=*/MakeByteSpan(m_recv_aad),
1228 : : /*ignore=*/ignore,
1229 : : /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1230 [ + + ]: 51200 : if (!ret) {
1231 [ + - ]: 10 : LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1232 : 10 : return false;
1233 : : }
1234 : : // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1235 : 51190 : ClearShrink(m_recv_aad);
1236 : : // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1237 : 51190 : RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1238 : :
1239 : : // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1240 : : // decoy, which we simply ignore, use the current state to decide what to do with it.
1241 [ + + ]: 51190 : if (!ignore) {
1242 [ + + - ]: 323 : switch (m_recv_state) {
1243 : 71 : case RecvState::VERSION:
1244 : : // Version message received; transition to application phase. The contents is
1245 : : // ignored, but can be used for future extensions.
1246 : 71 : SetReceiveState(RecvState::APP);
1247 : 71 : break;
1248 : 252 : case RecvState::APP:
1249 : : // Application message decrypted correctly. It can be extracted using GetMessage().
1250 : 252 : SetReceiveState(RecvState::APP_READY);
1251 : 252 : break;
1252 : : default:
1253 : : // Any other state is invalid (this function should not have been called).
1254 : : Assume(false);
1255 : : }
1256 : : }
1257 : : // Wipe the receive buffer where the next packet will be received into.
1258 : 51190 : ClearShrink(m_recv_buffer);
1259 : : // In all but APP_READY state, we can wipe the decoded contents.
1260 [ + + ]: 51190 : if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1261 : : } else {
1262 : : // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1263 : : // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1264 : : }
1265 : : return true;
1266 : : }
1267 : :
1268 : 235494 : size_t V2Transport::GetMaxBytesToProcess() noexcept
1269 : : {
1270 : 235494 : AssertLockHeld(m_recv_mutex);
1271 [ + + + + : 235494 : switch (m_recv_state) {
- - + ]
1272 : 48 : case RecvState::KEY_MAYBE_V1:
1273 : : // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1274 : : // receive buffer.
1275 : 48 : Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1276 : : // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1277 : : // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1278 : : // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1279 : : // back into the m_v1_fallback V1 transport.
1280 : 48 : return V1_PREFIX_LEN - m_recv_buffer.size();
1281 : 176 : case RecvState::KEY:
1282 : : // During the KEY state, we only allow the 64-byte key into the receive buffer.
1283 : 176 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1284 : : // As long as we have not received the other side's public key, don't receive more than
1285 : : // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1286 : : // key exchange first.
1287 : 176 : return EllSwiftPubKey::size() - m_recv_buffer.size();
1288 : : case RecvState::GARB_GARBTERM:
1289 : : // Process garbage bytes one by one (because terminator may appear anywhere).
1290 : : return 1;
1291 : 103800 : case RecvState::VERSION:
1292 : 103800 : case RecvState::APP:
1293 : : // These three states all involve decoding a packet. Process the length descriptor first,
1294 : : // so that we know where the current packet ends (and we don't process bytes from the next
1295 : : // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1296 [ + + ]: 103800 : if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1297 : 51219 : return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1298 : : } else {
1299 : : // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1300 : : // and encoded packet size, which includes the 3 bytes due to the packet length.
1301 : : // When transitioning from receiving the packet length to receiving its ciphertext,
1302 : : // the encrypted packet length is left in the receive buffer.
1303 : 52581 : return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1304 : : }
1305 : 273 : case RecvState::APP_READY:
1306 : : // No bytes can be processed until GetMessage() is called.
1307 : 273 : return 0;
1308 : 0 : case RecvState::V1:
1309 : : // Not allowed (must be dealt with by the caller).
1310 : 0 : Assume(false);
1311 : 0 : return 0;
1312 : : }
1313 : 0 : Assume(false); // unreachable
1314 : 0 : return 0;
1315 : : }
1316 : :
1317 : 2270 : bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1318 : : {
1319 : 2270 : AssertLockNotHeld(m_recv_mutex);
1320 : : /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1321 : 2270 : static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1322 : :
1323 : 2270 : LOCK(m_recv_mutex);
1324 [ + + ]: 2270 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1325 : :
1326 : : // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1327 : : // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1328 : : // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1329 : : // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1330 [ + + ]: 237462 : while (!msg_bytes.empty()) {
1331 : : // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1332 : 235494 : size_t max_read = GetMaxBytesToProcess();
1333 : :
1334 : : // Reserve space in the buffer if there is not enough.
1335 [ + + + + ]: 237475 : if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1336 [ + + - ]: 102537 : switch (m_recv_state) {
1337 : 75 : case RecvState::KEY_MAYBE_V1:
1338 : 75 : case RecvState::KEY:
1339 : 75 : case RecvState::GARB_GARBTERM:
1340 : : // During the initial states (key/garbage), allocate once to fit the maximum (4111
1341 : : // bytes).
1342 : 75 : m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1343 : 75 : break;
1344 : 102462 : case RecvState::VERSION:
1345 : 102462 : case RecvState::APP: {
1346 : : // During states where a packet is being received, as much as is expected but never
1347 : : // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1348 : : // This means attackers that want to cause us to waste allocated memory are limited
1349 : : // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1350 : : // MAX_RESERVE_AHEAD more than they've actually sent us.
1351 [ + + ]: 102462 : size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1352 : 102462 : m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1353 : 102462 : break;
1354 : : }
1355 : : case RecvState::APP_READY:
1356 : : // The buffer is empty in this state.
1357 : : Assume(m_recv_buffer.empty());
1358 : : break;
1359 : : case RecvState::V1:
1360 : : // Should have bailed out above.
1361 : : Assume(false);
1362 : : break;
1363 : : }
1364 : : }
1365 : :
1366 : : // Can't read more than provided input.
1367 [ + + ]: 235494 : max_read = std::min(msg_bytes.size(), max_read);
1368 : : // Copy data to buffer.
1369 : 235494 : m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1370 [ + + + + : 235494 : msg_bytes = msg_bytes.subspan(max_read);
- + ]
1371 : :
1372 : : // Process data in the buffer.
1373 [ + + + + : 235494 : switch (m_recv_state) {
- + ]
1374 : 48 : case RecvState::KEY_MAYBE_V1:
1375 : 48 : ProcessReceivedMaybeV1Bytes();
1376 [ + + ]: 48 : if (m_recv_state == RecvState::V1) return true;
1377 : : break;
1378 : :
1379 : 176 : case RecvState::KEY:
1380 [ + + ]: 176 : if (!ProcessReceivedKeyBytes()) return false;
1381 : : break;
1382 : :
1383 : 131197 : case RecvState::GARB_GARBTERM:
1384 [ + + ]: 131197 : if (!ProcessReceivedGarbageBytes()) return false;
1385 : : break;
1386 : :
1387 : 103800 : case RecvState::VERSION:
1388 : 103800 : case RecvState::APP:
1389 [ + + ]: 103800 : if (!ProcessReceivedPacketBytes()) return false;
1390 : : break;
1391 : :
1392 : : case RecvState::APP_READY:
1393 : : return true;
1394 : :
1395 : : case RecvState::V1:
1396 : : // We should have bailed out before.
1397 : : Assume(false);
1398 : : break;
1399 : : }
1400 : : // Make sure we have made progress before continuing.
1401 : : Assume(max_read > 0);
1402 : : }
1403 : :
1404 : : return true;
1405 : 2270 : }
1406 : :
1407 : 252 : std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1408 : : {
1409 [ - + ]: 252 : if (contents.size() == 0) return std::nullopt; // Empty contents
1410 [ + + ]: 252 : uint8_t first_byte = contents[0];
1411 [ + + ]: 252 : contents = contents.subspan(1); // Strip first byte.
1412 : :
1413 [ + + ]: 252 : if (first_byte != 0) {
1414 : : // Short (1 byte) encoding.
1415 [ + + ]: 132 : if (first_byte < std::size(V2_MESSAGE_IDS)) {
1416 : : // Valid short message id.
1417 : 131 : return V2_MESSAGE_IDS[first_byte];
1418 : : } else {
1419 : : // Unknown short message id.
1420 : 1 : return std::nullopt;
1421 : : }
1422 : : }
1423 : :
1424 [ + + ]: 120 : if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1425 : 10 : return std::nullopt; // Long encoding needs 12 message type bytes.
1426 : : }
1427 : :
1428 : : size_t msg_type_len{0};
1429 [ + - + + ]: 830 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1430 : : // Verify that message type bytes before the first 0x00 are in range.
1431 [ - + + - ]: 720 : if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1432 : 0 : return {};
1433 : : }
1434 : 720 : ++msg_type_len;
1435 : : }
1436 : 110 : std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1437 [ + + ]: 610 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1438 : : // Verify that message type bytes after the first 0x00 are also 0x00.
1439 [ + + ]: 550 : if (contents[msg_type_len] != 0) return {};
1440 : 500 : ++msg_type_len;
1441 : : }
1442 : : // Strip message type bytes of contents.
1443 : 60 : contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1444 : 60 : return ret;
1445 : 110 : }
1446 : :
1447 : 252 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1448 : : {
1449 : 252 : AssertLockNotHeld(m_recv_mutex);
1450 : 252 : LOCK(m_recv_mutex);
1451 [ - + ]: 252 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1452 : :
1453 : 252 : Assume(m_recv_state == RecvState::APP_READY);
1454 : 252 : std::span<const uint8_t> contents{m_recv_decode_buffer};
1455 : 252 : auto msg_type = GetMessageType(contents);
1456 : 252 : CNetMessage msg{DataStream{}};
1457 : : // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1458 [ + + ]: 252 : msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1459 [ + + ]: 252 : if (msg_type) {
1460 : 191 : reject_message = false;
1461 : 191 : msg.m_type = std::move(*msg_type);
1462 : 191 : msg.m_time = time;
1463 : 191 : msg.m_message_size = contents.size();
1464 : 191 : msg.m_recv.resize(contents.size());
1465 : 191 : std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1466 : : } else {
1467 [ + - ]: 61 : LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1468 : 61 : reject_message = true;
1469 : : }
1470 : 252 : ClearShrink(m_recv_decode_buffer);
1471 : 252 : SetReceiveState(RecvState::APP);
1472 : :
1473 : 252 : return msg;
1474 : 252 : }
1475 : :
1476 : 51 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1477 : : {
1478 : 51 : AssertLockNotHeld(m_send_mutex);
1479 : 51 : LOCK(m_send_mutex);
1480 [ - + ]: 51 : if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1481 : : // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1482 : : // is available) and the send buffer is empty. This limits the number of messages in the send
1483 : : // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1484 [ + - + - ]: 51 : if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1485 : : // Construct contents (encoding message type + payload).
1486 : 51 : std::vector<uint8_t> contents;
1487 : 51 : auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1488 [ + + ]: 51 : if (short_message_id) {
1489 : 1 : contents.resize(1 + msg.data.size());
1490 : 1 : contents[0] = *short_message_id;
1491 : 1 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1492 : : } else {
1493 : : // Initialize with zeroes, and then write the message type string starting at offset 1.
1494 : : // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1495 : 50 : contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1496 : 50 : std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1497 : 50 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1498 : : }
1499 : : // Construct ciphertext in send buffer.
1500 : 51 : m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1501 : 51 : m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1502 : 51 : m_send_type = msg.m_type;
1503 : : // Release memory
1504 : 51 : ClearShrink(msg.data);
1505 : 51 : return true;
1506 : 51 : }
1507 : :
1508 : 2964 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1509 : : {
1510 : 2964 : AssertLockNotHeld(m_send_mutex);
1511 : 2964 : LOCK(m_send_mutex);
1512 [ + + ]: 2964 : if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1513 : :
1514 : 2957 : if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1515 : 2957 : Assume(m_send_pos <= m_send_buffer.size());
1516 : 2957 : return {
1517 [ + + ]: 2957 : std::span{m_send_buffer}.subspan(m_send_pos),
1518 : : // We only have more to send after the current m_send_buffer if there is a (next)
1519 : : // message to be sent, and we're capable of sending packets. */
1520 [ + + - + ]: 2957 : have_next_message && m_send_state == SendState::READY,
1521 : 2957 : m_send_type
1522 : 2957 : };
1523 : 2964 : }
1524 : :
1525 : 879 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1526 : : {
1527 : 879 : AssertLockNotHeld(m_send_mutex);
1528 : 879 : LOCK(m_send_mutex);
1529 [ - + - - ]: 879 : if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1530 : :
1531 [ + + + + : 879 : if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
+ - ]
1532 [ + - ]: 45 : LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1533 : : }
1534 : :
1535 : 879 : m_send_pos += bytes_sent;
1536 : 879 : Assume(m_send_pos <= m_send_buffer.size());
1537 [ + + ]: 879 : if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1538 : 799 : m_sent_v1_header_worth = true;
1539 : : }
1540 : : // Wipe the buffer when everything is sent.
1541 [ + + ]: 879 : if (m_send_pos == m_send_buffer.size()) {
1542 : 144 : m_send_pos = 0;
1543 : 144 : ClearShrink(m_send_buffer);
1544 : : }
1545 : 879 : }
1546 : :
1547 : 0 : bool V2Transport::ShouldReconnectV1() const noexcept
1548 : : {
1549 : 0 : AssertLockNotHeld(m_send_mutex);
1550 : 0 : AssertLockNotHeld(m_recv_mutex);
1551 : : // Only outgoing connections need reconnection.
1552 [ # # ]: 0 : if (!m_initiating) return false;
1553 : :
1554 : 0 : LOCK(m_recv_mutex);
1555 : : // We only reconnect in the very first state and when the receive buffer is empty. Together
1556 : : // these conditions imply nothing has been received so far.
1557 [ # # ]: 0 : if (m_recv_state != RecvState::KEY) return false;
1558 [ # # ]: 0 : if (!m_recv_buffer.empty()) return false;
1559 : : // Check if we've sent enough for the other side to disconnect us (if it was V1).
