Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-present The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <bitcoin-build-config.h> // IWYU pragma: keep
7 : :
8 : : #include <net.h>
9 : :
10 : : #include <addrdb.h>
11 : : #include <addrman.h>
12 : : #include <banman.h>
13 : : #include <clientversion.h>
14 : : #include <common/args.h>
15 : : #include <common/netif.h>
16 : : #include <compat/compat.h>
17 : : #include <consensus/consensus.h>
18 : : #include <crypto/sha256.h>
19 : : #include <i2p.h>
20 : : #include <key.h>
21 : : #include <logging.h>
22 : : #include <memusage.h>
23 : : #include <net_permissions.h>
24 : : #include <netaddress.h>
25 : : #include <netbase.h>
26 : : #include <node/eviction.h>
27 : : #include <node/interface_ui.h>
28 : : #include <protocol.h>
29 : : #include <random.h>
30 : : #include <scheduler.h>
31 : : #include <util/fs.h>
32 : : #include <util/sock.h>
33 : : #include <util/strencodings.h>
34 : : #include <util/thread.h>
35 : : #include <util/threadinterrupt.h>
36 : : #include <util/trace.h>
37 : : #include <util/translation.h>
38 : : #include <util/vector.h>
39 : :
40 : : #include <algorithm>
41 : : #include <array>
42 : : #include <cmath>
43 : : #include <cstdint>
44 : : #include <cstring>
45 : : #include <functional>
46 : : #include <optional>
47 : : #include <string_view>
48 : : #include <unordered_map>
49 : :
50 : : TRACEPOINT_SEMAPHORE(net, closed_connection);
51 : : TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
52 : : TRACEPOINT_SEMAPHORE(net, inbound_connection);
53 : : TRACEPOINT_SEMAPHORE(net, outbound_connection);
54 : : TRACEPOINT_SEMAPHORE(net, outbound_message);
55 : :
56 : : /** Maximum number of block-relay-only anchor connections */
57 : : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
58 : : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
59 : : /** Anchor IP address database file name */
60 : : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
61 : :
62 : : // How often to dump addresses to peers.dat
63 : : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
64 : :
65 : : /** Number of DNS seeds to query when the number of connections is low. */
66 : : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
67 : :
68 : : /** Minimum number of outbound connections under which we will keep fetching our address seeds. */
69 : : static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
70 : :
71 : : /** How long to delay before querying DNS seeds
72 : : *
73 : : * If we have more than THRESHOLD entries in addrman, then it's likely
74 : : * that we got those addresses from having previously connected to the P2P
75 : : * network, and that we'll be able to successfully reconnect to the P2P
76 : : * network via contacting one of them. So if that's the case, spend a
77 : : * little longer trying to connect to known peers before querying the
78 : : * DNS seeds.
79 : : */
80 : : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
81 : : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
82 : : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
83 : :
84 : : /** The default timeframe for -maxuploadtarget. 1 day. */
85 : : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
86 : :
87 : : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
88 : : static constexpr auto FEELER_SLEEP_WINDOW{1s};
89 : :
90 : : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
91 : : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
92 : :
93 : : /** Used to pass flags to the Bind() function */
94 : : enum BindFlags {
95 : : BF_NONE = 0,
96 : : BF_REPORT_ERROR = (1U << 0),
97 : : /**
98 : : * Do not call AddLocal() for our special addresses, e.g., for incoming
99 : : * Tor connections, to prevent gossiping them over the network.
100 : : */
101 : : BF_DONT_ADVERTISE = (1U << 1),
102 : : };
103 : :
104 : : // The set of sockets cannot be modified while waiting
105 : : // The sleep time needs to be small to avoid new sockets stalling
106 : : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
107 : :
108 : : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
109 : :
110 : : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
111 : : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
112 : : static const uint64_t RANDOMIZER_ID_NETWORKKEY = 0x0e8a2b136c592a7dULL; // SHA256("networkkey")[0:8]
113 : : //
114 : : // Global state variables
115 : : //
116 : : bool fDiscover = true;
117 : : bool fListen = true;
118 : : GlobalMutex g_maplocalhost_mutex;
119 : : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
120 : : std::string strSubVersion;
121 : :
122 : 56 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
123 : : {
124 [ - + ]: 56 : return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
125 : : }
126 : :
127 : 4 : size_t CNetMessage::GetMemoryUsage() const noexcept
128 : : {
129 : 4 : return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
130 : : }
131 : :
132 : 1 : void CConnman::AddAddrFetch(const std::string& strDest)
133 : : {
134 : 1 : LOCK(m_addr_fetches_mutex);
135 [ + - ]: 1 : m_addr_fetches.push_back(strDest);
136 : 1 : }
137 : :
138 : 29 : uint16_t GetListenPort()
139 : : {
140 : : // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
141 [ + - + + ]: 29 : for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
142 : 3 : constexpr uint16_t dummy_port = 0;
143 : :
144 [ + - + - ]: 3 : const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
145 [ + - + - : 3 : if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
+ - + - ]
146 : 29 : }
147 : :
148 : : // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
149 : : // (-whitebind= is required to have ":port").
150 [ + - - + ]: 26 : for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
151 [ # # ]: 0 : NetWhitebindPermissions whitebind;
152 [ # # ]: 0 : bilingual_str error;
153 [ # # # # ]: 0 : if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
154 [ # # ]: 0 : if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
155 [ # # ]: 0 : return whitebind.m_service.GetPort();
156 : : }
157 : : }
158 : 0 : }
159 : :
160 : : // Otherwise, if -port= is provided, use that. Otherwise use the default port.
161 [ + - ]: 26 : return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
162 : : }
163 : :
164 : : // Determine the "best" local address for a particular peer.
165 : 25 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
166 : : {
167 [ - + ]: 25 : if (!fListen) return std::nullopt;
168 : :
169 : 25 : std::optional<CService> addr;
170 : 25 : int nBestScore = -1;
171 : 25 : int nBestReachability = -1;
172 : 25 : {
173 [ + - ]: 25 : LOCK(g_maplocalhost_mutex);
174 [ + - + + ]: 96 : for (const auto& [local_addr, local_service_info] : mapLocalHost) {
175 : : // For privacy reasons, don't advertise our privacy-network address
176 : : // to other networks and don't advertise our other-network address
177 : : // to privacy networks.
178 [ + - + - ]: 71 : if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
179 [ + + + - : 104 : && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
+ + ]
180 : 36 : continue;
181 : : }
182 : 35 : const int nScore{local_service_info.nScore};
183 [ + - ]: 35 : const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
184 [ + + - + ]: 35 : if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
185 [ + - ]: 18 : addr.emplace(CService{local_addr, local_service_info.nPort});
186 : 18 : nBestReachability = nReachability;
187 : 18 : nBestScore = nScore;
188 : : }
189 : : }
190 : 0 : }
191 [ + + ]: 40 : return addr;
192 : 25 : }
193 : :
194 : : //! Convert the serialized seeds into usable address objects.
195 : 0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
196 : : {
197 : : // It'll only connect to one or two seed nodes because once it connects,
198 : : // it'll get a pile of addresses with newer timestamps.
199 : : // Seed nodes are given a random 'last seen time' of between one and two
200 : : // weeks ago.
201 : 0 : const auto one_week{7 * 24h};
202 : 0 : std::vector<CAddress> vSeedsOut;
203 : 0 : FastRandomContext rng;
204 [ # # # # ]: 0 : ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
205 [ # # # # ]: 0 : while (!s.eof()) {
206 [ # # ]: 0 : CService endpoint;
207 [ # # ]: 0 : s >> endpoint;
208 : 0 : CAddress addr{endpoint, SeedsServiceFlags()};
209 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
210 [ # # # # : 0 : LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
# # # # ]
211 [ # # ]: 0 : vSeedsOut.push_back(addr);
212 : 0 : }
213 : 0 : return vSeedsOut;
214 : 0 : }
215 : :
216 : : // Determine the "best" local address for a particular peer.
217 : : // If none, return the unroutable 0.0.0.0 but filled in with
218 : : // the normal parameters, since the IP may be changed to a useful
219 : : // one by discovery.
220 : 25 : CService GetLocalAddress(const CNode& peer)
221 : : {
222 [ + - + - : 25 : return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
+ - ]
223 : : }
224 : :
225 : 0 : static int GetnScore(const CService& addr)
226 : : {
227 : 0 : LOCK(g_maplocalhost_mutex);
228 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
229 [ # # ]: 0 : return (it != mapLocalHost.end()) ? it->second.nScore : 0;
230 : 0 : }
231 : :
232 : : // Is our peer's addrLocal potentially useful as an external IP source?
233 : 4 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
234 : : {
235 : 4 : CService addrLocal = pnode->GetAddrLocal();
236 [ + - + - : 8 : return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
+ - + - +
- - + ]
237 [ + - ]: 8 : g_reachable_nets.Contains(addrLocal);
238 : 4 : }
239 : :
240 : 4 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
241 : : {
242 : 4 : CService addrLocal{GetLocalAddress(node)};
243 : : // If discovery is enabled, sometimes give our peer the address it
244 : : // tells us that it sees us as in case it has a better idea of our
245 : : // address than we do.
246 : 4 : FastRandomContext rng;
247 [ + - + - : 4 : if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
+ - - + -
- ]
248 [ # # # # ]: 0 : rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
249 : : {
250 [ + + ]: 4 : if (node.IsInboundConn()) {
251 : : // For inbound connections, assume both the address and the port
252 : : // as seen from the peer.
253 [ + - ]: 2 : addrLocal = CService{node.GetAddrLocal()};
254 : : } else {
255 : : // For outbound connections, assume just the address as seen from
256 : : // the peer and leave the port in `addrLocal` as returned by
257 : : // `GetLocalAddress()` above. The peer has no way to observe our
258 : : // listening port when we have initiated the connection.
259 [ + - + - ]: 6 : addrLocal.SetIP(node.GetAddrLocal());
260 : : }
261 : : }
262 [ + - + - ]: 4 : if (addrLocal.IsRoutable()) {
263 [ + - + - : 8 : LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
+ - + - ]
264 : 4 : return addrLocal;
265 : : }
266 : : // Address is unroutable. Don't advertise.
267 : 0 : return std::nullopt;
268 : 4 : }
269 : :
270 : 627 : void ClearLocal()
271 : : {
272 : 627 : LOCK(g_maplocalhost_mutex);
273 [ + - ]: 627 : return mapLocalHost.clear();
274 : 627 : }
275 : :
276 : : // learn a new local address
277 : 12 : bool AddLocal(const CService& addr_, int nScore)
278 : : {
279 : 12 : CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280 : :
281 [ + - + + ]: 12 : if (!addr.IsRoutable())
282 : : return false;
283 : :
284 [ - + - - ]: 11 : if (!fDiscover && nScore < LOCAL_MANUAL)
285 : : return false;
286 : :
287 [ + - + - ]: 11 : if (!g_reachable_nets.Contains(addr))
288 : : return false;
289 : :
290 [ + - + - ]: 11 : LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291 : :
292 : 11 : {
293 [ + - ]: 11 : LOCK(g_maplocalhost_mutex);
294 [ + - - + ]: 11 : const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295 [ - + ]: 11 : LocalServiceInfo &info = it->second;
296 [ - + - - ]: 11 : if (is_newly_added || nScore >= info.nScore) {
297 [ - + ]: 11 : info.nScore = nScore + (is_newly_added ? 0 : 1);
298 [ + - ]: 11 : info.nPort = addr.GetPort();
299 : : }
300 : 0 : }
301 : :
302 : 11 : return true;
303 : 12 : }
304 : :
305 : 1 : bool AddLocal(const CNetAddr &addr, int nScore)
306 : : {
307 [ + - ]: 1 : return AddLocal(CService(addr, GetListenPort()), nScore);
308 : : }
309 : :
310 : 11 : void RemoveLocal(const CService& addr)
311 : : {
312 : 11 : LOCK(g_maplocalhost_mutex);
313 [ + - + - ]: 11 : LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314 [ + - + - ]: 11 : mapLocalHost.erase(addr);
315 : 11 : }
316 : :
317 : : /** vote for a local address */
318 : 0 : bool SeenLocal(const CService& addr)
319 : : {
320 : 0 : LOCK(g_maplocalhost_mutex);
321 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
322 [ # # ]: 0 : if (it == mapLocalHost.end()) return false;
323 : 0 : ++it->second.nScore;
324 : 0 : return true;
325 : 0 : }
326 : :
327 : :
328 : : /** check whether a given address is potentially local */
329 : 3 : bool IsLocal(const CService& addr)
330 : : {
331 : 3 : LOCK(g_maplocalhost_mutex);
332 [ + - + - ]: 3 : return mapLocalHost.count(addr) > 0;
333 : 3 : }
334 : :
335 : 0 : bool CConnman::AlreadyConnectedToHost(std::string_view host) const
336 : : {
337 : 0 : LOCK(m_nodes_mutex);
338 [ # # # # ]: 0 : return std::ranges::any_of(m_nodes, [&host](CNode* node) { return node->m_addr_name == host; });
339 : 0 : }
340 : :
341 : 10 : bool CConnman::AlreadyConnectedToAddressPort(const CService& addr_port) const
342 : : {
343 : 10 : LOCK(m_nodes_mutex);
344 [ + - + - ]: 20 : return std::ranges::any_of(m_nodes, [&addr_port](CNode* node) { return node->addr == addr_port; });
345 : 10 : }
346 : :
347 : 6 : bool CConnman::AlreadyConnectedToAddress(const CNetAddr& addr) const
348 : : {
349 : 6 : LOCK(m_nodes_mutex);
350 [ + - + - ]: 27 : return std::ranges::any_of(m_nodes, [&addr](CNode* node) { return node->addr == addr; });
351 : 6 : }
352 : :
353 : 0 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
354 : : {
355 : 0 : LOCK(m_nodes_mutex);
356 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
357 [ # # # # : 0 : if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
# # ]
358 : : return false;
359 : : }
360 : : return true;
361 : 0 : }
362 : :
363 : : /** Get the bind address for a socket as CService. */
364 : 0 : static CService GetBindAddress(const Sock& sock)
365 : : {
366 : 0 : CService addr_bind;
367 : 0 : struct sockaddr_storage sockaddr_bind;
368 : 0 : socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
369 [ # # # # ]: 0 : if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
370 [ # # ]: 0 : addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
371 : : } else {
372 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
# # ]
373 : : }
374 : 0 : return addr_bind;
375 : 0 : }
376 : :
377 : 10 : CNode* CConnman::ConnectNode(CAddress addrConnect,
378 : : const char* pszDest,
379 : : bool fCountFailure,
380 : : ConnectionType conn_type,
381 : : bool use_v2transport,
382 : : const std::optional<Proxy>& proxy_override)
383 : : {
384 : 10 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
385 [ - + ]: 10 : assert(conn_type != ConnectionType::INBOUND);
386 : :
387 [ - + ]: 10 : if (pszDest == nullptr) {
388 [ # # ]: 0 : if (IsLocal(addrConnect))
389 : : return nullptr;
390 : :
391 : : // Look for an existing connection
392 [ # # ]: 0 : if (AlreadyConnectedToAddressPort(addrConnect)) {
393 [ # # ]: 0 : LogInfo("Failed to open new connection to %s, already connected", addrConnect.ToStringAddrPort());
394 : 0 : return nullptr;
395 : : }
396 : : }
397 : :
398 [ + - + - : 20 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
+ - - + +
- ]
399 : : use_v2transport ? "v2" : "v1",
400 : : pszDest ? pszDest : addrConnect.ToStringAddrPort(),
401 : : Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
402 : :
403 : : // Resolve
404 [ + - + - ]: 20 : const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
405 : 0 : m_params.GetDefaultPort()};
406 : :
407 : : // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
408 : 10 : std::vector<CAddress> connect_to{};
409 [ + - ]: 10 : if (pszDest) {
410 [ + - + - : 20 : std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
+ - - + +
- + - ]
411 [ + - ]: 10 : if (!resolved.empty()) {
412 : 10 : std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
413 : : // If the connection is made by name, it can be the case that the name resolves to more than one address.
414 : : // We don't want to connect any more of them if we are already connected to one
415 [ + - ]: 10 : for (const auto& r : resolved) {
416 [ + - ]: 20 : addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
417 [ + - - + ]: 10 : if (!addrConnect.IsValid()) {
418 [ # # # # : 0 : LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
# # # # ]
419 : 0 : return nullptr;
420 : : }
421 : : // It is possible that we already have a connection to the IP/port pszDest resolved to.
422 : : // In that case, drop the connection that was just created.