1560 : 0 : LOCK(m_send_mutex);
1561 [ # # ]: 0 : return m_sent_v1_header_worth;
1562 : 0 : }
1563 : :
1564 : 0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
1565 : : {
1566 : 0 : AssertLockNotHeld(m_send_mutex);
1567 : 0 : LOCK(m_send_mutex);
1568 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1569 : :
1570 [ # # ]: 0 : return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1571 : 0 : }
1572 : :
1573 : 71 : Transport::Info V2Transport::GetInfo() const noexcept
1574 : : {
1575 : 71 : AssertLockNotHeld(m_recv_mutex);
1576 : 71 : LOCK(m_recv_mutex);
1577 [ - + ]: 71 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1578 : :
1579 [ + - ]: 71 : Transport::Info info;
1580 : :
1581 : : // Do not report v2 and session ID until the version packet has been received
1582 : : // and verified (confirming that the other side very likely has the same keys as us).
1583 [ + - ]: 71 : if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1584 : : m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1585 : 71 : info.transport_type = TransportProtocolType::V2;
1586 : 71 : info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1587 : : } else {
1588 : 0 : info.transport_type = TransportProtocolType::DETECTING;
1589 : : }
1590 : :
1591 : 71 : return info;
1592 : 71 : }
1593 : :
1594 : 6 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1595 : : {
1596 : 6 : auto it = node.vSendMsg.begin();
1597 : 6 : size_t nSentSize = 0;
1598 : 6 : bool data_left{false}; //!< second return value (whether unsent data remains)
1599 : 6 : std::optional<bool> expected_more;
1600 : :
1601 : 6 : while (true) {
1602 [ + - ]: 6 : if (it != node.vSendMsg.end()) {
1603 : : // If possible, move one message from the send queue to the transport. This fails when
1604 : : // there is an existing message still being sent, or (for v2 transports) when the
1605 : : // handshake has not yet completed.
1606 : 6 : size_t memusage = it->GetMemoryUsage();
1607 [ + - ]: 6 : if (node.m_transport->SetMessageToSend(*it)) {
1608 : : // Update memory usage of send buffer (as *it will be deleted).
1609 : 6 : node.m_send_memusage -= memusage;
1610 : 6 : ++it;
1611 : : }
1612 : : }
1613 [ + - ]: 6 : const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1614 : : // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1615 : : // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1616 : : // verify that the previously returned 'more' was correct.
1617 [ + - ]: 6 : if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1618 [ + - ]: 6 : expected_more = more;
1619 [ + - ]: 6 : data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1620 : 6 : int nBytes = 0;
1621 [ + - ]: 6 : if (!data.empty()) {
1622 : 6 : LOCK(node.m_sock_mutex);
1623 : : // There is no socket in case we've already disconnected, or in test cases without
1624 : : // real connections. In these cases, we bail out immediately and just leave things
1625 : : // in the send queue and transport.
1626 [ - + ]: 6 : if (!node.m_sock) {
1627 : : break;
1628 : : }
1629 : 0 : int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1630 : : #ifdef MSG_MORE
1631 [ # # ]: 0 : if (more) {
1632 : 0 : flags |= MSG_MORE;
1633 : : }
1634 : : #endif
1635 [ # # # # ]: 0 : nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1636 : 6 : }
1637 [ # # ]: 0 : if (nBytes > 0) {
1638 : 0 : node.m_last_send = GetTime<std::chrono::seconds>();
1639 : 0 : node.nSendBytes += nBytes;
1640 : : // Notify transport that bytes have been processed.
1641 : 0 : node.m_transport->MarkBytesSent(nBytes);
1642 : : // Update statistics per message type.
1643 [ # # ]: 0 : if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1644 : 0 : node.AccountForSentBytes(msg_type, nBytes);
1645 : : }
1646 : 0 : nSentSize += nBytes;
1647 [ # # ]: 0 : if ((size_t)nBytes != data.size()) {
1648 : : // could not send full message; stop sending more
1649 : : break;
1650 : : }
1651 : : } else {
1652 [ # # ]: 0 : if (nBytes < 0) {
1653 : : // error
1654 : 0 : int nErr = WSAGetLastError();
1655 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1656 [ # # # # : 0 : LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
# # ]
1657 : 0 : node.CloseSocketDisconnect();
1658 : : }
1659 : : }
1660 : : break;
1661 : : }
1662 : : }
1663 : :
1664 [ + - ]: 6 : node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1665 : :
1666 [ + - ]: 6 : if (it == node.vSendMsg.end()) {
1667 [ - + ]: 6 : assert(node.m_send_memusage == 0);
1668 : : }
1669 : 6 : node.vSendMsg.erase(node.vSendMsg.begin(), it);
1670 : 6 : return {nSentSize, data_left};
1671 : : }
1672 : :
1673 : : /** Try to find a connection to evict when the node is full.
1674 : : * Extreme care must be taken to avoid opening the node to attacker
1675 : : * triggered network partitioning.
1676 : : * The strategy used here is to protect a small number of peers
1677 : : * for each of several distinct characteristics which are difficult
1678 : : * to forge. In order to partition a node the attacker must be
1679 : : * simultaneously better at all of them than honest peers.
1680 : : */
1681 : 0 : bool CConnman::AttemptToEvictConnection()
1682 : : {
1683 : 0 : std::vector<NodeEvictionCandidate> vEvictionCandidates;
1684 : 0 : {
1685 : :
1686 [ # # ]: 0 : LOCK(m_nodes_mutex);
1687 [ # # ]: 0 : for (const CNode* node : m_nodes) {
1688 [ # # ]: 0 : if (node->fDisconnect)
1689 : 0 : continue;
1690 : 0 : NodeEvictionCandidate candidate{
1691 : 0 : .id = node->GetId(),
1692 : : .m_connected = node->m_connected,
1693 : 0 : .m_min_ping_time = node->m_min_ping_time,
1694 : 0 : .m_last_block_time = node->m_last_block_time,
1695 : 0 : .m_last_tx_time = node->m_last_tx_time,
1696 [ # # ]: 0 : .fRelevantServices = node->m_has_all_wanted_services,
1697 : 0 : .m_relay_txs = node->m_relays_txs.load(),
1698 : 0 : .fBloomFilter = node->m_bloom_filter_loaded.load(),
1699 : 0 : .nKeyedNetGroup = node->nKeyedNetGroup,
1700 : 0 : .prefer_evict = node->m_prefer_evict,
1701 [ # # ]: 0 : .m_is_local = node->addr.IsLocal(),
1702 : 0 : .m_network = node->ConnectedThroughNetwork(),
1703 : 0 : .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1704 : 0 : .m_conn_type = node->m_conn_type,
1705 [ # # # # : 0 : };
# # ]
1706 [ # # ]: 0 : vEvictionCandidates.push_back(candidate);
1707 : : }
1708 : 0 : }
1709 [ # # ]: 0 : const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1710 [ # # ]: 0 : if (!node_id_to_evict) {
1711 : : return false;
1712 : : }
1713 [ # # ]: 0 : LOCK(m_nodes_mutex);
1714 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1715 [ # # ]: 0 : if (pnode->GetId() == *node_id_to_evict) {
1716 [ # # # # : 0 : LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
# # # # ]
1717 : : TRACEPOINT(net, evicted_inbound_connection,
1718 : : pnode->GetId(),
1719 : : pnode->m_addr_name.c_str(),
1720 : : pnode->ConnectionTypeAsString().c_str(),
1721 : : pnode->ConnectedThroughNetwork(),
1722 : 0 : Ticks<std::chrono::seconds>(pnode->m_connected));
1723 : 0 : pnode->fDisconnect = true;
1724 : 0 : return true;
1725 : : }
1726 : : }
1727 : : return false;
1728 : 0 : }
1729 : :
1730 : 0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1731 : 0 : struct sockaddr_storage sockaddr;
1732 : 0 : socklen_t len = sizeof(sockaddr);
1733 : 0 : auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1734 : :
1735 [ # # ]: 0 : if (!sock) {
1736 : 0 : const int nErr = WSAGetLastError();
1737 [ # # ]: 0 : if (nErr != WSAEWOULDBLOCK) {
1738 [ # # # # ]: 0 : LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1739 : : }
1740 : 0 : return;
1741 : : }
1742 : :
1743 [ # # ]: 0 : CService addr;
1744 [ # # # # ]: 0 : if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1745 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
# # ]
1746 : : } else {
1747 [ # # ]: 0 : addr = MaybeFlipIPv6toCJDNS(addr);
1748 : : }
1749 : :
1750 [ # # # # ]: 0 : const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1751 : :
1752 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
1753 [ # # ]: 0 : hListenSocket.AddSocketPermissionFlags(permission_flags);
1754 : :
1755 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1756 : 0 : }
1757 : :
1758 : 0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1759 : : NetPermissionFlags permission_flags,
1760 : : const CService& addr_bind,
1761 : : const CService& addr)
1762 : : {
1763 : 0 : int nInbound = 0;
1764 : :
1765 : 0 : AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1766 : :
1767 : 0 : {
1768 : 0 : LOCK(m_nodes_mutex);
1769 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
1770 [ # # ]: 0 : if (pnode->IsInboundConn()) nInbound++;
1771 : : }
1772 : 0 : }
1773 : :
1774 [ # # ]: 0 : if (!fNetworkActive) {
1775 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1776 : 0 : return;
1777 : : }
1778 : :
1779 [ # # ]: 0 : if (!sock->IsSelectable()) {
1780 [ # # ]: 0 : LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1781 : 0 : return;
1782 : : }
1783 : :
1784 : : // According to the internet TCP_NODELAY is not carried into accepted sockets
1785 : : // on all platforms. Set it again here just to be sure.
1786 : 0 : const int on{1};
1787 [ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1788 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1789 : : addr.ToStringAddrPort());
1790 : : }
1791 : :
1792 : : // Don't accept connections from banned peers.
1793 [ # # # # ]: 0 : bool banned = m_banman && m_banman->IsBanned(addr);
1794 [ # # # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1795 : : {
1796 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1797 : 0 : return;
1798 : : }
1799 : :
1800 : : // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1801 [ # # # # ]: 0 : bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1802 [ # # # # : 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
# # ]
1803 : : {
1804 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1805 : 0 : return;
1806 : : }
1807 : :
1808 [ # # ]: 0 : if (nInbound >= m_max_inbound)
1809 : : {
1810 [ # # ]: 0 : if (!AttemptToEvictConnection()) {
1811 : : // No connection to evict, disconnect the new connection
1812 [ # # ]: 0 : LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1813 : 0 : return;
1814 : : }
1815 : : }
1816 : :
1817 : 0 : NodeId id = GetNewNodeId();
1818 : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1819 : :
1820 : 0 : const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1821 : : // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1822 : : // detected, so use it whenever we signal NODE_P2P_V2.
1823 : 0 : ServiceFlags local_services = GetLocalServices();
1824 : 0 : const bool use_v2transport(local_services & NODE_P2P_V2);
1825 : :
1826 : 0 : CNode* pnode = new CNode(id,
1827 : : std::move(sock),
1828 [ # # ]: 0 : CAddress{addr, NODE_NONE},
1829 : : CalculateKeyedNetGroup(addr),
1830 : : nonce,
1831 : : addr_bind,
1832 : : /*addrNameIn=*/"",
1833 : : ConnectionType::INBOUND,
1834 : : inbound_onion,
1835 [ # # ]: 0 : CNodeOptions{
1836 : : .permission_flags = permission_flags,
1837 : : .prefer_evict = discouraged,
1838 : 0 : .recv_flood_size = nReceiveFloodSize,
1839 : : .use_v2transport = use_v2transport,
1840 [ # # # # : 0 : });
# # # # ]
1841 : 0 : pnode->AddRef();
1842 : 0 : m_msgproc->InitializeNode(*pnode, local_services);
1843 : 0 : {
1844 : 0 : LOCK(m_nodes_mutex);
1845 [ # # ]: 0 : m_nodes.push_back(pnode);
1846 : 0 : }
1847 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1848 : : TRACEPOINT(net, inbound_connection,
1849 : : pnode->GetId(),
1850 : : pnode->m_addr_name.c_str(),
1851 : : pnode->ConnectionTypeAsString().c_str(),
1852 : : pnode->ConnectedThroughNetwork(),
1853 : 0 : GetNodeCount(ConnectionDirection::In));
1854 : :
1855 : : // We received a new connection, harvest entropy from the time (and our peer count)
1856 : 0 : RandAddEvent((uint32_t)id);
1857 : : }
1858 : :
1859 : 0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1860 : : {
1861 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1862 : 0 : std::optional<int> max_connections;
1863 [ # # # # ]: 0 : switch (conn_type) {
1864 : : case ConnectionType::INBOUND:
1865 : : case ConnectionType::MANUAL:
1866 : : return false;
1867 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
1868 : 0 : max_connections = m_max_outbound_full_relay;
1869 : 0 : break;
1870 : 0 : case ConnectionType::BLOCK_RELAY:
1871 : 0 : max_connections = m_max_outbound_block_relay;
1872 : 0 : break;
1873 : : // no limit for ADDR_FETCH because -seednode has no limit either
1874 : : case ConnectionType::ADDR_FETCH:
1875 : : break;
1876 : : // no limit for FEELER connections since they're short-lived
1877 : : case ConnectionType::FEELER:
1878 : : break;
1879 : : } // no default case, so the compiler can warn about missing cases
1880 : :
1881 : : // Count existing connections
1882 [ # # # # ]: 0 : int existing_connections = WITH_LOCK(m_nodes_mutex,
1883 : : return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1884 : :
1885 : : // Max connections of specified type already exist
1886 [ # # ]: 0 : if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1887 : :
1888 : : // Max total outbound connections already exist
1889 : 0 : CountingSemaphoreGrant<> grant(*semOutbound, true);
1890 [ # # ]: 0 : if (!grant) return false;
1891 : :
1892 [ # # # # ]: 0 : OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1893 : 0 : return true;
1894 : : }
1895 : :
1896 : 0 : void CConnman::DisconnectNodes()
1897 : : {
1898 : 0 : AssertLockNotHeld(m_nodes_mutex);
1899 : 0 : AssertLockNotHeld(m_reconnections_mutex);
1900 : :
1901 : : // Use a temporary variable to accumulate desired reconnections, so we don't need
1902 : : // m_reconnections_mutex while holding m_nodes_mutex.
1903 [ # # ]: 0 : decltype(m_reconnections) reconnections_to_add;
1904 : :
1905 : 0 : {
1906 [ # # ]: 0 : LOCK(m_nodes_mutex);
1907 : :
1908 [ # # ]: 0 : const bool network_active{fNetworkActive};
1909 [ # # ]: 0 : if (!network_active) {
1910 : : // Disconnect any connected nodes
1911 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1912 [ # # ]: 0 : if (!pnode->fDisconnect) {
1913 [ # # # # : 0 : LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
# # # # ]
1914 : 0 : pnode->fDisconnect = true;
1915 : : }
1916 : : }
1917 : : }
1918 : :
1919 : : // Disconnect unused nodes
1920 [ # # ]: 0 : std::vector<CNode*> nodes_copy = m_nodes;
1921 [ # # ]: 0 : for (CNode* pnode : nodes_copy)
1922 : : {
1923 [ # # ]: 0 : if (pnode->fDisconnect)
1924 : : {
1925 : : // remove from m_nodes
1926 : 0 : m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1927 : :
1928 : : // Add to reconnection list if appropriate. We don't reconnect right here, because
1929 : : // the creation of a connection is a blocking operation (up to several seconds),
1930 : : // and we don't want to hold up the socket handler thread for that long.
1931 [ # # # # ]: 0 : if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1932 : 0 : reconnections_to_add.push_back({
1933 : 0 : .addr_connect = pnode->addr,
1934 [ # # ]: 0 : .grant = std::move(pnode->grantOutbound),
1935 : 0 : .destination = pnode->m_dest,
1936 : 0 : .conn_type = pnode->m_conn_type,
1937 : : .use_v2transport = false});
1938 [ # # # # : 0 : LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
# # ]
1939 : : }
1940 : :
1941 : : // release outbound grant (if any)
1942 : 0 : pnode->grantOutbound.Release();
1943 : :
1944 : : // close socket and cleanup
1945 [ # # ]: 0 : pnode->CloseSocketDisconnect();
1946 : :
1947 : : // update connection count by network
1948 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1949 : :
1950 : : // hold in disconnected pool until all refs are released
1951 [ # # ]: 0 : pnode->Release();
1952 [ # # ]: 0 : m_nodes_disconnected.push_back(pnode);
1953 : : }
1954 : : }
1955 [ # # ]: 0 : }
1956 : 0 : {
1957 : : // Delete disconnected nodes
1958 [ # # ]: 0 : std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1959 [ # # ]: 0 : for (CNode* pnode : nodes_disconnected_copy)
1960 : : {
1961 : : // Destroy the object only after other threads have stopped using it.
1962 [ # # ]: 0 : if (pnode->GetRefCount() <= 0) {
1963 : 0 : m_nodes_disconnected.remove(pnode);
1964 [ # # ]: 0 : DeleteNode(pnode);
1965 : : }
1966 : : }
1967 : 0 : }
1968 : 0 : {
1969 : : // Move entries from reconnections_to_add to m_reconnections.
1970 [ # # ]: 0 : LOCK(m_reconnections_mutex);
1971 [ # # ]: 0 : m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1972 : 0 : }
1973 [ # # # # : 0 : }
# # ]
1974 : :
1975 : 0 : void CConnman::NotifyNumConnectionsChanged()
1976 : : {
1977 : 0 : size_t nodes_size;
1978 : 0 : {
1979 : 0 : LOCK(m_nodes_mutex);
1980 [ # # ]: 0 : nodes_size = m_nodes.size();
1981 : 0 : }
1982 [ # # ]: 0 : if(nodes_size != nPrevNodeCount) {
1983 : 0 : nPrevNodeCount = nodes_size;
1984 [ # # ]: 0 : if (m_client_interface) {
1985 : 0 : m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1986 : : }
1987 : : }
1988 : 0 : }
1989 : :
1990 : 6 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1991 : : {
1992 : 6 : return node.m_connected + m_peer_connect_timeout < now;
1993 : : }
1994 : :
1995 : 0 : bool CConnman::InactivityCheck(const CNode& node) const
1996 : : {
1997 : : // Tests that see disconnects after using mocktime can start nodes with a
1998 : : // large timeout. For example, -peertimeout=999999999.
1999 : 0 : const auto now{GetTime<std::chrono::seconds>()};
2000 : 0 : const auto last_send{node.m_last_send.load()};
2001 : 0 : const auto last_recv{node.m_last_recv.load()};
2002 : :
2003 [ # # ]: 0 : if (!ShouldRunInactivityChecks(node, now)) return false;
2004 : :
2005 [ # # ]: 0 : bool has_received{last_recv.count() != 0};
2006 : 0 : bool has_sent{last_send.count() != 0};
2007 : :
2008 [ # # ]: 0 : if (!has_received || !has_sent) {
2009 [ # # ]: 0 : std::string has_never;
2010 [ # # # # ]: 0 : if (!has_received) has_never += ", never received from peer";
2011 [ # # # # ]: 0 : if (!has_sent) has_never += ", never sent to peer";
2012 [ # # # # : 0 : LogDebug(BCLog::NET,
# # # # ]
2013 : : "socket no message in first %i seconds%s, %s\n",
2014 : : count_seconds(m_peer_connect_timeout),
2015 : : has_never,
2016 : : node.DisconnectMsg(fLogIPs)
2017 : : );
2018 : 0 : return true;
2019 : 0 : }
2020 : :
2021 [ # # ]: 0 : if (now > last_send + TIMEOUT_INTERVAL) {
2022 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2023 : : "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2024 : : node.DisconnectMsg(fLogIPs)
2025 : : );
2026 : 0 : return true;
2027 : : }
2028 : :
2029 [ # # ]: 0 : if (now > last_recv + TIMEOUT_INTERVAL) {
2030 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2031 : : "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2032 : : node.DisconnectMsg(fLogIPs)
2033 : : );
2034 : 0 : return true;
2035 : : }
2036 : :
2037 [ # # ]: 0 : if (!node.fSuccessfullyConnected) {
2038 [ # # ]: 0 : if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2039 [ # # # # ]: 0 : LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2040 : : } else {
2041 [ # # # # ]: 0 : LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2042 : : }
2043 : 0 : return true;
2044 : : }
2045 : :
2046 : : return false;
2047 : : }
2048 : :
2049 : 0 : Sock::EventsPerSock CConnman::GenerateWaitSockets(std::span<CNode* const> nodes)
2050 : : {
2051 : 0 : Sock::EventsPerSock events_per_sock;
2052 : :
2053 [ # # ]: 0 : for (const ListenSocket& hListenSocket : vhListenSocket) {
2054 [ # # ]: 0 : events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2055 : : }
2056 : :
2057 [ # # ]: 0 : for (CNode* pnode : nodes) {
2058 [ # # ]: 0 : bool select_recv = !pnode->fPauseRecv;
2059 : 0 : bool select_send;
2060 : 0 : {
2061 [ # # ]: 0 : LOCK(pnode->cs_vSend);
2062 : : // Sending is possible if either there are bytes to send right now, or if there will be
2063 : : // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2064 : : // determines both of these in a single call.
2065 [ # # ]: 0 : const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2066 [ # # # # : 0 : select_send = !to_send.empty() || more;
# # ]
2067 : 0 : }
2068 [ # # ]: 0 : if (!select_recv && !select_send) continue;
2069 : :
2070 [ # # ]: 0 : LOCK(pnode->m_sock_mutex);
2071 [ # # ]: 0 : if (pnode->m_sock) {
2072 [ # # # # ]: 0 : Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2073 [ # # ]: 0 : events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2074 : : }
2075 : 0 : }
2076 : :
2077 : 0 : return events_per_sock;
2078 : 0 : }
2079 : :
2080 : 0 : void CConnman::SocketHandler()
2081 : : {
2082 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2083 : :
2084 [ # # ]: 0 : Sock::EventsPerSock events_per_sock;
2085 : :
2086 : 0 : {
2087 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/false};
2088 : :
2089 : 0 : const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2090 : :
2091 : : // Check for the readiness of the already connected sockets and the
2092 : : // listening sockets in one call ("readiness" as in poll(2) or
2093 : : // select(2)). If none are ready, wait for a short while and return
2094 : : // empty sets.
2095 [ # # ]: 0 : events_per_sock = GenerateWaitSockets(snap.Nodes());
2096 [ # # # # : 0 : if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
# # ]
2097 [ # # ]: 0 : interruptNet.sleep_for(timeout);
2098 : : }
2099 : :
2100 : : // Service (send/receive) each of the already connected nodes.
2101 [ # # ]: 0 : SocketHandlerConnected(snap.Nodes(), events_per_sock);
2102 : 0 : }
2103 : :
2104 : : // Accept new connections from listening sockets.
2105 [ # # ]: 0 : SocketHandlerListening(events_per_sock);
2106 : 0 : }
2107 : :
2108 : 0 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2109 : : const Sock::EventsPerSock& events_per_sock)
2110 : : {
2111 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2112 : :
2113 [ # # ]: 0 : for (CNode* pnode : nodes) {
2114 [ # # ]: 0 : if (interruptNet)
2115 : : return;
2116 : :
2117 : : //
2118 : : // Receive
2119 : : //
2120 : 0 : bool recvSet = false;
2121 : 0 : bool sendSet = false;
2122 : 0 : bool errorSet = false;
2123 : 0 : {
2124 : 0 : LOCK(pnode->m_sock_mutex);
2125 [ # # ]: 0 : if (!pnode->m_sock) {
2126 [ # # ]: 0 : continue;
2127 : : }
2128 [ # # # # ]: 0 : const auto it = events_per_sock.find(pnode->m_sock);
2129 [ # # # # ]: 0 : if (it != events_per_sock.end()) {
2130 : 0 : recvSet = it->second.occurred & Sock::RECV;
2131 : 0 : sendSet = it->second.occurred & Sock::SEND;
2132 : 0 : errorSet = it->second.occurred & Sock::ERR;
2133 : : }
2134 : 0 : }
2135 : :
2136 [ # # ]: 0 : if (sendSet) {
2137 : : // Send data
2138 [ # # # # ]: 0 : auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2139 [ # # ]: 0 : if (bytes_sent) {
2140 : 0 : RecordBytesSent(bytes_sent);
2141 : :
2142 : : // If both receiving and (non-optimistic) sending were possible, we first attempt
2143 : : // sending. If that succeeds, but does not fully drain the send queue, do not
2144 : : // attempt to receive. This avoids needlessly queueing data if the remote peer
2145 : : // is slow at receiving data, by means of TCP flow control. We only do this when
2146 : : // sending actually succeeded to make sure progress is always made; otherwise a
2147 : : // deadlock would be possible when both sides have data to send, but neither is
2148 : : // receiving.
2149 [ # # ]: 0 : if (data_left) recvSet = false;
2150 : : }
2151 : : }
2152 : :
2153 [ # # ]: 0 : if (recvSet || errorSet)
2154 : : {
2155 : : // typical socket buffer is 8K-64K
2156 : 0 : uint8_t pchBuf[0x10000];
2157 : 0 : int nBytes = 0;
2158 : 0 : {
2159 : 0 : LOCK(pnode->m_sock_mutex);
2160 [ # # ]: 0 : if (!pnode->m_sock) {
2161 [ # # ]: 0 : continue;
2162 : : }
2163 [ # # # # ]: 0 : nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2164 : 0 : }
2165 [ # # ]: 0 : if (nBytes > 0)
2166 : : {
2167 : 0 : bool notify = false;
2168 [ # # ]: 0 : if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2169 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2170 : : "receiving message bytes failed, %s\n",
2171 : : pnode->DisconnectMsg(fLogIPs)
2172 : : );
2173 : 0 : pnode->CloseSocketDisconnect();
2174 : : }
2175 : 0 : RecordBytesRecv(nBytes);
2176 [ # # ]: 0 : if (notify) {
2177 : 0 : pnode->MarkReceivedMsgsForProcessing();
2178 : 0 : WakeMessageHandler();
2179 : : }
2180 : : }
2181 [ # # ]: 0 : else if (nBytes == 0)
2182 : : {
2183 : : // socket closed gracefully
2184 [ # # ]: 0 : if (!pnode->fDisconnect) {
2185 [ # # # # ]: 0 : LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2186 : : }
2187 : 0 : pnode->CloseSocketDisconnect();
2188 : : }
2189 [ # # ]: 0 : else if (nBytes < 0)
2190 : : {
2191 : : // error
2192 : 0 : int nErr = WSAGetLastError();
2193 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2194 : : {
2195 [ # # ]: 0 : if (!pnode->fDisconnect) {
2196 [ # # # # : 0 : LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
# # ]
2197 : : }
2198 : 0 : pnode->CloseSocketDisconnect();
2199 : : }
2200 : : }
2201 : : }
2202 : :
2203 [ # # ]: 0 : if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2204 : : }
2205 : : }
2206 : :
2207 : 0 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2208 : : {
2209 [ # # ]: 0 : for (const ListenSocket& listen_socket : vhListenSocket) {
2210 [ # # ]: 0 : if (interruptNet) {
2211 : : return;
2212 : : }
2213 [ # # # # ]: 0 : const auto it = events_per_sock.find(listen_socket.sock);
2214 [ # # # # ]: 0 : if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2215 : 0 : AcceptConnection(listen_socket);
2216 : : }
2217 : : }
2218 : : }
2219 : :
2220 : 0 : void CConnman::ThreadSocketHandler()
2221 : : {
2222 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2223 : :
2224 [ # # ]: 0 : while (!interruptNet)
2225 : : {
2226 : 0 : DisconnectNodes();
2227 : 0 : NotifyNumConnectionsChanged();
2228 : 0 : SocketHandler();
2229 : : }
2230 : 0 : }
2231 : :
2232 : 1 : void CConnman::WakeMessageHandler()
2233 : : {
2234 : 1 : {
2235 : 1 : LOCK(mutexMsgProc);
2236 [ + - ]: 1 : fMsgProcWake = true;
2237 : 1 : }
2238 : 1 : condMsgProc.notify_one();
2239 : 1 : }
2240 : :
2241 : 0 : void CConnman::ThreadDNSAddressSeed()
2242 : : {
2243 : 0 : int outbound_connection_count = 0;
2244 : :
2245 [ # # # # ]: 0 : if (!gArgs.GetArgs("-seednode").empty()) {
2246 : 0 : auto start = NodeClock::now();
2247 : 0 : constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2248 : 0 : LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2249 [ # # ]: 0 : while (!interruptNet) {
2250 [ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2251 : : return;
2252 : :
2253 : : // Abort if we have spent enough time without reaching our target.