423 [ + - + - ]: 10 : if (AlreadyConnectedToAddressPort(addrConnect)) {
424 [ + - + - ]: 10 : LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
425 : 10 : return nullptr;
426 : : }
427 : : // Add the address to the resolved addresses vector so we can try to connect to it later on
428 [ # # ]: 0 : connect_to.push_back(addrConnect);
429 : : }
430 : : } else {
431 : : // For resolution via proxy
432 [ # # ]: 0 : connect_to.push_back(addrConnect);
433 : : }
434 : 10 : } else {
435 : : // Connect via addrConnect directly
436 [ # # ]: 0 : connect_to.push_back(addrConnect);
437 : : }
438 : :
439 : : // Connect
440 : 0 : std::unique_ptr<Sock> sock;
441 [ # # ]: 0 : Proxy proxy;
442 [ # # ]: 0 : CService addr_bind;
443 [ # # # # ]: 0 : assert(!addr_bind.IsValid());
444 : 0 : std::unique_ptr<i2p::sam::Session> i2p_transient_session;
445 : :
446 [ # # ]: 0 : for (auto& target_addr: connect_to) {
447 [ # # # # ]: 0 : if (target_addr.IsValid()) {
448 : 0 : bool use_proxy;
449 [ # # ]: 0 : if (proxy_override.has_value()) {
450 : 0 : use_proxy = true;
451 [ # # ]: 0 : proxy = proxy_override.value();
452 : : } else {
453 [ # # # # ]: 0 : use_proxy = GetProxy(target_addr.GetNetwork(), proxy);
454 : : }
455 : 0 : bool proxyConnectionFailed = false;
456 : :
457 [ # # # # ]: 0 : if (target_addr.IsI2P() && use_proxy) {
458 [ # # ]: 0 : i2p::Connection conn;
459 : 0 : bool connected{false};
460 : :
461 [ # # ]: 0 : if (m_i2p_sam_session) {
462 [ # # ]: 0 : connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
463 : : } else {
464 : 0 : {
465 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
466 [ # # ]: 0 : if (m_unused_i2p_sessions.empty()) {
467 : 0 : i2p_transient_session =
468 [ # # ]: 0 : std::make_unique<i2p::sam::Session>(proxy, m_interrupt_net);
469 : : } else {
470 : 0 : i2p_transient_session.swap(m_unused_i2p_sessions.front());
471 : 0 : m_unused_i2p_sessions.pop();
472 : : }
473 : 0 : }
474 [ # # ]: 0 : connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
475 [ # # ]: 0 : if (!connected) {
476 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
477 [ # # # # ]: 0 : if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
478 [ # # # # ]: 0 : m_unused_i2p_sessions.emplace(i2p_transient_session.release());
479 : : }
480 : 0 : }
481 : : }
482 : :
483 [ # # ]: 0 : if (connected) {
484 : 0 : sock = std::move(conn.sock);
485 : 0 : addr_bind = conn.me;
486 : : }
487 [ # # ]: 0 : } else if (use_proxy) {
488 [ # # # # : 0 : LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
# # # # #
# ]
489 [ # # # # : 0 : sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
# # ]
490 : : } else {
491 : : // no proxy needed (none set for target network)
492 [ # # ]: 0 : sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
493 : : }
494 [ # # ]: 0 : if (!proxyConnectionFailed) {
495 : : // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
496 : : // the proxy, mark this as an attempt.
497 [ # # ]: 0 : addrman.Attempt(target_addr, fCountFailure);
498 : : }
499 [ # # # # : 0 : } else if (pszDest && GetNameProxy(proxy)) {
# # ]
500 [ # # ]: 0 : std::string host;
501 : 0 : uint16_t port{default_port};
502 [ # # # # ]: 0 : SplitHostPort(std::string(pszDest), port, host);
503 : 0 : bool proxyConnectionFailed;
504 [ # # ]: 0 : sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
505 : 0 : }
506 : : // Check any other resolved address (if any) if we fail to connect
507 [ # # ]: 0 : if (!sock) {
508 : 0 : continue;
509 : : }
510 : :
511 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
512 [ # # # # ]: 0 : std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
513 [ # # ]: 0 : AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
514 : :
515 : : // Add node
516 [ # # ]: 0 : NodeId id = GetNewNodeId();
517 [ # # # # : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
# # ]
518 [ # # # # ]: 0 : if (!addr_bind.IsValid()) {
519 [ # # ]: 0 : addr_bind = GetBindAddress(*sock);
520 : : }
521 [ # # ]: 0 : uint64_t network_id = GetDeterministicRandomizer(RANDOMIZER_ID_NETWORKKEY)
522 [ # # # # ]: 0 : .Write(target_addr.GetNetClass())
523 [ # # # # ]: 0 : .Write(addr_bind.GetAddrBytes())
524 : : // For outbound connections, the port of the bound address is randomly
525 : : // assigned by the OS and would therefore not be useful for seeding.
526 [ # # ]: 0 : .Write(0)
527 [ # # ]: 0 : .Finalize();
528 : 0 : CNode* pnode = new CNode(id,
529 : 0 : std::move(sock),
530 : : target_addr,
531 : : CalculateKeyedNetGroup(target_addr),
532 : : nonce,
533 : : addr_bind,
534 [ # # ]: 0 : pszDest ? pszDest : "",
535 : : conn_type,
536 : : /*inbound_onion=*/false,
537 : : network_id,
538 [ # # ]: 0 : CNodeOptions{
539 : : .permission_flags = permission_flags,
540 : : .i2p_sam_session = std::move(i2p_transient_session),
541 [ # # ]: 0 : .recv_flood_size = nReceiveFloodSize,
542 : : .use_v2transport = use_v2transport,
543 [ # # # # : 0 : });
# # # # #
# ]
544 : 0 : pnode->AddRef();
545 : :
546 : : // We're making a new connection, harvest entropy from the time (and our peer count)
547 : 0 : RandAddEvent((uint32_t)id);
548 : :
549 : 0 : return pnode;
550 : 0 : }
551 : :
552 : : return nullptr;
553 : 10 : }
554 : :
555 : 0 : void CNode::CloseSocketDisconnect()
556 : : {
557 : 0 : fDisconnect = true;
558 : 0 : LOCK(m_sock_mutex);
559 [ # # ]: 0 : if (m_sock) {
560 [ # # # # : 0 : LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
# # # # ]
561 : 0 : m_sock.reset();
562 : :
563 : : TRACEPOINT(net, closed_connection,
564 : : GetId(),
565 : : m_addr_name.c_str(),
566 : : ConnectionTypeAsString().c_str(),
567 : : ConnectedThroughNetwork(),
568 : 0 : Ticks<std::chrono::seconds>(m_connected));
569 : : }
570 [ # # # # ]: 0 : m_i2p_sam_session.reset();
571 : 0 : }
572 : :
573 : 0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, std::optional<CNetAddr> addr, const std::vector<NetWhitelistPermissions>& ranges) const {
574 [ # # ]: 0 : for (const auto& subnet : ranges) {
575 [ # # # # ]: 0 : if (addr.has_value() && subnet.m_subnet.Match(addr.value())) {
576 : 0 : NetPermissions::AddFlag(flags, subnet.m_flags);
577 : : }
578 : : }
579 [ # # ]: 0 : if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
580 [ # # ]: 0 : NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
581 [ # # ]: 0 : if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
582 [ # # ]: 0 : if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
583 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
584 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
585 : : }
586 : 0 : }
587 : :
588 : 8 : CService CNode::GetAddrLocal() const
589 : : {
590 : 8 : AssertLockNotHeld(m_addr_local_mutex);
591 : 8 : LOCK(m_addr_local_mutex);
592 [ + - ]: 8 : return m_addr_local;
593 : 8 : }
594 : :
595 : 5 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
596 : 5 : AssertLockNotHeld(m_addr_local_mutex);
597 : 5 : LOCK(m_addr_local_mutex);
598 [ + - + - ]: 5 : if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
599 : 5 : m_addr_local = addrLocalIn;
600 : : }
601 : 5 : }
602 : :
603 : 76 : Network CNode::ConnectedThroughNetwork() const
604 : : {
605 [ + + ]: 76 : return m_inbound_onion ? NET_ONION : addr.GetNetClass();
606 : : }
607 : :
608 : 33 : bool CNode::IsConnectedThroughPrivacyNet() const
609 : : {
610 [ + - + + ]: 33 : return m_inbound_onion || addr.IsPrivacyNet();
611 : : }
612 : :
613 : : #undef X
614 : : #define X(name) stats.name = name
615 : 0 : void CNode::CopyStats(CNodeStats& stats)
616 : : {
617 : 0 : stats.nodeid = this->GetId();
618 : 0 : X(addr);
619 : 0 : X(addrBind);
620 : 0 : stats.m_network = ConnectedThroughNetwork();
621 : 0 : X(m_last_send);
622 : 0 : X(m_last_recv);
623 : 0 : X(m_last_tx_time);
624 : 0 : X(m_last_block_time);
625 : 0 : X(m_connected);
626 : 0 : X(m_addr_name);
627 : 0 : X(nVersion);
628 : 0 : {
629 : 0 : LOCK(m_subver_mutex);
630 [ # # # # ]: 0 : X(cleanSubVer);
631 : 0 : }
632 : 0 : stats.fInbound = IsInboundConn();
633 : 0 : X(m_bip152_highbandwidth_to);
634 : 0 : X(m_bip152_highbandwidth_from);
635 : 0 : {
636 : 0 : LOCK(cs_vSend);
637 [ # # ]: 0 : X(mapSendBytesPerMsgType);
638 [ # # ]: 0 : X(nSendBytes);
639 : 0 : }
640 : 0 : {
641 : 0 : LOCK(cs_vRecv);
642 [ # # ]: 0 : X(mapRecvBytesPerMsgType);
643 : 0 : X(nRecvBytes);
644 : 0 : Transport::Info info = m_transport->GetInfo();
645 : 0 : stats.m_transport_type = info.transport_type;
646 [ # # # # ]: 0 : if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
647 : 0 : }
648 : 0 : X(m_permission_flags);
649 : :
650 : 0 : X(m_last_ping_time);
651 : 0 : X(m_min_ping_time);
652 : :
653 : : // Leave string empty if addrLocal invalid (not filled in yet)
654 : 0 : CService addrLocalUnlocked = GetAddrLocal();
655 [ # # # # : 0 : stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
# # # # ]
656 : :
657 : 0 : X(m_conn_type);
658 : 0 : }
659 : : #undef X
660 : :
661 : 3 : bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
662 : : {
663 : 3 : complete = false;
664 : 3 : const auto time = GetTime<std::chrono::microseconds>();
665 : 3 : LOCK(cs_vRecv);
666 : 3 : m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
667 : 3 : nRecvBytes += msg_bytes.size();
668 [ + + ]: 9 : while (msg_bytes.size() > 0) {
669 : : // absorb network data
670 [ + - + - ]: 3 : if (!m_transport->ReceivedBytes(msg_bytes)) {
671 : : // Serious transport problem, disconnect from the peer.
672 : : return false;
673 : : }
674 : :
675 [ + - + + ]: 3 : if (m_transport->ReceivedMessageComplete()) {
676 : : // decompose a transport agnostic CNetMessage from the deserializer
677 : 2 : bool reject_message{false};
678 [ + - ]: 2 : CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
679 [ - + ]: 2 : if (reject_message) {
680 : : // Message deserialization failed. Drop the message but don't disconnect the peer.
681 : : // store the size of the corrupt message
682 [ # # ]: 0 : mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
683 : 0 : continue;
684 : : }
685 : :
686 : : // Store received bytes per message type.
687 : : // To prevent a memory DOS, only allow known message types.
688 : 2 : auto i = mapRecvBytesPerMsgType.find(msg.m_type);
689 [ - + ]: 2 : if (i == mapRecvBytesPerMsgType.end()) {
690 : 0 : i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
691 : : }
692 [ - + ]: 2 : assert(i != mapRecvBytesPerMsgType.end());
693 [ + - ]: 2 : i->second += msg.m_raw_message_size;
694 : :
695 : : // push the message to the process queue,
696 [ + - ]: 2 : vRecvMsg.push_back(std::move(msg));
697 : :
698 : 2 : complete = true;
699 : 2 : }
700 : : }
701 : :
702 : : return true;
703 : 3 : }
704 : :
705 : 8 : std::string CNode::LogIP(bool log_ip) const
706 : : {
707 [ - + - - : 8 : return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
- - + - -
- ]
708 : : }
709 : :
710 : 4 : std::string CNode::DisconnectMsg(bool log_ip) const
711 : : {
712 : 4 : return strprintf("disconnecting peer=%d%s",
713 [ + - ]: 4 : GetId(),
714 [ + - ]: 8 : LogIP(log_ip));
715 : : }
716 : :
717 : 115 : V1Transport::V1Transport(const NodeId node_id) noexcept
718 : 115 : : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
719 : : {
720 : 115 : LOCK(m_recv_mutex);
721 [ + - ]: 115 : Reset();
722 : 115 : }
723 : :
724 : 2 : Transport::Info V1Transport::GetInfo() const noexcept
725 : : {
726 : 2 : return {.transport_type = TransportProtocolType::V1, .session_id = {}};
727 : : }
728 : :
729 : 4 : int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
730 : : {
731 : 4 : AssertLockHeld(m_recv_mutex);
732 : : // copy data to temporary parsing buffer
733 : 4 : unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
734 [ + + ]: 4 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
735 : :
736 [ + + ]: 4 : memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
737 : 4 : nHdrPos += nCopy;
738 : :
739 : : // if header incomplete, exit
740 [ + + ]: 4 : if (nHdrPos < CMessageHeader::HEADER_SIZE)
741 : 1 : return nCopy;
742 : :
743 : : // deserialize to CMessageHeader
744 : 3 : try {
745 [ + - ]: 3 : hdrbuf >> hdr;
746 : : }
747 [ - - ]: 0 : catch (const std::exception&) {
748 [ - - - - : 0 : LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
- - ]
749 : 0 : return -1;
750 : 0 : }
751 : :
752 : : // Check start string, network magic
753 [ - + ]: 3 : if (hdr.pchMessageStart != m_magic_bytes) {
754 [ # # # # ]: 0 : LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
755 : 0 : return -1;
756 : : }
757 : :
758 : : // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
759 : : // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
760 : : // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
761 [ - + ]: 3 : if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
762 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
# # # # ]
763 : 0 : return -1;
764 : : }
765 : :
766 : : // switch state to reading message data
767 : 3 : in_data = true;
768 : :
769 : 3 : return nCopy;
770 : : }
771 : :
772 : 1 : int V1Transport::readData(std::span<const uint8_t> msg_bytes)
773 : : {
774 : 1 : AssertLockHeld(m_recv_mutex);
775 : 1 : unsigned int nRemaining = hdr.nMessageSize - nDataPos;
776 [ + - ]: 1 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
777 : :
778 [ - + + - ]: 1 : if (vRecv.size() < nDataPos + nCopy) {
779 : : // Allocate up to 256 KiB ahead, but never more than the total message size.
780 [ + - ]: 2 : vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
781 : : }
782 : :
783 : 1 : hasher.Write(msg_bytes.first(nCopy));
784 : 1 : memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
785 : 1 : nDataPos += nCopy;
786 : :
787 : 1 : return nCopy;
788 : : }
789 : :
790 : 2 : const uint256& V1Transport::GetMessageHash() const
791 : : {
792 : 2 : AssertLockHeld(m_recv_mutex);
793 [ + - - + ]: 2 : assert(CompleteInternal());
794 [ + - ]: 4 : if (data_hash.IsNull())
795 : 2 : hasher.Finalize(data_hash);
796 : 2 : return data_hash;
797 : : }
798 : :
799 : 2 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
800 : : {
801 : 2 : AssertLockNotHeld(m_recv_mutex);
802 : : // Initialize out parameter
803 : 2 : reject_message = false;
804 : : // decompose a single CNetMessage from the TransportDeserializer
805 : 2 : LOCK(m_recv_mutex);
806 [ + - ]: 2 : CNetMessage msg(std::move(vRecv));
807 : :
808 : : // store message type string, time, and sizes
809 [ + - ]: 2 : msg.m_type = hdr.GetMessageType();
810 : 2 : msg.m_time = time;
811 : 2 : msg.m_message_size = hdr.nMessageSize;
812 : 2 : msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
813 : :
814 [ + - ]: 2 : uint256 hash = GetMessageHash();
815 : :
816 : : // We just received a message off the wire, harvest entropy from the time (and the message checksum)
817 : 2 : RandAddEvent(ReadLE32(hash.begin()));
818 : :
819 : : // Check checksum and header message type string
820 [ - + ]: 2 : if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
821 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
# # # # #
# # # #
# ]
822 : : SanitizeString(msg.m_type), msg.m_message_size,
823 : : HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
824 : : HexStr(hdr.pchChecksum),
825 : : m_node_id);
826 : 0 : reject_message = true;
827 [ + - - + ]: 2 : } else if (!hdr.IsMessageTypeValid()) {
828 [ # # # # : 0 : LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
# # # # #
# ]
829 : : SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
830 : 0 : reject_message = true;
831 : : }
832 : :
833 : : // Always reset the network deserializer (prepare for the next message)
834 [ + - ]: 2 : Reset();
835 [ + - ]: 2 : return msg;
836 : 2 : }
837 : :
838 : 8 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
839 : : {
840 : 8 : AssertLockNotHeld(m_send_mutex);
841 : : // Determine whether a new message can be set.
842 : 8 : LOCK(m_send_mutex);
843 [ + - - + : 8 : if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
+ - ]
844 : :
845 : : // create dbl-sha256 checksum
846 : 8 : uint256 hash = Hash(msg.data);
847 : :
848 : : // create header
849 [ - + ]: 8 : CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
850 [ + + ]: 8 : memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
851 : :
852 : : // serialize header
853 [ + + ]: 8 : m_header_to_send.clear();
854 : 8 : VectorWriter{m_header_to_send, 0, hdr};
855 : :
856 : : // update state
857 : 8 : m_message_to_send = std::move(msg);
858 : 8 : m_sending_header = true;
859 : 8 : m_bytes_sent = 0;
860 : 8 : return true;
861 : 8 : }
862 : :
863 : 46 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
864 : : {
865 : 46 : AssertLockNotHeld(m_send_mutex);
866 : 46 : LOCK(m_send_mutex);
867 [ + + ]: 46 : if (m_sending_header) {
868 [ - + + + ]: 29 : return {std::span{m_header_to_send}.subspan(m_bytes_sent),
869 : : // We have more to send after the header if the message has payload, or if there
870 : : // is a next message after that.
871 [ + + + + ]: 29 : have_next_message || !m_message_to_send.data.empty(),
872 : 29 : m_message_to_send.m_type
873 : 29 : };
874 : : } else {
875 [ - + ]: 17 : return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
876 : : // We only have more to send after this message's payload if there is another
877 : : // message.