2254 : : // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2255 [ # # ]: 0 : if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2256 : 0 : LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2257 : 0 : break;
2258 : : }
2259 : :
2260 : 0 : outbound_connection_count = GetFullOutboundConnCount();
2261 [ # # ]: 0 : if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2262 : 0 : LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2263 : 0 : break;
2264 : : }
2265 : : }
2266 : : }
2267 : :
2268 : 0 : FastRandomContext rng;
2269 [ # # ]: 0 : std::vector<std::string> seeds = m_params.DNSSeeds();
2270 : 0 : std::shuffle(seeds.begin(), seeds.end(), rng);
2271 : 0 : int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2272 : :
2273 [ # # # # : 0 : if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
# # ]
2274 : : // When -forcednsseed is provided, query all.
2275 : 0 : seeds_right_now = seeds.size();
2276 [ # # # # ]: 0 : } else if (addrman.Size() == 0) {
2277 : : // If we have no known peers, query all.
2278 : : // This will occur on the first run, or if peers.dat has been
2279 : : // deleted.
2280 : 0 : seeds_right_now = seeds.size();
2281 : : }
2282 : :
2283 : : // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2284 [ # # ]: 0 : if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2285 : : // goal: only query DNS seed if address need is acute
2286 : : // * If we have a reasonable number of peers in addrman, spend
2287 : : // some time trying them first. This improves user privacy by
2288 : : // creating fewer identifying DNS requests, reduces trust by
2289 : : // giving seeds less influence on the network topology, and
2290 : : // reduces traffic to the seeds.
2291 : : // * When querying DNS seeds query a few at once, this ensures
2292 : : // that we don't give DNS seeds the ability to eclipse nodes
2293 : : // that query them.
2294 : : // * If we continue having problems, eventually query all the
2295 : : // DNS seeds, and if that fails too, also try the fixed seeds.
2296 : : // (done in ThreadOpenConnections)
2297 : 0 : int found = 0;
2298 [ # # # # ]: 0 : const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2299 : :
2300 [ # # ]: 0 : for (const std::string& seed : seeds) {
2301 [ # # ]: 0 : if (seeds_right_now == 0) {
2302 : 0 : seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2303 : :
2304 [ # # # # ]: 0 : if (addrman.Size() > 0) {
2305 [ # # ]: 0 : LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2306 : 0 : std::chrono::seconds to_wait = seeds_wait_time;
2307 [ # # ]: 0 : while (to_wait.count() > 0) {
2308 : : // if sleeping for the MANY_PEERS interval, wake up
2309 : : // early to see if we have enough peers and can stop
2310 : : // this thread entirely freeing up its resources
2311 : 0 : std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2312 [ # # # # ]: 0 : if (!interruptNet.sleep_for(w)) return;
2313 [ # # ]: 0 : to_wait -= w;
2314 : :
2315 [ # # # # ]: 0 : if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2316 [ # # ]: 0 : if (found > 0) {
2317 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2318 [ # # ]: 0 : LogPrintf("P2P peers available. Finished DNS seeding.\n");
2319 : : } else {
2320 [ # # ]: 0 : LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2321 : : }
2322 : 0 : return;
2323 : : }
2324 : : }
2325 : : }
2326 : : }
2327 : :
2328 [ # # # # ]: 0 : if (interruptNet) return;
2329 : :
2330 : : // hold off on querying seeds if P2P network deactivated
2331 [ # # ]: 0 : if (!fNetworkActive) {
2332 [ # # ]: 0 : LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2333 : 0 : do {
2334 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2335 [ # # ]: 0 : } while (!fNetworkActive);
2336 : : }
2337 : :
2338 [ # # ]: 0 : LogPrintf("Loading addresses from DNS seed %s\n", seed);
2339 : : // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2340 : : // for the base dns seed domain in chainparams
2341 [ # # # # ]: 0 : if (HaveNameProxy()) {
2342 [ # # ]: 0 : AddAddrFetch(seed);
2343 : : } else {
2344 : 0 : std::vector<CAddress> vAdd;
2345 : 0 : constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2346 [ # # ]: 0 : std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2347 [ # # ]: 0 : CNetAddr resolveSource;
2348 [ # # # # ]: 0 : if (!resolveSource.SetInternal(host)) {
2349 : 0 : continue;
2350 : : }
2351 : : // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2352 : : // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2353 : : // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2354 : : // returned.
2355 : 0 : unsigned int nMaxIPs = 32;
2356 [ # # # # ]: 0 : const auto addresses{LookupHost(host, nMaxIPs, true)};
2357 [ # # ]: 0 : if (!addresses.empty()) {
2358 [ # # ]: 0 : for (const CNetAddr& ip : addresses) {
2359 [ # # ]: 0 : CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2360 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2361 [ # # ]: 0 : vAdd.push_back(addr);
2362 : 0 : found++;
2363 : 0 : }
2364 [ # # ]: 0 : addrman.Add(vAdd, resolveSource);
2365 : : } else {
2366 : : // If the seed does not support a subdomain with our desired service bits,
2367 : : // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2368 : : // base dns seed domain in chainparams
2369 [ # # ]: 0 : AddAddrFetch(seed);
2370 : : }
2371 : 0 : }
2372 : 0 : --seeds_right_now;
2373 : : }
2374 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2375 : : } else {
2376 [ # # ]: 0 : LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2377 : : }
2378 : 0 : }
2379 : :
2380 : 0 : void CConnman::DumpAddresses()
2381 : : {
2382 : 0 : const auto start{SteadyClock::now()};
2383 : :
2384 : 0 : DumpPeerAddresses(::gArgs, addrman);
2385 : :
2386 [ # # ]: 0 : LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2387 : : addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2388 : 0 : }
2389 : :
2390 : 0 : void CConnman::ProcessAddrFetch()
2391 : : {
2392 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2393 [ # # ]: 0 : std::string strDest;
2394 : 0 : {
2395 [ # # ]: 0 : LOCK(m_addr_fetches_mutex);
2396 [ # # ]: 0 : if (m_addr_fetches.empty())
2397 [ # # ]: 0 : return;
2398 [ # # ]: 0 : strDest = m_addr_fetches.front();
2399 [ # # ]: 0 : m_addr_fetches.pop_front();
2400 : 0 : }
2401 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2402 : : // peer doesn't support it or immediately disconnects us for another reason.
2403 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2404 [ # # ]: 0 : CAddress addr;
2405 : 0 : CountingSemaphoreGrant<> grant(*semOutbound, /*fTry=*/true);
2406 [ # # ]: 0 : if (grant) {
2407 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2408 : : }
2409 : 0 : }
2410 : :
2411 : 3 : bool CConnman::GetTryNewOutboundPeer() const
2412 : : {
2413 : 3 : return m_try_another_outbound_peer;
2414 : : }
2415 : :
2416 : 183 : void CConnman::SetTryNewOutboundPeer(bool flag)
2417 : : {
2418 : 183 : m_try_another_outbound_peer = flag;
2419 [ + - + + ]: 365 : LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2420 : 183 : }
2421 : :
2422 : 0 : void CConnman::StartExtraBlockRelayPeers()
2423 : : {
2424 [ # # ]: 0 : LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2425 : 0 : m_start_extra_block_relay_peers = true;
2426 : 0 : }
2427 : :
2428 : : // Return the number of outbound connections that are full relay (not blocks only)
2429 : 0 : int CConnman::GetFullOutboundConnCount() const
2430 : : {
2431 : 0 : int nRelevant = 0;
2432 : 0 : {
2433 : 0 : LOCK(m_nodes_mutex);
2434 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2435 [ # # # # ]: 0 : if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2436 : : }
2437 : 0 : }
2438 : 0 : return nRelevant;
2439 : : }
2440 : :
2441 : : // Return the number of peers we have over our outbound connection limit
2442 : : // Exclude peers that are marked for disconnect, or are going to be
2443 : : // disconnected soon (eg ADDR_FETCH and FEELER)
2444 : : // Also exclude peers that haven't finished initial connection handshake yet
2445 : : // (so that we don't decide we're over our desired connection limit, and then
2446 : : // evict some peer that has finished the handshake)
2447 : 10 : int CConnman::GetExtraFullOutboundCount() const
2448 : : {
2449 : 10 : int full_outbound_peers = 0;
2450 : 10 : {
2451 : 10 : LOCK(m_nodes_mutex);
2452 [ + + ]: 76 : for (const CNode* pnode : m_nodes) {
2453 [ + - + + : 66 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
+ + ]
2454 : 54 : ++full_outbound_peers;
2455 : : }
2456 : : }
2457 : 10 : }
2458 [ + + ]: 10 : return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2459 : : }
2460 : :
2461 : 10 : int CConnman::GetExtraBlockRelayCount() const
2462 : : {
2463 : 10 : int block_relay_peers = 0;
2464 : 10 : {
2465 : 10 : LOCK(m_nodes_mutex);
2466 [ + + ]: 76 : for (const CNode* pnode : m_nodes) {
2467 [ + - + + : 66 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
+ + ]
2468 : 11 : ++block_relay_peers;
2469 : : }
2470 : : }
2471 : 10 : }
2472 [ + + ]: 10 : return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2473 : : }
2474 : :
2475 : 0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2476 : : {
2477 : 0 : std::unordered_set<Network> networks{};
2478 [ # # ]: 0 : for (int n = 0; n < NET_MAX; n++) {
2479 : 0 : enum Network net = (enum Network)n;
2480 [ # # ]: 0 : if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2481 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
# # # # ]
2482 [ # # ]: 0 : networks.insert(net);
2483 : : }
2484 : : }
2485 : 0 : return networks;
2486 : 0 : }
2487 : :
2488 : 38 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2489 : : {
2490 : 38 : AssertLockHeld(m_nodes_mutex);
2491 : 38 : return m_network_conn_counts[net] > 1;
2492 : : }
2493 : :
2494 : 0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2495 : : {
2496 : 0 : std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2497 : 0 : std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2498 : :
2499 : 0 : LOCK(m_nodes_mutex);
2500 [ # # ]: 0 : for (const auto net : nets) {
2501 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
# # # # #
# ]
2502 : 0 : network = net;
2503 : 0 : return true;
2504 : : }
2505 : : }
2506 : :
2507 : : return false;
2508 : 0 : }
2509 : :
2510 : 0 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2511 : : {
2512 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2513 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2514 : 0 : FastRandomContext rng;
2515 : : // Connect to specific addresses
2516 [ # # ]: 0 : if (!connect.empty())
2517 : : {
2518 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2519 : : // peer doesn't support it or immediately disconnects us for another reason.
2520 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2521 : 0 : for (int64_t nLoop = 0;; nLoop++)
2522 : : {
2523 [ # # ]: 0 : for (const std::string& strAddr : connect)
2524 : : {
2525 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2526 [ # # ]: 0 : OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2527 [ # # # # ]: 0 : for (int i = 0; i < 10 && i < nLoop; i++)
2528 : : {
2529 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2530 : 0 : return;
2531 : : }
2532 : 0 : }
2533 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2534 : : return;
2535 [ # # ]: 0 : PerformReconnections();
2536 : 0 : }
2537 : : }
2538 : :
2539 : : // Initiate network connections
2540 : 0 : auto start = GetTime<std::chrono::microseconds>();
2541 : :
2542 : : // Minimum time before next feeler connection (in microseconds).
2543 : 0 : auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2544 : 0 : auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2545 [ # # ]: 0 : auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2546 [ # # # # ]: 0 : const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2547 [ # # # # ]: 0 : bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2548 [ # # # # ]: 0 : const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2549 : :
2550 : 0 : auto seed_node_timer = NodeClock::now();
2551 [ # # # # : 0 : bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
# # ]
2552 : 0 : constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2553 : :
2554 [ # # ]: 0 : if (!add_fixed_seeds) {
2555 [ # # ]: 0 : LogPrintf("Fixed seeds are disabled\n");
2556 : : }
2557 : :
2558 [ # # # # ]: 0 : while (!interruptNet)
2559 : : {
2560 [ # # ]: 0 : if (add_addr_fetch) {
2561 : 0 : add_addr_fetch = false;
2562 : 0 : const auto& seed{SpanPopBack(seed_nodes)};
2563 [ # # ]: 0 : AddAddrFetch(seed);
2564 : :
2565 [ # # # # ]: 0 : if (addrman.Size() == 0) {
2566 [ # # ]: 0 : LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2567 : : } else {
2568 [ # # ]: 0 : LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2569 : : }
2570 : : }
2571 : :
2572 [ # # ]: 0 : ProcessAddrFetch();
2573 : :
2574 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2575 : : return;
2576 : :
2577 [ # # ]: 0 : PerformReconnections();
2578 : :
2579 : 0 : CountingSemaphoreGrant<> grant(*semOutbound);
2580 [ # # # # ]: 0 : if (interruptNet)
2581 : : return;
2582 : :
2583 [ # # ]: 0 : const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2584 [ # # # # ]: 0 : if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2585 : : // When the node starts with an empty peers.dat, there are a few other sources of peers before
2586 : : // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2587 : : // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2588 : : // 60 seconds for any of those sources to populate addrman.
2589 : 0 : bool add_fixed_seeds_now = false;
2590 : : // It is cheapest to check if enough time has passed first.
2591 [ # # ]: 0 : if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2592 : 0 : add_fixed_seeds_now = true;
2593 [ # # ]: 0 : LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2594 : : }
2595 : :
2596 : : // Perform cheap checks before locking a mutex.
2597 [ # # ]: 0 : else if (!dnsseed && !use_seednodes) {
2598 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
2599 [ # # ]: 0 : if (m_added_node_params.empty()) {
2600 : 0 : add_fixed_seeds_now = true;
2601 [ # # ]: 0 : LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2602 : : }
2603 : 0 : }
2604 : :
2605 [ # # ]: 0 : if (add_fixed_seeds_now) {
2606 [ # # ]: 0 : std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2607 : : // We will not make outgoing connections to peers that are unreachable
2608 : : // (e.g. because of -onlynet configuration).