878 : : have_next_message,
879 : 17 : m_message_to_send.m_type
880 : 17 : };
881 : : }
882 : 46 : }
883 : :
884 : 8 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
885 : : {
886 : 8 : AssertLockNotHeld(m_send_mutex);
887 : 8 : LOCK(m_send_mutex);
888 : 8 : m_bytes_sent += bytes_sent;
889 [ + + - + : 8 : if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
+ - ]
890 : : // We're done sending a message's header. Switch to sending its data bytes.
891 : 5 : m_sending_header = false;
892 : 5 : m_bytes_sent = 0;
893 [ + - - + : 3 : } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
+ - ]
894 : : // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
895 : 3 : ClearShrink(m_message_to_send.data);
896 : 3 : m_bytes_sent = 0;
897 : : }
898 : 8 : }
899 : :
900 : 28 : size_t V1Transport::GetSendMemoryUsage() const noexcept
901 : : {
902 : 28 : AssertLockNotHeld(m_send_mutex);
903 : 28 : LOCK(m_send_mutex);
904 : : // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
905 [ + - ]: 28 : return m_message_to_send.GetMemoryUsage();
906 : 28 : }
907 : :
908 : : namespace {
909 : :
910 : : /** List of short messages as defined in BIP324, in order.
911 : : *
912 : : * Only message types that are actually implemented in this codebase need to be listed, as other
913 : : * messages get ignored anyway - whether we know how to decode them or not.
914 : : */
915 : : const std::array<std::string, 33> V2_MESSAGE_IDS = {
916 : : "", // 12 bytes follow encoding the message type like in V1
917 : : NetMsgType::ADDR,
918 : : NetMsgType::BLOCK,
919 : : NetMsgType::BLOCKTXN,
920 : : NetMsgType::CMPCTBLOCK,
921 : : NetMsgType::FEEFILTER,
922 : : NetMsgType::FILTERADD,
923 : : NetMsgType::FILTERCLEAR,
924 : : NetMsgType::FILTERLOAD,
925 : : NetMsgType::GETBLOCKS,
926 : : NetMsgType::GETBLOCKTXN,
927 : : NetMsgType::GETDATA,
928 : : NetMsgType::GETHEADERS,
929 : : NetMsgType::HEADERS,
930 : : NetMsgType::INV,
931 : : NetMsgType::MEMPOOL,
932 : : NetMsgType::MERKLEBLOCK,
933 : : NetMsgType::NOTFOUND,
934 : : NetMsgType::PING,
935 : : NetMsgType::PONG,
936 : : NetMsgType::SENDCMPCT,
937 : : NetMsgType::TX,
938 : : NetMsgType::GETCFILTERS,
939 : : NetMsgType::CFILTER,
940 : : NetMsgType::GETCFHEADERS,
941 : : NetMsgType::CFHEADERS,
942 : : NetMsgType::GETCFCHECKPT,
943 : : NetMsgType::CFCHECKPT,
944 : : NetMsgType::ADDRV2,
945 : : // Unimplemented message types that are assigned in BIP324:
946 : : "",
947 : : "",
948 : : "",
949 : : ""
950 : : };
951 : :
952 : : class V2MessageMap
953 : : {
954 : : std::unordered_map<std::string, uint8_t> m_map;
955 : :
956 : : public:
957 : 144 : V2MessageMap() noexcept
958 : 144 : {
959 [ + + ]: 4752 : for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
960 : 4608 : m_map.emplace(V2_MESSAGE_IDS[i], i);
961 : : }
962 : 144 : }
963 : :
964 : 51 : std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
965 : : {
966 : 51 : auto it = m_map.find(message_name);
967 [ + + ]: 51 : if (it == m_map.end()) return std::nullopt;
968 : 1 : return it->second;
969 : : }
970 : : };
971 : :
972 : : const V2MessageMap V2_MESSAGE_MAP;
973 : :
974 : 75 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
975 : : {
976 : 75 : std::vector<uint8_t> ret;
977 : 75 : FastRandomContext rng;
978 : 75 : ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
979 : 75 : rng.fillrand(MakeWritableByteSpan(ret));
980 : 75 : return ret;
981 : 75 : }
982 : :
983 : : } // namespace
984 : :
985 : 74 : void V2Transport::StartSendingHandshake() noexcept
986 : : {
987 : 74 : AssertLockHeld(m_send_mutex);
988 [ - + ]: 74 : Assume(m_send_state == SendState::AWAITING_KEY);
989 : 74 : Assume(m_send_buffer.empty());
990 : : // Initialize the send buffer with ellswift pubkey + provided garbage.
991 [ - + ]: 74 : m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
992 : 74 : std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
993 : 74 : std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
994 : : // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
995 : 74 : }
996 : :
997 : 75 : V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
998 : 75 : : m_cipher{key, ent32},
999 : 75 : m_initiating{initiating},
1000 : 75 : m_nodeid{nodeid},
1001 : 75 : m_v1_fallback{nodeid},
1002 [ + + ]: 75 : m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1003 [ - + ]: 75 : m_send_garbage{std::move(garbage)},
1004 [ + + - + ]: 195 : m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1005 : : {
1006 [ - + + + ]: 75 : Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1007 : : // Start sending immediately if we're the initiator of the connection.
1008 [ + + ]: 75 : if (initiating) {
1009 : 30 : LOCK(m_send_mutex);
1010 [ + - ]: 30 : StartSendingHandshake();
1011 : 30 : }
1012 : 75 : }
1013 : :
1014 : 75 : V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1015 : 150 : : V2Transport{nodeid, initiating, GenerateRandomKey(),
1016 : 150 : MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1017 : :
1018 : 764 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1019 : : {
1020 : 764 : AssertLockHeld(m_recv_mutex);
1021 : : // Enforce allowed state transitions.
1022 [ + + + + : 764 : switch (m_recv_state) {
+ + - - ]
1023 : 45 : case RecvState::KEY_MAYBE_V1:
1024 : 45 : Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1025 : 45 : break;
1026 : 73 : case RecvState::KEY:
1027 : 73 : Assume(recv_state == RecvState::GARB_GARBTERM);
1028 : 73 : break;
1029 : 71 : case RecvState::GARB_GARBTERM:
1030 : 71 : Assume(recv_state == RecvState::VERSION);
1031 : 71 : break;
1032 : 71 : case RecvState::VERSION:
1033 : 71 : Assume(recv_state == RecvState::APP);
1034 : 71 : break;
1035 : 252 : case RecvState::APP:
1036 : 252 : Assume(recv_state == RecvState::APP_READY);
1037 : 252 : break;
1038 : 252 : case RecvState::APP_READY:
1039 : 252 : Assume(recv_state == RecvState::APP);
1040 : 252 : break;
1041 : 0 : case RecvState::V1:
1042 : 0 : Assume(false); // V1 state cannot be left
1043 : 0 : break;
1044 : : }
1045 : : // Change state.
1046 : 764 : m_recv_state = recv_state;
1047 : 764 : }
1048 : :
1049 : 118 : void V2Transport::SetSendState(SendState send_state) noexcept
1050 : : {
1051 : 118 : AssertLockHeld(m_send_mutex);
1052 : : // Enforce allowed state transitions.
1053 [ + + - - ]: 118 : switch (m_send_state) {
1054 : 45 : case SendState::MAYBE_V1:
1055 : 45 : Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1056 : 45 : break;
1057 : 73 : case SendState::AWAITING_KEY:
1058 : 73 : Assume(send_state == SendState::READY);
1059 : 73 : break;
1060 : 0 : case SendState::READY:
1061 : 0 : case SendState::V1:
1062 : 0 : Assume(false); // Final states
1063 : 0 : break;
1064 : : }
1065 : : // Change state.
1066 : 118 : m_send_state = send_state;
1067 : 118 : }
1068 : :
1069 : 2894 : bool V2Transport::ReceivedMessageComplete() const noexcept
1070 : : {
1071 : 2894 : AssertLockNotHeld(m_recv_mutex);
1072 : 2894 : LOCK(m_recv_mutex);
1073 [ + + ]: 2894 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1074 : :
1075 : 2891 : return m_recv_state == RecvState::APP_READY;
1076 : 2894 : }
1077 : :
1078 : 46 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1079 : : {
1080 : 46 : AssertLockHeld(m_recv_mutex);
1081 : 46 : AssertLockNotHeld(m_send_mutex);
1082 : 46 : Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1083 : : // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1084 : : // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1085 : : // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1086 : : // sending of the key.
1087 : 46 : std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1088 : 46 : std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1089 [ - + + + ]: 46 : Assume(m_recv_buffer.size() <= v1_prefix.size());
1090 [ + + ]: 46 : if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1091 : : // Mismatch with v1 prefix, so we can assume a v2 connection.
1092 : 44 : SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1093 : : // Transition the sender to AWAITING_KEY state and start sending.
1094 : 44 : LOCK(m_send_mutex);
1095 : 44 : SetSendState(SendState::AWAITING_KEY);
1096 [ + - ]: 44 : StartSendingHandshake();
1097 [ + + ]: 46 : } else if (m_recv_buffer.size() == v1_prefix.size()) {
1098 : : // Full match with the v1 prefix, so fall back to v1 behavior.
1099 : 1 : LOCK(m_send_mutex);
1100 [ - + ]: 1 : std::span<const uint8_t> feedback{m_recv_buffer};
1101 : : // Feed already received bytes to v1 transport. It should always accept these, because it's
1102 : : // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1103 : 1 : bool ret = m_v1_fallback.ReceivedBytes(feedback);
1104 : 1 : Assume(feedback.empty());
1105 : 1 : Assume(ret);
1106 : 1 : SetReceiveState(RecvState::V1);
1107 : 1 : SetSendState(SendState::V1);
1108 : : // Reset v2 transport buffers to save memory.
1109 : 1 : ClearShrink(m_recv_buffer);
1110 [ + - ]: 1 : ClearShrink(m_send_buffer);
1111 : 1 : } else {
1112 : : // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1113 : : }
1114 : 46 : }
1115 : :
1116 : 155 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
1117 : : {
1118 : 155 : AssertLockHeld(m_recv_mutex);
1119 : 155 : AssertLockNotHeld(m_send_mutex);
1120 [ - + ]: 155 : Assume(m_recv_state == RecvState::KEY);
1121 [ - + + + ]: 155 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1122 : :
1123 : : // As a special exception, if bytes 4-16 of the key on a responder connection match the
1124 : : // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1125 : : // (if they did, we'd have switched to V1 state already), assume this is a peer from
1126 : : // another network, and disconnect them. They will almost certainly disconnect us too when
1127 : : // they receive our uniformly random key and garbage, but detecting this case specially
1128 : : // means we can log it.
1129 : 155 : static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1130 : 155 : static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1131 [ + + + + ]: 155 : if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1132 [ + + ]: 109 : if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1133 [ + - - + ]: 1 : LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1134 : : HexStr(std::span(m_recv_buffer).first(OFFSET)));
1135 : 1 : return false;
1136 : : }
1137 : : }
1138 : :
1139 [ + + ]: 154 : if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1140 : : // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1141 : : // our key to initialize the encryption ciphers.
1142 : :
1143 : : // Initialize the ciphers.
1144 : 73 : EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1145 : 73 : LOCK(m_send_mutex);
1146 : 73 : m_cipher.Initialize(ellswift, m_initiating);
1147 : :
1148 : : // Switch receiver state to GARB_GARBTERM.
1149 : 73 : SetReceiveState(RecvState::GARB_GARBTERM);
1150 [ + - ]: 73 : m_recv_buffer.clear();
1151 : :
1152 : : // Switch sender state to READY.
1153 : 73 : SetSendState(SendState::READY);
1154 : :
1155 : : // Append the garbage terminator to the send buffer.
1156 [ - + ]: 73 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1157 : 73 : std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1158 : 73 : m_cipher.GetSendGarbageTerminator().end(),
1159 : 73 : MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1160 : :
1161 : : // Construct version packet in the send buffer, with the sent garbage data as AAD.
1162 [ - + ]: 73 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1163 : 73 : m_cipher.Encrypt(
1164 : : /*contents=*/VERSION_CONTENTS,
1165 : 73 : /*aad=*/MakeByteSpan(m_send_garbage),
1166 : : /*ignore=*/false,
1167 : 73 : /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1168 : : // We no longer need the garbage.
1169 [ + - ]: 73 : ClearShrink(m_send_garbage);
1170 : 73 : } else {
1171 : : // We still have to receive more key bytes.
1172 : : }
1173 : : return true;
1174 : : }
1175 : :
1176 : 152812 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1177 : : {
1178 : 152812 : AssertLockHeld(m_recv_mutex);
1179 [ - + ]: 152812 : Assume(m_recv_state == RecvState::GARB_GARBTERM);
1180 [ - + + + ]: 152812 : Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1181 [ + + ]: 152812 : if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1182 [ + + ]: 151717 : if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1183 : : // Garbage terminator received. Store garbage to authenticate it as AAD later.
1184 : 71 : m_recv_aad = std::move(m_recv_buffer);
1185 [ - + ]: 71 : m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1186 [ - + ]: 71 : m_recv_buffer.clear();
1187 : 71 : SetReceiveState(RecvState::VERSION);
1188 [ + + ]: 151646 : } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1189 : : // We've reached the maximum length for garbage + garbage terminator, and the
1190 : : // terminator still does not match. Abort.
1191 [ + - ]: 2 : LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1192 : 2 : return false;
1193 : : } else {
1194 : : // We still need to receive more garbage and/or garbage terminator bytes.
1195 : : }
1196 : : } else {
1197 : : // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1198 : : // more first.
1199 : : }
1200 : : return true;
1201 : : }
1202 : :
1203 : 104215 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
1204 : : {
1205 : 104215 : AssertLockHeld(m_recv_mutex);
1206 [ - + ]: 104215 : Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1207 : :
1208 : : // The maximum permitted contents length for a packet, consisting of:
1209 : : // - 0x00 byte: indicating long message type encoding
1210 : : // - 12 bytes of message type
1211 : : // - payload
1212 : 104215 : static constexpr size_t MAX_CONTENTS_LEN =
1213 : : 1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1214 : : std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1215 : :
1216 [ - + + + ]: 104215 : if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1217 : : // Length descriptor received.
1218 : 51458 : m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1219 [ + + ]: 51458 : if (m_recv_len > MAX_CONTENTS_LEN) {
1220 [ + - ]: 10 : LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1221 : 10 : return false;
1222 : : }
1223 [ + + + + ]: 52757 : } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1224 : : // Ciphertext received, decrypt it into m_recv_decode_buffer.
1225 : : // Note that it is impossible to reach this branch without hitting the branch above first,
1226 : : // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1227 : 51448 : m_recv_decode_buffer.resize(m_recv_len);
1228 : 51448 : bool ignore{false};
1229 : 102896 : bool ret = m_cipher.Decrypt(
1230 : 51448 : /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1231 : 51448 : /*aad=*/MakeByteSpan(m_recv_aad),
1232 : : /*ignore=*/ignore,
1233 : : /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1234 [ + + ]: 51448 : if (!ret) {
1235 [ + - ]: 10 : LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1236 : 10 : return false;
1237 : : }
1238 : : // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1239 : 51438 : ClearShrink(m_recv_aad);
1240 : : // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1241 [ - + ]: 51438 : RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1242 : :
1243 : : // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1244 : : // decoy, which we simply ignore, use the current state to decide what to do with it.
1245 [ + + ]: 51438 : if (!ignore) {
1246 [ + + - ]: 323 : switch (m_recv_state) {
1247 : 71 : case RecvState::VERSION:
1248 : : // Version message received; transition to application phase. The contents is
1249 : : // ignored, but can be used for future extensions.
1250 : 71 : SetReceiveState(RecvState::APP);
1251 : 71 : break;
1252 : 252 : case RecvState::APP:
1253 : : // Application message decrypted correctly. It can be extracted using GetMessage().
1254 : 252 : SetReceiveState(RecvState::APP_READY);
1255 : 252 : break;
1256 : 0 : default:
1257 : : // Any other state is invalid (this function should not have been called).
1258 : 0 : Assume(false);
1259 : : }
1260 : : }
1261 : : // Wipe the receive buffer where the next packet will be received into.
1262 : 51438 : ClearShrink(m_recv_buffer);
1263 : : // In all but APP_READY state, we can wipe the decoded contents.
1264 [ + + ]: 51438 : if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1265 : : } else {
1266 : : // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1267 : : // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1268 : : }
1269 : : return true;
1270 : : }
1271 : :
1272 : 257494 : size_t V2Transport::GetMaxBytesToProcess() noexcept
1273 : : {
1274 : 257494 : AssertLockHeld(m_recv_mutex);
1275 [ + + + + : 257494 : switch (m_recv_state) {
- - + ]
1276 : 46 : case RecvState::KEY_MAYBE_V1:
1277 : : // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1278 : : // receive buffer.
1279 [ - + ]: 46 : Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1280 : : // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1281 : : // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1282 : : // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1283 : : // back into the m_v1_fallback V1 transport.
1284 : 46 : return V1_PREFIX_LEN - m_recv_buffer.size();
1285 : 155 : case RecvState::KEY:
1286 : : // During the KEY state, we only allow the 64-byte key into the receive buffer.
1287 [ - + ]: 155 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1288 : : // As long as we have not received the other side's public key, don't receive more than
1289 : : // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1290 : : // key exchange first.
1291 : 155 : return EllSwiftPubKey::size() - m_recv_buffer.size();
1292 : : case RecvState::GARB_GARBTERM:
1293 : : // Process garbage bytes one by one (because terminator may appear anywhere).
1294 : : return 1;
1295 : 104215 : case RecvState::VERSION:
1296 : 104215 : case RecvState::APP:
1297 : : // These three states all involve decoding a packet. Process the length descriptor first,
1298 : : // so that we know where the current packet ends (and we don't process bytes from the next
1299 : : // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1300 [ - + + + ]: 104215 : if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1301 : 51468 : return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1302 : : } else {
1303 : : // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1304 : : // and encoded packet size, which includes the 3 bytes due to the packet length.