2609 : : // Therefore, we do not add them to addrman in the first place.
2610 : : // In case previously unreachable networks become reachable
2611 : : // (e.g. in case of -onlynet changes by the user), fixed seeds will
2612 : : // be loaded only for networks for which we have no addresses.
2613 [ # # ]: 0 : seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2614 : 0 : [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2615 [ # # ]: 0 : seed_addrs.end());
2616 [ # # ]: 0 : CNetAddr local;
2617 [ # # # # ]: 0 : local.SetInternal("fixedseeds");
2618 [ # # ]: 0 : addrman.Add(seed_addrs, local);
2619 : 0 : add_fixed_seeds = false;
2620 [ # # ]: 0 : LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2621 : 0 : }
2622 : : }
2623 : :
2624 : : //
2625 : : // Choose an address to connect to based on most recently seen
2626 : : //
2627 [ # # ]: 0 : CAddress addrConnect;
2628 : :
2629 : : // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2630 : 0 : int nOutboundFullRelay = 0;
2631 : 0 : int nOutboundBlockRelay = 0;
2632 : 0 : int outbound_privacy_network_peers = 0;
2633 [ # # ]: 0 : std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2634 : :
2635 : 0 : {
2636 [ # # ]: 0 : LOCK(m_nodes_mutex);
2637 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2638 [ # # ]: 0 : if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2639 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2640 : :
2641 : : // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2642 [ # # ]: 0 : switch (pnode->m_conn_type) {
2643 : : // We currently don't take inbound connections into account. Since they are
2644 : : // free to make, an attacker could make them to prevent us from connecting to
2645 : : // certain peers.
2646 : : case ConnectionType::INBOUND:
2647 : : // Short-lived outbound connections should not affect how we select outbound
2648 : : // peers from addrman.
2649 : : case ConnectionType::ADDR_FETCH:
2650 : : case ConnectionType::FEELER:
2651 : : break;
2652 : 0 : case ConnectionType::MANUAL:
2653 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
2654 : 0 : case ConnectionType::BLOCK_RELAY:
2655 : 0 : const CAddress address{pnode->addr};
2656 [ # # # # : 0 : if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
# # ]
2657 : : // Since our addrman-groups for these networks are
2658 : : // random, without relation to the route we
2659 : : // take to connect to these peers or to the
2660 : : // difficulty in obtaining addresses with diverse
2661 : : // groups, we don't worry about diversity with
2662 : : // respect to our addrman groups when connecting to
2663 : : // these networks.
2664 : 0 : ++outbound_privacy_network_peers;
2665 : : } else {
2666 [ # # # # ]: 0 : outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2667 : : }
2668 : : } // no default case, so the compiler can warn about missing cases
2669 : : }
2670 : 0 : }
2671 : :
2672 [ # # # # ]: 0 : if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2673 [ # # ]: 0 : if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2674 : 0 : seed_node_timer = NodeClock::now();
2675 : 0 : add_addr_fetch = true;
2676 : : }
2677 : : }
2678 : :
2679 : 0 : ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2680 : 0 : auto now = GetTime<std::chrono::microseconds>();
2681 : 0 : bool anchor = false;
2682 : 0 : bool fFeeler = false;
2683 : 0 : std::optional<Network> preferred_net;
2684 : :
2685 : : // Determine what type of connection to open. Opening
2686 : : // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2687 : : // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2688 : : // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2689 : : // until we hit our block-relay-only peer limit.
2690 : : // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2691 : : // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2692 : : // these conditions are met, check to see if it's time to try an extra
2693 : : // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2694 : : // timer to decide if we should open a FEELER.
2695 : :
2696 [ # # # # ]: 0 : if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2697 : : conn_type = ConnectionType::BLOCK_RELAY;
2698 : : anchor = true;
2699 [ # # ]: 0 : } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2700 : : // OUTBOUND_FULL_RELAY
2701 [ # # ]: 0 : } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2702 : : conn_type = ConnectionType::BLOCK_RELAY;
2703 [ # # # # ]: 0 : } else if (GetTryNewOutboundPeer()) {
2704 : : // OUTBOUND_FULL_RELAY
2705 [ # # # # ]: 0 : } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2706 : : // Periodically connect to a peer (using regular outbound selection
2707 : : // methodology from addrman) and stay connected long enough to sync
2708 : : // headers, but not much else.
2709 : : //
2710 : : // Then disconnect the peer, if we haven't learned anything new.
2711 : : //
2712 : : // The idea is to make eclipse attacks very difficult to pull off,
2713 : : // because every few minutes we're finding a new peer to learn headers
2714 : : // from.
2715 : : //
2716 : : // This is similar to the logic for trying extra outbound (full-relay)
2717 : : // peers, except:
2718 : : // - we do this all the time on an exponential timer, rather than just when
2719 : : // our tip is stale
2720 : : // - we potentially disconnect our next-youngest block-relay-only peer, if our
2721 : : // newest block-relay-only peer delivers a block more recently.
2722 : : // See the eviction logic in net_processing.cpp.
2723 : : //
2724 : : // Because we can promote these connections to block-relay-only
2725 : : // connections, they do not get their own ConnectionType enum
2726 : : // (similar to how we deal with extra outbound peers).
2727 : 0 : next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2728 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2729 [ # # ]: 0 : } else if (now > next_feeler) {
2730 : 0 : next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2731 : 0 : conn_type = ConnectionType::FEELER;
2732 : 0 : fFeeler = true;
2733 [ # # ]: 0 : } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2734 [ # # ]: 0 : m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2735 [ # # # # : 0 : now > next_extra_network_peer &&
# # ]
2736 [ # # ]: 0 : MaybePickPreferredNetwork(preferred_net)) {
2737 : : // Full outbound connection management: Attempt to get at least one
2738 : : // outbound peer from each reachable network by making extra connections
2739 : : // and then protecting "only" peers from a network during outbound eviction.
2740 : : // This is not attempted if the user changed -maxconnections to a value
2741 : : // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2742 : : // to prevent interactions with otherwise protected outbound peers.
2743 : 0 : next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2744 : : } else {
2745 : : // skip to next iteration of while loop
2746 : 0 : continue;
2747 : : }
2748 : :
2749 [ # # ]: 0 : addrman.ResolveCollisions();
2750 : :
2751 : 0 : const auto current_time{NodeClock::now()};
2752 : 0 : int nTries = 0;
2753 [ # # ]: 0 : const auto reachable_nets{g_reachable_nets.All()};
2754 : :
2755 [ # # # # ]: 0 : while (!interruptNet)
2756 : : {
2757 [ # # # # ]: 0 : if (anchor && !m_anchors.empty()) {
2758 : 0 : const CAddress addr = m_anchors.back();
2759 : 0 : m_anchors.pop_back();
2760 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
# # # # #
# # # #
# ]
2761 [ # # # # : 0 : !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
# # ]
2762 [ # # ]: 0 : outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2763 : 0 : addrConnect = addr;
2764 [ # # # # : 0 : LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2765 : 0 : break;
2766 : 0 : }
2767 : :
2768 : : // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2769 : : // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2770 : : // already-connected network ranges, ...) before trying new addrman addresses.
2771 : 0 : nTries++;
2772 [ # # ]: 0 : if (nTries > 100)
2773 : : break;
2774 : :
2775 [ # # ]: 0 : CAddress addr;
2776 : 0 : NodeSeconds addr_last_try{0s};
2777 : :
2778 [ # # ]: 0 : if (fFeeler) {
2779 : : // First, try to get a tried table collision address. This returns
2780 : : // an empty (invalid) address if there are no collisions to try.
2781 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2782 : :
2783 [ # # # # ]: 0 : if (!addr.IsValid()) {
2784 : : // No tried table collisions. Select a new table address
2785 : : // for our feeler.
2786 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2787 [ # # # # ]: 0 : } else if (AlreadyConnectedToAddress(addr)) {
2788 : : // If test-before-evict logic would have us connect to a
2789 : : // peer that we're already connected to, just mark that
2790 : : // address as Good(). We won't be able to initiate the
2791 : : // connection anyway, so this avoids inadvertently evicting
2792 : : // a currently-connected peer.
2793 [ # # ]: 0 : addrman.Good(addr);
2794 : : // Select a new table address for our feeler instead.
2795 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2796 : : }
2797 : : } else {
2798 : : // Not a feeler
2799 : : // If preferred_net has a value set, pick an extra outbound
2800 : : // peer from that network. The eviction logic in net_processing
2801 : : // ensures that a peer from another network will be evicted.
2802 [ # # ]: 0 : std::tie(addr, addr_last_try) = preferred_net.has_value()
2803 [ # # # # : 0 : ? addrman.Select(false, {*preferred_net})
# # # # #
# ]
2804 [ # # ]: 0 : : addrman.Select(false, reachable_nets);
2805 : : }
2806 : :
2807 : : // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2808 [ # # # # : 0 : if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
# # # # ]
2809 : 0 : continue;
2810 : : }
2811 : :
2812 : : // if we selected an invalid or local address, restart
2813 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr)) {
# # # # ]
2814 : : break;
2815 : : }
2816 : :
2817 [ # # # # ]: 0 : if (!g_reachable_nets.Contains(addr)) {
2818 : 0 : continue;
2819 : : }
2820 : :
2821 : : // only consider very recently tried nodes after 30 failed attempts
2822 [ # # # # ]: 0 : if (current_time - addr_last_try < 10min && nTries < 30) {
2823 : 0 : continue;
2824 : : }
2825 : :
2826 : : // for non-feelers, require all the services we'll want,
2827 : : // for feelers, only require they be a full node (only because most
2828 : : // SPV clients don't have a good address DB available)
2829 [ # # # # : 0 : if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
# # ]
2830 : 0 : continue;
2831 [ # # # # ]: 0 : } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2832 : 0 : continue;
2833 : : }
2834 : :
2835 : : // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2836 [ # # # # : 0 : if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
# # # # #
# # # ]
2837 : 0 : continue;
2838 : : }
2839 : :
2840 : : // Do not make automatic outbound connections to addnode peers, to
2841 : : // not use our limited outbound slots for them and to ensure
2842 : : // addnode connections benefit from their intended protections.
2843 [ # # # # ]: 0 : if (AddedNodesContain(addr)) {
2844 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
# # # # #
# # # # #
# # # # #
# # # # #
# # ]
2845 : : preferred_net.has_value() ? "network-specific " : "",
2846 : : ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2847 : : fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2848 : 0 : continue;
2849 : : }
2850 : :
2851 : 0 : addrConnect = addr;
2852 : : break;
2853 : 0 : }
2854 : :
2855 [ # # # # ]: 0 : if (addrConnect.IsValid()) {
2856 [ # # ]: 0 : if (fFeeler) {
2857 : : // Add small amount of random noise before connection to avoid synchronization.
2858 [ # # # # ]: 0 : if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2859 : 0 : return;
2860 : : }
2861 [ # # # # : 0 : LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2862 : : }
2863 : :
2864 [ # # # # : 0 : if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
# # # # #
# # # #
# ]
2865 : :
2866 : : // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2867 : : // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2868 : : // Don't record addrman failure attempts when node is offline. This can be identified since all local
2869 : : // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2870 [ # # ]: 0 : const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2871 : : // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2872 [ # # ]: 0 : const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2873 [ # # ]: 0 : OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2874 : : }
2875 : 0 : }
2876 : 0 : }
2877 : :
2878 : 0 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2879 : : {
2880 : 0 : std::vector<CAddress> ret;
2881 [ # # ]: 0 : LOCK(m_nodes_mutex);
2882 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2883 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) {
2884 [ # # ]: 0 : ret.push_back(pnode->addr);
2885 : : }
2886 : : }
2887 : :
2888 [ # # ]: 0 : return ret;
2889 : 0 : }
2890 : :
2891 : 3 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2892 : : {
2893 : 3 : std::vector<AddedNodeInfo> ret;
2894 : :
2895 [ + - ]: 3 : std::list<AddedNodeParams> lAddresses(0);
2896 : 3 : {
2897 [ + - ]: 3 : LOCK(m_added_nodes_mutex);
2898 [ + - ]: 3 : ret.reserve(m_added_node_params.size());
2899 [ + - ]: 3 : std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2900 : 0 : }
2901 : :
2902 : :
2903 : : // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2904 [ + - ]: 3 : std::map<CService, bool> mapConnected;
2905 : 3 : std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2906 : 3 : {
2907 [ + - ]: 3 : LOCK(m_nodes_mutex);
2908 [ + + ]: 19 : for (const CNode* pnode : m_nodes) {
2909 [ + - + - ]: 16 : if (pnode->addr.IsValid()) {
2910 [ + - ]: 16 : mapConnected[pnode->addr] = pnode->IsInboundConn();
2911 : : }
2912 [ + - ]: 16 : std::string addrName{pnode->m_addr_name};
2913 [ + - ]: 16 : if (!addrName.empty()) {
2914 [ + - ]: 16 : mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2915 : : }
2916 : 16 : }
2917 : 0 : }
2918 : :
2919 [ + + ]: 18 : for (const auto& addr : lAddresses) {
2920 [ + - + - : 30 : CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
+ - + - ]
2921 [ + - + - ]: 15 : AddedNodeInfo addedNode{addr, CService(), false, false};
2922 [ + - + - ]: 15 : if (service.IsValid()) {
2923 : : // strAddNode is an IP:port
2924 [ + - ]: 15 : auto it = mapConnected.find(service);
2925 [ + - ]: 15 : if (it != mapConnected.end()) {
2926 [ + + ]: 15 : if (!include_connected) {
2927 : 5 : continue;
2928 : : }
2929 : 10 : addedNode.resolvedAddress = service;
2930 : 10 : addedNode.fConnected = true;
2931 : 10 : addedNode.fInbound = it->second;
2932 : : }
2933 : : } else {
2934 : : // strAddNode is a name
2935 : 0 : auto it = mapConnectedByName.find(addr.m_added_node);
2936 [ # # ]: 0 : if (it != mapConnectedByName.end()) {
2937 [ # # ]: 0 : if (!include_connected) {
2938 : 0 : continue;
2939 : : }
2940 : 0 : addedNode.resolvedAddress = it->second.second;
2941 : 0 : addedNode.fConnected = true;
2942 : 0 : addedNode.fInbound = it->second.first;
2943 : : }
2944 : : }
2945 [ + - ]: 10 : ret.emplace_back(std::move(addedNode));
2946 : 15 : }
2947 : :
2948 : 3 : return ret;
2949 : 3 : }
2950 : :
2951 : 0 : void CConnman::ThreadOpenAddedConnections()
2952 : : {
2953 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2954 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2955 : 0 : while (true)
2956 : : {
2957 : 0 : CountingSemaphoreGrant<> grant(*semAddnode);
2958 [ # # ]: 0 : std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2959 : 0 : bool tried = false;
2960 [ # # ]: 0 : for (const AddedNodeInfo& info : vInfo) {
2961 [ # # ]: 0 : if (!grant) {
2962 : : // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2963 : : // the addednodeinfo state might change.
2964 : : break;
2965 : : }
2966 : 0 : tried = true;
2967 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2968 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2969 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2970 : 0 : grant = CountingSemaphoreGrant<>(*semAddnode, /*fTry=*/true);
2971 : 0 : }
2972 : : // See if any reconnections are desired.
2973 [ # # ]: 0 : PerformReconnections();
2974 : : // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2975 [ # # # # : 0 : if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
# # ]
2976 : : return;
2977 : 0 : }
2978 : : }
2979 : :
2980 : : // if successful, this moves the passed grant to the constructed node
2981 : 0 : void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CountingSemaphoreGrant<>&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2982 : : {
2983 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2984 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
2985 : :
2986 : : //
2987 : : // Initiate outbound network connection
2988 : : //
2989 [ # # ]: 0 : if (interruptNet) {
2990 : : return;
2991 : : }
2992 [ # # ]: 0 : if (!fNetworkActive) {
2993 : : return;
2994 : : }
2995 [ # # ]: 0 : if (!pszDest) {
2996 [ # # # # : 0 : bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
# # ]
2997 [ # # # # : 0 : if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
# # ]
2998 : 0 : return;
2999 : : }
3000 [ # # # # ]: 0 : } else if (FindNode(std::string(pszDest)))
3001 : : return;
3002 : :
3003 [ # # ]: 0 : CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3004 : :
3005 [ # # ]: 0 : if (!pnode)
3006 : : return;
3007 : 0 : pnode->grantOutbound = std::move(grant_outbound);
3008 : :
3009 : 0 : m_msgproc->InitializeNode(*pnode, m_local_services);
3010 : 0 : {
3011 : 0 : LOCK(m_nodes_mutex);
3012 [ # # ]: 0 : m_nodes.push_back(pnode);
3013 : :
3014 : : // update connection count by network
3015 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3016 : 0 : }
3017 : :
3018 : : TRACEPOINT(net, outbound_connection,
3019 : : pnode->GetId(),
3020 : : pnode->m_addr_name.c_str(),
3021 : : pnode->ConnectionTypeAsString().c_str(),
3022 : : pnode->ConnectedThroughNetwork(),
3023 : 0 : GetNodeCount(ConnectionDirection::Out));
3024 : : }
3025 : :
3026 : : Mutex NetEventsInterface::g_msgproc_mutex;
3027 : :
3028 : 0 : void CConnman::ThreadMessageHandler()
3029 : : {
3030 : 0 : LOCK(NetEventsInterface::g_msgproc_mutex);
3031 : :
3032 [ # # ]: 0 : while (!flagInterruptMsgProc)
3033 : : {
3034 : 0 : bool fMoreWork = false;
3035 : :
3036 : 0 : {
3037 : : // Randomize the order in which we process messages from/to our peers.
3038 : : // This prevents attacks in which an attacker exploits having multiple
3039 : : // consecutive connections in the m_nodes list.
3040 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/true};
3041 : :
3042 [ # # ]: 0 : for (CNode* pnode : snap.Nodes()) {
3043 [ # # ]: 0 : if (pnode->fDisconnect)
3044 : 0 : continue;
3045 : :
3046 : : // Receive messages
3047 [ # # ]: 0 : bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3048 [ # # # # ]: 0 : fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3049 [ # # ]: 0 : if (flagInterruptMsgProc)
3050 : : return;
3051 : : // Send messages
3052 [ # # ]: 0 : m_msgproc->SendMessages(pnode);
3053 : :
3054 [ # # ]: 0 : if (flagInterruptMsgProc)
3055 : : return;
3056 : : }
3057 [ # # ]: 0 : }
3058 : :
3059 [ # # ]: 0 : WAIT_LOCK(mutexMsgProc, lock);
3060 [ # # ]: 0 : if (!fMoreWork) {
3061 [ # # # # ]: 0 : condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3062 : : }
3063 [ # # ]: 0 : fMsgProcWake = false;
3064 : 0 : }
3065 : 0 : }
3066 : :
3067 : 0 : void CConnman::ThreadI2PAcceptIncoming()
3068 : : {
3069 : 0 : static constexpr auto err_wait_begin = 1s;
3070 : 0 : static constexpr auto err_wait_cap = 5min;
3071 : 0 : auto err_wait = err_wait_begin;
3072 : :
3073 : 0 : bool advertising_listen_addr = false;
3074 : 0 : i2p::Connection conn;
3075 : :
3076 : 0 : auto SleepOnFailure = [&]() {
3077 : 0 : interruptNet.sleep_for(err_wait);
3078 [ # # ]: 0 : if (err_wait < err_wait_cap) {
3079 : 0 : err_wait += 1s;
3080 : : }
3081 : 0 : };
3082 : :
3083 [ # # # # ]: 0 : while (!interruptNet) {
3084 : :
3085 [ # # # # ]: 0 : if (!m_i2p_sam_session->Listen(conn)) {
3086 [ # # # # : 0 : if (advertising_listen_addr && conn.me.IsValid()) {
# # ]
3087 [ # # ]: 0 : RemoveLocal(conn.me);
3088 : : advertising_listen_addr = false;
3089 : : }
3090 [ # # ]: 0 : SleepOnFailure();
3091 : 0 : continue;
3092 : : }
3093 : :
3094 [ # # ]: 0 : if (!advertising_listen_addr) {
3095 [ # # ]: 0 : AddLocal(conn.me, LOCAL_MANUAL);
3096 : : advertising_listen_addr = true;
3097 : : }
3098 : :
3099 [ # # # # ]: 0 : if (!m_i2p_sam_session->Accept(conn)) {
3100 [ # # ]: 0 : SleepOnFailure();
3101 : 0 : continue;
3102 : : }
3103 : :
3104 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None, conn.me, conn.peer);
3105 : :
3106 : 0 : err_wait = err_wait_begin;
3107 : : }
3108 : 0 : }
3109 : :
3110 : 0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3111 : : {
3112 : 0 : int nOne = 1;
3113 : :
3114 : : // Create socket for listening for incoming connections
3115 : 0 : struct sockaddr_storage sockaddr;
3116 : 0 : socklen_t len = sizeof(sockaddr);
3117 [ # # ]: 0 : if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3118 : : {
3119 [ # # # # ]: 0 : strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3120 [ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3121 : 0 : return false;
3122 : : }
3123 : :
3124 : 0 : std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3125 [ # # ]: 0 : if (!sock) {
3126 [ # # # # : 0 : strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
# # ]
3127 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3128 : 0 : return false;
3129 : : }
3130 : :
3131 : : // Allow binding if the port is still in TIME_WAIT state after
3132 : : // the program was closed and restarted.
3133 [ # # # # ]: 0 : if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3134 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3135 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3136 : : }
3137 : :
3138 : : // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3139 : : // and enable it by default or not. Try to enable it, if possible.
3140 [ # # ]: 0 : if (addrBind.IsIPv6()) {
3141 : : #ifdef IPV6_V6ONLY
3142 [ # # # # ]: 0 : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3143 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3144 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3145 : : }
3146 : : #endif
3147 : : #ifdef WIN32
3148 : : int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3149 : : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3150 : : strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3151 : : LogPrintf("%s\n", strError.original);
3152 : : }
3153 : : #endif
3154 : : }
3155 : :
3156 [ # # # # ]: 0 : if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3157 : 0 : int nErr = WSAGetLastError();
3158 [ # # ]: 0 : if (nErr == WSAEADDRINUSE)
3159 [ # # # # ]: 0 : strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3160 : : else
3161 [ # # # # : 0 : strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
# # ]
3162 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3163 : 0 : return false;
3164 : : }
3165 [ # # # # ]: 0 : LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3166 : :
3167 : : // Listen for incoming connections
3168 [ # # # # ]: 0 : if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3169 : : {
3170 [ # # # # ]: 0 : strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3171 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3172 : 0 : return false;
3173 : : }
3174 : :
3175 [ # # ]: 0 : vhListenSocket.emplace_back(std::move(sock), permissions);
3176 : : return true;
3177 : 0 : }
3178 : :
3179 : 0 : void Discover()
3180 : : {
3181 [ # # ]: 0 : if (!fDiscover)
3182 : : return;
3183 : :
3184 [ # # ]: 0 : for (const CNetAddr &addr: GetLocalAddresses()) {
3185 [ # # # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3186 [ # # # # ]: 0 : LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3187 : 0 : }
3188 : : }
3189 : :
3190 : 180 : void CConnman::SetNetworkActive(bool active)
3191 : : {
3192 : 180 : LogPrintf("%s: %s\n", __func__, active);
3193 : :
3194 [ + + ]: 180 : if (fNetworkActive == active) {
3195 : : return;
3196 : : }
3197 : :
3198 [ - + ]: 2 : fNetworkActive = active;
3199 : :
3200 [ - + ]: 2 : if (m_client_interface) {
3201 : 0 : m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3202 : : }
3203 : : }
3204 : :
3205 : 178 : CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3206 : 178 : const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3207 : 178 : : addrman(addrman_in)
3208 [ + - ]: 178 : , m_netgroupman{netgroupman}
3209 : 178 : , nSeed0(nSeed0In)
3210 : 178 : , nSeed1(nSeed1In)
3211 [ + - + - : 178 : , m_params(params)
+ - + - ]
3212 : : {
3213 [ + - ]: 178 : SetTryNewOutboundPeer(false);
3214 : :
3215 : 178 : Options connOptions;
3216 [ + - ]: 178 : Init(connOptions);
3217 [ + - ]: 178 : SetNetworkActive(network_active);
3218 : 178 : }
3219 : :
3220 : 0 : NodeId CConnman::GetNewNodeId()
3221 : : {
3222 : 0 : return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3223 : : }
3224 : :
3225 : 0 : uint16_t CConnman::GetDefaultPort(Network net) const
3226 : : {
3227 [ # # ]: 0 : return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3228 : : }
3229 : :
3230 : 44 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3231 : : {
3232 : 44 : CNetAddr a;
3233 [ + - - + : 44 : return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
- - - - ]
3234 : 44 : }
3235 : :
3236 : 0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3237 : : {
3238 : 0 : const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3239 : :
3240 [ # # ]: 0 : bilingual_str strError;
3241 [ # # # # ]: 0 : if (!BindListenPort(addr, strError, permissions)) {
3242 [ # # # # ]: 0 : if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3243 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3244 : : }
3245 : 0 : return false;
3246 : : }
3247 : :
3248 [ # # # # : 0 : if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
# # # # #
# ]
3249 [ # # ]: 0 : AddLocal(addr, LOCAL_BIND);
3250 : : }
3251 : :
3252 : : return true;
3253 : 0 : }
3254 : :
3255 : 0 : bool CConnman::InitBinds(const Options& options)
3256 : : {
3257 [ # # ]: 0 : for (const auto& addrBind : options.vBinds) {
3258 [ # # ]: 0 : if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3259 : : return false;
3260 : : }
3261 : : }
3262 [ # # ]: 0 : for (const auto& addrBind : options.vWhiteBinds) {
3263 [ # # ]: 0 : if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3264 : : return false;
3265 : : }
3266 : : }
3267 [ # # ]: 0 : for (const auto& addr_bind : options.onion_binds) {
3268 [ # # ]: 0 : if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3269 : : return false;
3270 : : }
3271 : : }
3272 [ # # ]: 0 : if (options.bind_on_any) {
3273 : : // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3274 : : // may not have IPv6 support and the user did not explicitly ask us to
3275 : : // bind on that.