1305 : : // When transitioning from receiving the packet length to receiving its ciphertext,
1306 : : // the encrypted packet length is left in the receive buffer.
1307 : 52747 : return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1308 : : }
1309 : 266 : case RecvState::APP_READY:
1310 : : // No bytes can be processed until GetMessage() is called.
1311 : 266 : return 0;
1312 : 0 : case RecvState::V1:
1313 : : // Not allowed (must be dealt with by the caller).
1314 : 0 : Assume(false);
1315 : 0 : return 0;
1316 : : }
1317 : 0 : Assume(false); // unreachable
1318 : 0 : return 0;
1319 : : }
1320 : :
1321 : 2172 : bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1322 : : {
1323 : 2172 : AssertLockNotHeld(m_recv_mutex);
1324 : : /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1325 : 2172 : static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1326 : :
1327 : 2172 : LOCK(m_recv_mutex);
1328 [ + + ]: 2172 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1329 : :
1330 : : // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1331 : : // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1332 : : // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1333 : : // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1334 [ + + ]: 259375 : while (!msg_bytes.empty()) {
1335 : : // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1336 : 257494 : size_t max_read = GetMaxBytesToProcess();
1337 : :
1338 : : // Reserve space in the buffer if there is not enough.
1339 [ - + + + : 259387 : if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
- + + + ]
1340 [ + + - - : 103032 : switch (m_recv_state) {
- ]
1341 : 75 : case RecvState::KEY_MAYBE_V1:
1342 : 75 : case RecvState::KEY:
1343 : 75 : case RecvState::GARB_GARBTERM:
1344 : : // During the initial states (key/garbage), allocate once to fit the maximum (4111
1345 : : // bytes).
1346 : 75 : m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1347 : 75 : break;
1348 : 102957 : case RecvState::VERSION:
1349 : 102957 : case RecvState::APP: {
1350 : : // During states where a packet is being received, as much as is expected but never
1351 : : // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1352 : : // This means attackers that want to cause us to waste allocated memory are limited
1353 : : // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1354 : : // MAX_RESERVE_AHEAD more than they've actually sent us.
1355 [ + + ]: 102957 : size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1356 : 102957 : m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1357 : 102957 : break;
1358 : : }
1359 : 0 : case RecvState::APP_READY:
1360 : : // The buffer is empty in this state.
1361 : 0 : Assume(m_recv_buffer.empty());
1362 : 0 : break;
1363 : 0 : case RecvState::V1:
1364 : : // Should have bailed out above.
1365 : 0 : Assume(false);
1366 : 0 : break;
1367 : : }
1368 : : }
1369 : :
1370 : : // Can't read more than provided input.
1371 [ + + ]: 257494 : max_read = std::min(msg_bytes.size(), max_read);
1372 : : // Copy data to buffer.
1373 : 257494 : m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1374 [ + + + + : 257494 : msg_bytes = msg_bytes.subspan(max_read);
- - + ]
1375 : :
1376 : : // Process data in the buffer.
1377 [ + + + + : 257494 : switch (m_recv_state) {
- - + ]
1378 : 46 : case RecvState::KEY_MAYBE_V1:
1379 : 46 : ProcessReceivedMaybeV1Bytes();
1380 [ + + ]: 46 : if (m_recv_state == RecvState::V1) return true;
1381 : : break;
1382 : :
1383 : 155 : case RecvState::KEY:
1384 [ + + ]: 155 : if (!ProcessReceivedKeyBytes()) return false;
1385 : : break;
1386 : :
1387 : 152812 : case RecvState::GARB_GARBTERM:
1388 [ + + ]: 152812 : if (!ProcessReceivedGarbageBytes()) return false;
1389 : : break;
1390 : :
1391 : 104215 : case RecvState::VERSION:
1392 : 104215 : case RecvState::APP:
1393 [ + + ]: 104215 : if (!ProcessReceivedPacketBytes()) return false;
1394 : : break;
1395 : :
1396 : : case RecvState::APP_READY:
1397 : : return true;
1398 : :
1399 : 0 : case RecvState::V1:
1400 : : // We should have bailed out before.
1401 : 0 : Assume(false);
1402 : 0 : break;
1403 : : }
1404 : : // Make sure we have made progress before continuing.
1405 : 257204 : Assume(max_read > 0);
1406 : : }
1407 : :
1408 : : return true;
1409 : 2172 : }
1410 : :
1411 : 252 : std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1412 : : {
1413 [ - + ]: 252 : if (contents.size() == 0) return std::nullopt; // Empty contents
1414 [ + + ]: 252 : uint8_t first_byte = contents[0];
1415 [ + + ]: 252 : contents = contents.subspan(1); // Strip first byte.
1416 : :
1417 [ + + ]: 252 : if (first_byte != 0) {
1418 : : // Short (1 byte) encoding.
1419 [ + + ]: 132 : if (first_byte < std::size(V2_MESSAGE_IDS)) {
1420 : : // Valid short message id.
1421 [ - + ]: 262 : return V2_MESSAGE_IDS[first_byte];
1422 : : } else {
1423 : : // Unknown short message id.
1424 : 1 : return std::nullopt;
1425 : : }
1426 : : }
1427 : :
1428 [ + + ]: 120 : if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1429 : 10 : return std::nullopt; // Long encoding needs 12 message type bytes.
1430 : : }
1431 : :
1432 : : size_t msg_type_len{0};
1433 [ + - + + ]: 830 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1434 : : // Verify that message type bytes before the first 0x00 are in range.
1435 [ - + + - ]: 720 : if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1436 : 0 : return {};
1437 : : }
1438 : 720 : ++msg_type_len;
1439 : : }
1440 : 110 : std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1441 [ + + ]: 610 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1442 : : // Verify that message type bytes after the first 0x00 are also 0x00.
1443 [ + + ]: 550 : if (contents[msg_type_len] != 0) return {};
1444 : 500 : ++msg_type_len;
1445 : : }
1446 : : // Strip message type bytes of contents.
1447 : 60 : contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1448 : 60 : return ret;
1449 : 110 : }
1450 : :
1451 : 252 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1452 : : {
1453 : 252 : AssertLockNotHeld(m_recv_mutex);
1454 : 252 : LOCK(m_recv_mutex);
1455 [ - + ]: 252 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1456 : :
1457 [ - + ]: 252 : Assume(m_recv_state == RecvState::APP_READY);
1458 [ - + ]: 252 : std::span<const uint8_t> contents{m_recv_decode_buffer};
1459 : 252 : auto msg_type = GetMessageType(contents);
1460 : 252 : CNetMessage msg{DataStream{}};
1461 : : // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1462 [ - + ]: 252 : msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1463 [ + + ]: 252 : if (msg_type) {
1464 : 191 : reject_message = false;
1465 : 191 : msg.m_type = std::move(*msg_type);
1466 : 191 : msg.m_time = time;
1467 : 191 : msg.m_message_size = contents.size();
1468 : 191 : msg.m_recv.resize(contents.size());
1469 : 191 : std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1470 : : } else {
1471 [ + - - + ]: 61 : LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1472 : 61 : reject_message = true;
1473 : : }
1474 : 252 : ClearShrink(m_recv_decode_buffer);
1475 : 252 : SetReceiveState(RecvState::APP);
1476 : :
1477 : 252 : return msg;
1478 : 252 : }
1479 : :
1480 : 51 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1481 : : {
1482 : 51 : AssertLockNotHeld(m_send_mutex);
1483 : 51 : LOCK(m_send_mutex);
1484 [ - + ]: 51 : if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1485 : : // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1486 : : // is available) and the send buffer is empty. This limits the number of messages in the send
1487 : : // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1488 [ + - + - ]: 51 : if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1489 : : // Construct contents (encoding message type + payload).
1490 : 51 : std::vector<uint8_t> contents;
1491 : 51 : auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1492 [ + + ]: 51 : if (short_message_id) {
1493 [ - + ]: 1 : contents.resize(1 + msg.data.size());
1494 : 1 : contents[0] = *short_message_id;
1495 : 1 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1496 : : } else {
1497 : : // Initialize with zeroes, and then write the message type string starting at offset 1.
1498 : : // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1499 [ - + ]: 50 : contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1500 [ - + ]: 50 : std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1501 : 50 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1502 : : }
1503 : : // Construct ciphertext in send buffer.