3276 : 0 : const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3277 [ # # ]: 0 : Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3278 : :
3279 : 0 : struct in_addr inaddr_any;
3280 : 0 : inaddr_any.s_addr = htonl(INADDR_ANY);
3281 [ # # # # ]: 0 : const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3282 [ # # # # ]: 0 : if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3283 : 0 : return false;
3284 : : }
3285 : 0 : }
3286 : : return true;
3287 : : }
3288 : :
3289 : 0 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3290 : : {
3291 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3292 : 0 : Init(connOptions);
3293 : :
3294 [ # # # # ]: 0 : if (fListen && !InitBinds(connOptions)) {
3295 [ # # ]: 0 : if (m_client_interface) {
3296 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3297 [ # # ]: 0 : _("Failed to listen on any port. Use -listen=0 if you want this."),
3298 : : "", CClientUIInterface::MSG_ERROR);
3299 : : }
3300 : 0 : return false;
3301 : : }
3302 : :
3303 : 0 : Proxy i2p_sam;
3304 [ # # # # : 0 : if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
# # ]
3305 [ # # # # ]: 0 : m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3306 [ # # ]: 0 : i2p_sam, &interruptNet);
3307 : : }
3308 : :
3309 : : // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3310 [ # # ]: 0 : std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3311 [ # # ]: 0 : if (!seed_nodes.empty()) {
3312 : 0 : std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3313 : : }
3314 : :
3315 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3316 : : // Load addresses from anchors.dat
3317 [ # # # # : 0 : m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
# # ]
3318 [ # # ]: 0 : if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3319 [ # # ]: 0 : m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3320 : : }
3321 [ # # ]: 0 : LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3322 : : }
3323 : :
3324 [ # # ]: 0 : if (m_client_interface) {
3325 [ # # # # ]: 0 : m_client_interface->InitMessage(_("Starting network threads…"));
3326 : : }
3327 : :
3328 : 0 : fAddressesInitialized = true;
3329 : :
3330 [ # # ]: 0 : if (semOutbound == nullptr) {
3331 : : // initialize semaphore
3332 [ # # # # ]: 0 : semOutbound = std::make_unique<std::counting_semaphore<>>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3333 : : }
3334 [ # # ]: 0 : if (semAddnode == nullptr) {
3335 : : // initialize semaphore
3336 [ # # ]: 0 : semAddnode = std::make_unique<std::counting_semaphore<>>(m_max_addnode);
3337 : : }
3338 : :
3339 : : //
3340 : : // Start threads
3341 : : //
3342 [ # # ]: 0 : assert(m_msgproc);
3343 [ # # ]: 0 : interruptNet.reset();
3344 [ # # ]: 0 : flagInterruptMsgProc = false;
3345 : :
3346 : 0 : {
3347 [ # # ]: 0 : LOCK(mutexMsgProc);
3348 [ # # ]: 0 : fMsgProcWake = false;
3349 : 0 : }
3350 : :
3351 : : // Send and receive from sockets, accept connections
3352 [ # # ]: 0 : threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3353 : :
3354 [ # # # # : 0 : if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
# # ]
3355 [ # # ]: 0 : LogPrintf("DNS seeding disabled\n");
3356 : : else
3357 [ # # ]: 0 : threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3358 : :
3359 : : // Initiate manual connections
3360 [ # # ]: 0 : threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3361 : :
3362 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3363 [ # # ]: 0 : if (m_client_interface) {
3364 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3365 [ # # ]: 0 : _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3366 : : "", CClientUIInterface::MSG_ERROR);
3367 : : }
3368 : 0 : return false;
3369 : : }
3370 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3371 : 0 : threadOpenConnections = std::thread(
3372 [ # # ]: 0 : &util::TraceThread, "opencon",
3373 [ # # # # : 0 : [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
# # ]
3374 : : }
3375 : :
3376 : : // Process messages
3377 [ # # ]: 0 : threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3378 : :
3379 [ # # ]: 0 : if (m_i2p_sam_session) {
3380 : 0 : threadI2PAcceptIncoming =
3381 [ # # ]: 0 : std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3382 : : }
3383 : :
3384 : : // Dump network addresses
3385 [ # # ]: 0 : scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3386 : :
3387 : : // Run the ASMap Health check once and then schedule it to run every 24h.
3388 [ # # # # ]: 0 : if (m_netgroupman.UsingASMap()) {
3389 [ # # ]: 0 : ASMapHealthCheck();
3390 [ # # ]: 0 : scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3391 : : }
3392 : :
3393 : : return true;
3394 : 0 : }
3395 : :
3396 : : class CNetCleanup
3397 : : {
3398 : : public:
3399 : : CNetCleanup() = default;
3400 : :
3401 : 134 : ~CNetCleanup()
3402 : : {
3403 : : #ifdef WIN32
3404 : : // Shutdown Windows Sockets
3405 : : WSACleanup();
3406 : : #endif
3407 : 134 : }
3408 : : };
3409 : : static CNetCleanup instance_of_cnetcleanup;
3410 : :
3411 : 178 : void CConnman::Interrupt()
3412 : : {
3413 : 178 : {
3414 : 178 : LOCK(mutexMsgProc);
3415 [ + - ]: 178 : flagInterruptMsgProc = true;
3416 : 178 : }
3417 : 178 : condMsgProc.notify_all();
3418 : :
3419 : 178 : interruptNet();
3420 : 178 : g_socks5_interrupt();
3421 : :
3422 [ - + ]: 178 : if (semOutbound) {
3423 [ # # ]: 0 : for (int i=0; i<m_max_automatic_outbound; i++) {
3424 : 0 : semOutbound->release();
3425 : : }
3426 : : }
3427 : :
3428 [ - + ]: 178 : if (semAddnode) {
3429 [ # # ]: 0 : for (int i=0; i<m_max_addnode; i++) {
3430 : 0 : semAddnode->release();
3431 : : }
3432 : : }
3433 : 178 : }
3434 : :
3435 : 178 : void CConnman::StopThreads()
3436 : : {
3437 [ - + ]: 178 : if (threadI2PAcceptIncoming.joinable()) {
3438 : 0 : threadI2PAcceptIncoming.join();
3439 : : }
3440 [ - + ]: 178 : if (threadMessageHandler.joinable())
3441 : 0 : threadMessageHandler.join();
3442 [ - + ]: 178 : if (threadOpenConnections.joinable())
3443 : 0 : threadOpenConnections.join();
3444 [ - + ]: 178 : if (threadOpenAddedConnections.joinable())
3445 : 0 : threadOpenAddedConnections.join();
3446 [ - + ]: 178 : if (threadDNSAddressSeed.joinable())
3447 : 0 : threadDNSAddressSeed.join();
3448 [ - + ]: 178 : if (threadSocketHandler.joinable())
3449 : 0 : threadSocketHandler.join();
3450 : 178 : }
3451 : :
3452 : 178 : void CConnman::StopNodes()
3453 : : {
3454 [ - + ]: 178 : if (fAddressesInitialized) {
3455 : 0 : DumpAddresses();
3456 : 0 : fAddressesInitialized = false;
3457 : :
3458 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3459 : : // Anchor connections are only dumped during clean shutdown.
3460 : 0 : std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3461 [ # # ]: 0 : if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3462 [ # # ]: 0 : anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3463 : : }
3464 [ # # # # : 0 : DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
# # ]
3465 : 0 : }
3466 : : }
3467 : :
3468 : : // Delete peer connections.
3469 : 178 : std::vector<CNode*> nodes;
3470 [ + - + - ]: 356 : WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3471 [ - + ]: 178 : for (CNode* pnode : nodes) {
3472 [ # # # # : 0 : LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
# # # # ]
3473 [ # # ]: 0 : pnode->CloseSocketDisconnect();
3474 [ # # ]: 0 : DeleteNode(pnode);
3475 : : }
3476 : :
3477 [ - + ]: 178 : for (CNode* pnode : m_nodes_disconnected) {
3478 [ # # ]: 0 : DeleteNode(pnode);
3479 : : }
3480 : 178 : m_nodes_disconnected.clear();
3481 : 178 : vhListenSocket.clear();
3482 [ - + ]: 178 : semOutbound.reset();
3483 [ - + ]: 178 : semAddnode.reset();
3484 : 178 : }
3485 : :
3486 : 0 : void CConnman::DeleteNode(CNode* pnode)
3487 : : {
3488 [ # # ]: 0 : assert(pnode);
3489 : 0 : m_msgproc->FinalizeNode(*pnode);
3490 : 0 : delete pnode;
3491 : 0 : }
3492 : :
3493 : 178 : CConnman::~CConnman()
3494 : : {
3495 : 178 : Interrupt();
3496 : 178 : Stop();
3497 : 178 : }
3498 : :
3499 : 0 : std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3500 : : {
3501 : 0 : std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3502 [ # # ]: 0 : if (m_banman) {
3503 [ # # ]: 0 : addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3504 [ # # # # ]: 0 : [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3505 [ # # ]: 0 : addresses.end());
3506 : : }
3507 : 0 : return addresses;
3508 : 0 : }
3509 : :
3510 : 0 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3511 : : {
3512 : 0 : auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3513 [ # # ]: 0 : uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3514 [ # # # # : 0 : .Write(requestor.ConnectedThroughNetwork())
# # ]
3515 [ # # # # ]: 0 : .Write(local_socket_bytes)
3516 : : // For outbound connections, the port of the bound address is randomly
3517 : : // assigned by the OS and would therefore not be useful for seeding.
3518 [ # # # # : 0 : .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
# # ]
3519 [ # # ]: 0 : .Finalize();
3520 : 0 : const auto current_time = GetTime<std::chrono::microseconds>();
3521 [ # # ]: 0 : auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3522 [ # # ]: 0 : CachedAddrResponse& cache_entry = r.first->second;
3523 [ # # ]: 0 : if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3524 [ # # ]: 0 : cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3525 : : // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3526 : : // and the usefulness of ADDR responses to honest users.
3527 : : //
3528 : : // Longer cache lifetime makes it more difficult for an attacker to scrape
3529 : : // enough AddrMan data to maliciously infer something useful.
3530 : : // By the time an attacker scraped enough AddrMan records, most of
3531 : : // the records should be old enough to not leak topology info by
3532 : : // e.g. analyzing real-time changes in timestamps.
3533 : : //
3534 : : // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3535 : : // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3536 : : // most of it could be scraped (considering that timestamps are updated via
3537 : : // ADDR self-announcements and when nodes communicate).
3538 : : // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3539 : : // (because even several timestamps of the same handful of nodes may leak privacy).
3540 : : //
3541 : : // On the other hand, longer cache lifetime makes ADDR responses
3542 : : // outdated and less useful for an honest requestor, e.g. if most nodes
3543 : : // in the ADDR response are no longer active.
3544 : : //
3545 : : // However, the churn in the network is known to be rather low. Since we consider
3546 : : // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3547 : : // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3548 : : // in terms of the freshness of the response.
3549 : 0 : cache_entry.m_cache_entry_expiration = current_time +
3550 : 0 : 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3551 : : }
3552 [ # # ]: 0 : return cache_entry.m_addrs_response_cache;
3553 : 0 : }
3554 : :
3555 : 7 : bool CConnman::AddNode(const AddedNodeParams& add)
3556 : : {
3557 [ + - + - ]: 7 : const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3558 [ + - ]: 7 : const bool resolved_is_valid{resolved.IsValid()};
3559 : :
3560 [ + - ]: 7 : LOCK(m_added_nodes_mutex);
3561 [ + + ]: 17 : for (const auto& it : m_added_node_params) {
3562 [ + - + - : 36 : if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
+ - + - +
- + - + +
+ - + + -
- - - ]
3563 : : }
3564 : :
3565 [ + - ]: 5 : m_added_node_params.push_back(add);
3566 : : return true;
3567 : 7 : }
3568 : :
3569 : 0 : bool CConnman::RemoveAddedNode(const std::string& strNode)
3570 : : {
3571 : 0 : LOCK(m_added_nodes_mutex);
3572 [ # # ]: 0 : for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3573 [ # # ]: 0 : if (strNode == it->m_added_node) {
3574 : 0 : m_added_node_params.erase(it);
3575 : 0 : return true;
3576 : : }
3577 : : }
3578 : : return false;
3579 : 0 : }
3580 : :
3581 : 6 : bool CConnman::AddedNodesContain(const CAddress& addr) const
3582 : : {
3583 : 6 : AssertLockNotHeld(m_added_nodes_mutex);
3584 : 6 : const std::string addr_str{addr.ToStringAddr()};
3585 [ + - ]: 6 : const std::string addr_port_str{addr.ToStringAddrPort()};
3586 [ + - ]: 6 : LOCK(m_added_nodes_mutex);
3587 [ + - ]: 6 : return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3588 [ + - + + ]: 6 : && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3589 [ + - + + : 26 : [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
+ - ]
3590 : 6 : }
3591 : :
3592 : 9 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3593 : : {
3594 : 9 : LOCK(m_nodes_mutex);
3595 [ + + ]: 9 : if (flags == ConnectionDirection::Both) // Shortcut if we want total
3596 : 3 : return m_nodes.size();
3597 : :
3598 : 6 : int nNum = 0;
3599 [ - + ]: 6 : for (const auto& pnode : m_nodes) {
3600 [ # # # # ]: 0 : if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3601 : 0 : nNum++;
3602 : : }
3603 : : }
3604 : :
3605 : 6 : return nNum;
3606 : 9 : }
3607 : :
3608 : :
3609 : 0 : std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3610 : : {
3611 : 0 : LOCK(g_maplocalhost_mutex);
3612 [ # # # # ]: 0 : return mapLocalHost;
3613 : 0 : }
3614 : :
3615 : 4 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3616 : : {
3617 : 4 : return m_netgroupman.GetMappedAS(addr);
3618 : : }
3619 : :
3620 : 0 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3621 : : {
3622 : 0 : vstats.clear();
3623 : 0 : LOCK(m_nodes_mutex);
3624 [ # # ]: 0 : vstats.reserve(m_nodes.size());
3625 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
3626 [ # # ]: 0 : vstats.emplace_back();
3627 [ # # ]: 0 : pnode->CopyStats(vstats.back());
3628 [ # # ]: 0 : vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3629 : : }
3630 : 0 : }
3631 : :
3632 : 0 : bool CConnman::DisconnectNode(const std::string& strNode)
3633 : : {
3634 : 0 : LOCK(m_nodes_mutex);
3635 [ # # # # ]: 0 : if (CNode* pnode = FindNode(strNode)) {
3636 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
# # # # #
# # # #
# ]
3637 : 0 : pnode->fDisconnect = true;
3638 : 0 : return true;
3639 : : }
3640 : : return false;
3641 : 0 : }
3642 : :
3643 : 11 : bool CConnman::DisconnectNode(const CSubNet& subnet)
3644 : : {
3645 : 11 : bool disconnected = false;
3646 : 11 : LOCK(m_nodes_mutex);
3647 [ + + ]: 17 : for (CNode* pnode : m_nodes) {
3648 [ + - + + ]: 6 : if (subnet.Match(pnode->addr)) {
3649 [ + - + - : 9 : LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
+ - - + -
- - - + -
+ - - + -
- ]
3650 : 3 : pnode->fDisconnect = true;
3651 : 3 : disconnected = true;
3652 : : }
3653 : : }
3654 [ + - ]: 11 : return disconnected;
3655 : 11 : }
3656 : :
3657 : 6 : bool CConnman::DisconnectNode(const CNetAddr& addr)
3658 : : {
3659 [ + - ]: 6 : return DisconnectNode(CSubNet(addr));
3660 : : }
3661 : :
3662 : 0 : bool CConnman::DisconnectNode(NodeId id)
3663 : : {
3664 : 0 : LOCK(m_nodes_mutex);
3665 [ # # ]: 0 : for(CNode* pnode : m_nodes) {
3666 [ # # ]: 0 : if (id == pnode->GetId()) {
3667 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
# # # # ]
3668 : 0 : pnode->fDisconnect = true;
3669 : 0 : return true;
3670 : : }
3671 : : }
3672 : : return false;
3673 : 0 : }
3674 : :
3675 : 0 : void CConnman::RecordBytesRecv(uint64_t bytes)
3676 : : {
3677 : 0 : nTotalBytesRecv += bytes;
3678 : 0 : }
3679 : :
3680 : 0 : void CConnman::RecordBytesSent(uint64_t bytes)
3681 : : {
3682 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3683 : 0 : LOCK(m_total_bytes_sent_mutex);
3684 : :
3685 : 0 : nTotalBytesSent += bytes;
3686 : :
3687 : 0 : const auto now = GetTime<std::chrono::seconds>();
3688 [ # # ]: 0 : if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3689 : : {
3690 : : // timeframe expired, reset cycle
3691 : 0 : nMaxOutboundCycleStartTime = now;
3692 : 0 : nMaxOutboundTotalBytesSentInCycle = 0;
3693 : : }
3694 : :
3695 [ # # ]: 0 : nMaxOutboundTotalBytesSentInCycle += bytes;
3696 : 0 : }
3697 : :
3698 : 0 : uint64_t CConnman::GetMaxOutboundTarget() const
3699 : : {
3700 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3701 : 0 : LOCK(m_total_bytes_sent_mutex);
3702 [ # # ]: 0 : return nMaxOutboundLimit;
3703 : 0 : }
3704 : :
3705 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3706 : : {
3707 : 0 : return MAX_UPLOAD_TIMEFRAME;
3708 : : }
3709 : :
3710 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3711 : : {
3712 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3713 : 0 : LOCK(m_total_bytes_sent_mutex);
3714 [ # # ]: 0 : return GetMaxOutboundTimeLeftInCycle_();
3715 : 0 : }
3716 : :
3717 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3718 : : {
3719 : 0 : AssertLockHeld(m_total_bytes_sent_mutex);
3720 : :
3721 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3722 : 0 : return 0s;
3723 : :
3724 [ # # ]: 0 : if (nMaxOutboundCycleStartTime.count() == 0)
3725 : 0 : return MAX_UPLOAD_TIMEFRAME;
3726 : :
3727 : 0 : const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3728 : 0 : const auto now = GetTime<std::chrono::seconds>();
3729 [ # # ]: 0 : return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3730 : : }
3731 : :
3732 : 0 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3733 : : {
3734 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3735 : 0 : LOCK(m_total_bytes_sent_mutex);
3736 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3737 : : return false;
3738 : :
3739 [ # # ]: 0 : if (historicalBlockServingLimit)
3740 : : {
3741 : : // keep a large enough buffer to at least relay each block once
3742 [ # # ]: 0 : const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3743 : 0 : const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3744 [ # # # # ]: 0 : if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3745 : 0 : return true;
3746 : : }
3747 [ # # ]: 0 : else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3748 : 0 : return true;
3749 : :
3750 : : return false;
3751 : 0 : }
3752 : :
3753 : 0 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
3754 : : {
3755 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3756 : 0 : LOCK(m_total_bytes_sent_mutex);
3757 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3758 : : return 0;
3759 : :
3760 [ # # ]: 0 : return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3761 : 0 : }
3762 : :
3763 : 0 : uint64_t CConnman::GetTotalBytesRecv() const
3764 : : {
3765 : 0 : return nTotalBytesRecv;
3766 : : }
3767 : :
3768 : 0 : uint64_t CConnman::GetTotalBytesSent() const
3769 : : {
3770 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3771 : 0 : LOCK(m_total_bytes_sent_mutex);
3772 [ # # ]: 0 : return nTotalBytesSent;
3773 : 0 : }
3774 : :
3775 : 356 : ServiceFlags CConnman::GetLocalServices() const
3776 : : {
3777 : 356 : return m_local_services;
3778 : : }
3779 : :
3780 : 40 : static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3781 : : {
3782 [ - + ]: 40 : if (use_v2transport) {
3783 [ # # ]: 0 : return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3784 : : } else {
3785 [ - + ]: 40 : return std::make_unique<V1Transport>(id);
3786 : : }
3787 : : }
3788 : :
3789 : 40 : CNode::CNode(NodeId idIn,
3790 : : std::shared_ptr<Sock> sock,
3791 : : const CAddress& addrIn,
3792 : : uint64_t nKeyedNetGroupIn,
3793 : : uint64_t nLocalHostNonceIn,
3794 : : const CService& addrBindIn,
3795 : : const std::string& addrNameIn,
3796 : : ConnectionType conn_type_in,
3797 : : bool inbound_onion,
3798 : 40 : CNodeOptions&& node_opts)
3799 : 40 : : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3800 : 40 : m_permission_flags{node_opts.permission_flags},
3801 [ - + ]: 40 : m_sock{sock},
3802 : 40 : m_connected{GetTime<std::chrono::seconds>()},
3803 : 40 : addr{addrIn},
3804 : 40 : addrBind{addrBindIn},
3805 [ + - + - : 40 : m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
- - ]
3806 [ + - ]: 40 : m_dest(addrNameIn),
3807 : 40 : m_inbound_onion{inbound_onion},
3808 [ + - ]: 40 : m_prefer_evict{node_opts.prefer_evict},
3809 : 40 : nKeyedNetGroup{nKeyedNetGroupIn},
3810 [ + - ]: 40 : m_conn_type{conn_type_in},
3811 : 40 : id{idIn},
3812 : 40 : nLocalHostNonce{nLocalHostNonceIn},
3813 [ + - ]: 40 : m_recv_flood_size{node_opts.recv_flood_size},
3814 [ + - + - : 80 : m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
+ + ]
3815 : : {
3816 [ + + + - ]: 40 : if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3817 : :
3818 [ + + ]: 1440 : for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3819 [ + - ]: 1400 : mapRecvBytesPerMsgType[msg] = 0;
3820 : : }
3821 [ + - ]: 40 : mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3822 : :
3823 [ + + ]: 40 : if (fLogIPs) {
3824 [ + - + - : 6 : LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
+ - ]
3825 : : } else {
3826 [ + - + - : 34 : LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
+ - ]
3827 : : }
3828 [ - - ]: 40 : }
3829 : :
3830 : 2 : void CNode::MarkReceivedMsgsForProcessing()
3831 : : {
3832 : 2 : AssertLockNotHeld(m_msg_process_queue_mutex);
3833 : :
3834 : 2 : size_t nSizeAdded = 0;
3835 [ + + ]: 4 : for (const auto& msg : vRecvMsg) {
3836 : : // vRecvMsg contains only completed CNetMessage
3837 : : // the single possible partially deserialized message are held by TransportDeserializer
3838 : 2 : nSizeAdded += msg.GetMemoryUsage();
3839 : : }
3840 : :
3841 : 2 : LOCK(m_msg_process_queue_mutex);
3842 : 2 : m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3843 : 2 : m_msg_process_queue_size += nSizeAdded;
3844 [ + - ]: 2 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3845 : 2 : }
3846 : :
3847 : 2 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3848 : : {
3849 : 2 : LOCK(m_msg_process_queue_mutex);
3850 [ - + ]: 2 : if (m_msg_process_queue.empty()) return std::nullopt;
3851 : :
3852 : 2 : std::list<CNetMessage> msgs;
3853 : : // Just take one message
3854 : 2 : msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3855 : 2 : m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3856 : 2 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3857 : :
3858 : 4 : return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3859 : 2 : }
3860 : :
3861 : 55 : bool CConnman::NodeFullyConnected(const CNode* pnode)
3862 : : {
3863 [ + - + - : 55 : return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
+ + ]
3864 : : }
3865 : :
3866 : 22 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3867 : : {
3868 : 22 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3869 : 22 : size_t nMessageSize = msg.data.size();
3870 [ + - ]: 22 : LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3871 [ + - + + ]: 22 : if (gArgs.GetBoolArg("-capturemessages", false)) {
3872 : 10 : CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3873 : : }
3874 : :
3875 : : TRACEPOINT(net, outbound_message,
3876 : : pnode->GetId(),
3877 : : pnode->m_addr_name.c_str(),
3878 : : pnode->ConnectionTypeAsString().c_str(),
3879 : : msg.m_type.c_str(),
3880 : : msg.data.size(),
3881 : : msg.data.data()
3882 : 22 : );
3883 : :
3884 : 22 : size_t nBytesSent = 0;
3885 : 22 : {
3886 : 22 : LOCK(pnode->cs_vSend);
3887 : : // Check if the transport still has unsent bytes, and indicate to it that we're about to
3888 : : // give it a message to send.
3889 [ + + ]: 22 : const auto& [to_send, more, _msg_type] =
3890 [ + + ]: 22 : pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3891 [ + + - + ]: 22 : const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3892 : :
3893 : : // Update memory usage of send buffer.
3894 : 22 : pnode->m_send_memusage += msg.GetMemoryUsage();
3895 [ + - ]: 22 : if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3896 : : // Move message to vSendMsg queue.
3897 [ + - ]: 22 : pnode->vSendMsg.push_back(std::move(msg));
3898 : :
3899 : : // If there was nothing to send before, and there is now (predicted by the "more" value
3900 : : // returned by the GetBytesToSend call above), attempt "optimistic write":
3901 : : // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3902 : : // doing a send, try sending from the calling thread if the queue was empty before.
3903 : : // With a V1Transport, more will always be true here, because adding a message always
3904 : : // results in sendable bytes there, but with V2Transport this is not the case (it may
3905 : : // still be in the handshake).
3906 [ + + + - ]: 22 : if (queue_was_empty && more) {
3907 [ + - ]: 6 : std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3908 : : }
3909 : 22 : }
3910 [ - + ]: 22 : if (nBytesSent) RecordBytesSent(nBytesSent);
3911 : 22 : }
3912 : :
3913 : 7 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3914 : : {
3915 : 7 : CNode* found = nullptr;
3916 : 7 : LOCK(m_nodes_mutex);
3917 [ + - ]: 44 : for (auto&& pnode : m_nodes) {
3918 [ + + ]: 44 : if(pnode->GetId() == id) {
3919 : : found = pnode;
3920 : : break;
3921 : : }
3922 : : }
3923 [ + - + - : 8 : return found != nullptr && NodeFullyConnected(found) && func(found);
+ - + - +
+ + - ]
3924 : 7 : }
3925 : :
3926 : 0 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3927 : : {
3928 : 0 : return CSipHasher(nSeed0, nSeed1).Write(id);
3929 : : }
3930 : :
3931 : 0 : uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3932 : : {
3933 : 0 : std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3934 : :
3935 [ # # # # : 0 : return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
# # ]
3936 : 0 : }
3937 : :
3938 : 0 : void CConnman::PerformReconnections()
3939 : : {
3940 : 0 : AssertLockNotHeld(m_reconnections_mutex);
3941 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3942 : 0 : while (true) {
3943 : : // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3944 [ # # ]: 0 : decltype(m_reconnections) todo;
3945 : 0 : {
3946 [ # # ]: 0 : LOCK(m_reconnections_mutex);
3947 [ # # ]: 0 : if (m_reconnections.empty()) break;
3948 [ # # ]: 0 : todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3949 : 0 : }
3950 : :
3951 [ # # ]: 0 : auto& item = *todo.begin();
3952 : 0 : OpenNetworkConnection(item.addr_connect,
3953 : : // We only reconnect if the first attempt to connect succeeded at
3954 : : // connection time, but then failed after the CNode object was
3955 : : // created. Since we already know connecting is possible, do not
3956 : : // count failure to reconnect.
3957 : : /*fCountFailure=*/false,
3958 [ # # ]: 0 : std::move(item.grant),
3959 : 0 : item.destination.empty() ? nullptr : item.destination.c_str(),
3960 : : item.conn_type,
3961 [ # # ]: 0 : item.use_v2transport);
3962 : 0 : }
3963 : 0 : }
3964 : :
3965 : 0 : void CConnman::ASMapHealthCheck()
3966 : : {
3967 : 0 : const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3968 [ # # ]: 0 : const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3969 : 0 : std::vector<CNetAddr> clearnet_addrs;
3970 [ # # ]: 0 : clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3971 [ # # ]: 0 : std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3972 [ # # ]: 0 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3973 [ # # ]: 0 : std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3974 [ # # ]: 0 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3975 [ # # ]: 0 : m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3976 : 0 : }
3977 : :
3978 : : // Dump binary message to file, with timestamp.
3979 : 5 : static void CaptureMessageToFile(const CAddress& addr,
3980 : : const std::string& msg_type,
3981 : : std::span<const unsigned char> data,
3982 : : bool is_incoming)
3983 : : {
3984 : : // Note: This function captures the message at the time of processing,
3985 : : // not at socket receive/send time.
3986 : : // This ensures that the messages are always in order from an application
3987 : : // layer (processing) perspective.
3988 : 5 : auto now = GetTime<std::chrono::microseconds>();
3989 : :
3990 : : // Windows folder names cannot include a colon
3991 : 5 : std::string clean_addr = addr.ToStringAddrPort();
3992 : 5 : std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3993 : :
3994 [ + - + - : 30 : fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
+ - ]
3995 [ + - ]: 5 : fs::create_directories(base_path);
3996 : :
3997 [ + - + - ]: 15 : fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
3998 [ + - + - ]: 5 : AutoFile f{fsbridge::fopen(path, "ab")};
3999 : :
4000 [ + - ]: 5 : ser_writedata64(f, now.count());
4001 [ + - ]: 5 : f << std::span{msg_type};
4002 [ + + ]: 23 : for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4003 [ + - ]: 36 : f << uint8_t{'\0'};
4004 : : }
4005 [ + - ]: 5 : uint32_t size = data.size();
4006 [ + - ]: 5 : ser_writedata32(f, size);
4007 [ + - ]: 10 : f << data;
4008 : 15 : }
4009 : :
4010 : : std::function<void(const CAddress& addr,
4011 : : const std::string& msg_type,
4012 : : std::span<const unsigned char> data,
4013 : : bool is_incoming)>
4014 : : CaptureMessage = CaptureMessageToFile;
|