1504 [ - + ]: 51 : m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1505 : 51 : m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1506 : 51 : m_send_type = msg.m_type;
1507 : : // Release memory
1508 : 51 : ClearShrink(msg.data);
1509 : 51 : return true;
1510 : 51 : }
1511 : :
1512 : 2894 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1513 : : {
1514 : 2894 : AssertLockNotHeld(m_send_mutex);
1515 : 2894 : LOCK(m_send_mutex);
1516 [ + + ]: 2894 : if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1517 : :
1518 [ + + ]: 2891 : if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1519 [ - + + + ]: 2891 : Assume(m_send_pos <= m_send_buffer.size());
1520 : 2891 : return {
1521 [ + + ]: 2891 : std::span{m_send_buffer}.subspan(m_send_pos),
1522 : : // We only have more to send after the current m_send_buffer if there is a (next)
1523 : : // message to be sent, and we're capable of sending packets. */
1524 [ + + - + ]: 2891 : have_next_message && m_send_state == SendState::READY,
1525 : 2891 : m_send_type
1526 : 2891 : };
1527 : 2894 : }
1528 : :
1529 : 933 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1530 : : {
1531 : 933 : AssertLockNotHeld(m_send_mutex);
1532 : 933 : LOCK(m_send_mutex);
1533 [ - + - - ]: 933 : if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1534 : :
1535 [ + + + + : 933 : if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
+ - ]
1536 [ + - ]: 40 : LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1537 : : }
1538 : :
1539 : 933 : m_send_pos += bytes_sent;
1540 [ - + + + ]: 933 : Assume(m_send_pos <= m_send_buffer.size());
1541 [ + + ]: 933 : if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1542 : 848 : m_sent_v1_header_worth = true;
1543 : : }
1544 : : // Wipe the buffer when everything is sent.
1545 [ + + ]: 933 : if (m_send_pos == m_send_buffer.size()) {
1546 : 147 : m_send_pos = 0;
1547 : 147 : ClearShrink(m_send_buffer);
1548 : : }
1549 : 933 : }
1550 : :
1551 : 0 : bool V2Transport::ShouldReconnectV1() const noexcept
1552 : : {
1553 : 0 : AssertLockNotHeld(m_send_mutex);
1554 : 0 : AssertLockNotHeld(m_recv_mutex);
1555 : : // Only outgoing connections need reconnection.
1556 [ # # ]: 0 : if (!m_initiating) return false;
1557 : :
1558 : 0 : LOCK(m_recv_mutex);
1559 : : // We only reconnect in the very first state and when the receive buffer is empty. Together
1560 : : // these conditions imply nothing has been received so far.
1561 [ # # ]: 0 : if (m_recv_state != RecvState::KEY) return false;
1562 [ # # ]: 0 : if (!m_recv_buffer.empty()) return false;
1563 : : // Check if we've sent enough for the other side to disconnect us (if it was V1).
1564 : 0 : LOCK(m_send_mutex);
1565 [ # # ]: 0 : return m_sent_v1_header_worth;
1566 : 0 : }
1567 : :
1568 : 0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
1569 : : {
1570 : 0 : AssertLockNotHeld(m_send_mutex);
1571 : 0 : LOCK(m_send_mutex);
1572 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1573 : :
1574 [ # # ]: 0 : return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1575 : 0 : }
1576 : :
1577 : 71 : Transport::Info V2Transport::GetInfo() const noexcept
1578 : : {
1579 : 71 : AssertLockNotHeld(m_recv_mutex);
1580 : 71 : LOCK(m_recv_mutex);
1581 [ - + ]: 71 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1582 : :
1583 [ + - ]: 71 : Transport::Info info;
1584 : :
1585 : : // Do not report v2 and session ID until the version packet has been received
1586 : : // and verified (confirming that the other side very likely has the same keys as us).
1587 [ + - ]: 71 : if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1588 : : m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1589 : 71 : info.transport_type = TransportProtocolType::V2;
1590 : 71 : info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1591 : : } else {
1592 : 0 : info.transport_type = TransportProtocolType::DETECTING;
1593 : : }
1594 : :
1595 : 71 : return info;
1596 : 71 : }
1597 : :
1598 : 6 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1599 : : {
1600 : 6 : auto it = node.vSendMsg.begin();
1601 : 6 : size_t nSentSize = 0;
1602 : 6 : bool data_left{false}; //!< second return value (whether unsent data remains)
1603 : 6 : std::optional<bool> expected_more;
1604 : :
1605 : 6 : while (true) {
1606 [ + - ]: 6 : if (it != node.vSendMsg.end()) {
1607 : : // If possible, move one message from the send queue to the transport. This fails when
1608 : : // there is an existing message still being sent, or (for v2 transports) when the
1609 : : // handshake has not yet completed.
1610 : 6 : size_t memusage = it->GetMemoryUsage();
1611 [ + - ]: 6 : if (node.m_transport->SetMessageToSend(*it)) {
1612 : : // Update memory usage of send buffer (as *it will be deleted).
1613 : 6 : node.m_send_memusage -= memusage;
1614 : 6 : ++it;
1615 : : }
1616 : : }
1617 [ - + ]: 6 : const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1618 : : // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1619 : : // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1620 : : // verify that the previously returned 'more' was correct.
1621 [ - + ]: 6 : if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1622 [ + - ]: 6 : expected_more = more;
1623 [ + - ]: 6 : data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1624 : 6 : int nBytes = 0;
1625 [ + - ]: 6 : if (!data.empty()) {
1626 : 6 : LOCK(node.m_sock_mutex);
1627 : : // There is no socket in case we've already disconnected, or in test cases without
1628 : : // real connections. In these cases, we bail out immediately and just leave things
1629 : : // in the send queue and transport.
1630 [ - + ]: 6 : if (!node.m_sock) {
1631 : : break;
1632 : : }
1633 : 0 : int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1634 : : #ifdef MSG_MORE
1635 [ # # ]: 0 : if (more) {
1636 : 0 : flags |= MSG_MORE;
1637 : : }
1638 : : #endif
1639 [ # # # # ]: 0 : nBytes = node.m_sock->Send(data.data(), data.size(), flags);
1640 : 6 : }
1641 [ # # ]: 0 : if (nBytes > 0) {
1642 : 0 : node.m_last_send = GetTime<std::chrono::seconds>();
1643 : 0 : node.nSendBytes += nBytes;
1644 : : // Notify transport that bytes have been processed.
1645 : 0 : node.m_transport->MarkBytesSent(nBytes);
1646 : : // Update statistics per message type.
1647 [ # # ]: 0 : if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1648 : 0 : node.AccountForSentBytes(msg_type, nBytes);
1649 : : }
1650 : 0 : nSentSize += nBytes;
1651 [ # # ]: 0 : if ((size_t)nBytes != data.size()) {
1652 : : // could not send full message; stop sending more
1653 : : break;
1654 : : }
1655 : : } else {
1656 [ # # ]: 0 : if (nBytes < 0) {
1657 : : // error
1658 : 0 : int nErr = WSAGetLastError();
1659 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1660 [ # # # # : 0 : LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
# # ]
1661 : 0 : node.CloseSocketDisconnect();
1662 : : }
1663 : : }
1664 : : break;
1665 : : }
1666 : : }
1667 : :
1668 [ + - ]: 6 : node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1669 : :
1670 [ + - ]: 6 : if (it == node.vSendMsg.end()) {
1671 [ - + ]: 6 : assert(node.m_send_memusage == 0);
1672 : : }
1673 : 6 : node.vSendMsg.erase(node.vSendMsg.begin(), it);
1674 : 6 : return {nSentSize, data_left};
1675 : : }
1676 : :
1677 : : /** Try to find a connection to evict when the node is full.
1678 : : * Extreme care must be taken to avoid opening the node to attacker
1679 : : * triggered network partitioning.
1680 : : * The strategy used here is to protect a small number of peers
1681 : : * for each of several distinct characteristics which are difficult
1682 : : * to forge. In order to partition a node the attacker must be
1683 : : * simultaneously better at all of them than honest peers.
1684 : : */
1685 : 0 : bool CConnman::AttemptToEvictConnection()
1686 : : {
1687 : 0 : std::vector<NodeEvictionCandidate> vEvictionCandidates;
1688 : 0 : {
1689 : :
1690 [ # # ]: 0 : LOCK(m_nodes_mutex);
1691 [ # # ]: 0 : for (const CNode* node : m_nodes) {
1692 [ # # ]: 0 : if (node->fDisconnect)
1693 : 0 : continue;
1694 : 0 : NodeEvictionCandidate candidate{
1695 : 0 : .id = node->GetId(),
1696 : : .m_connected = node->m_connected,
1697 : 0 : .m_min_ping_time = node->m_min_ping_time,
1698 : 0 : .m_last_block_time = node->m_last_block_time,
1699 : 0 : .m_last_tx_time = node->m_last_tx_time,
1700 [ # # ]: 0 : .fRelevantServices = node->m_has_all_wanted_services,
1701 : 0 : .m_relay_txs = node->m_relays_txs.load(),
1702 : 0 : .fBloomFilter = node->m_bloom_filter_loaded.load(),
1703 : 0 : .nKeyedNetGroup = node->nKeyedNetGroup,
1704 : 0 : .prefer_evict = node->m_prefer_evict,
1705 [ # # ]: 0 : .m_is_local = node->addr.IsLocal(),
1706 : 0 : .m_network = node->ConnectedThroughNetwork(),
1707 : 0 : .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1708 : 0 : .m_conn_type = node->m_conn_type,
1709 [ # # # # : 0 : };
# # ]
1710 [ # # ]: 0 : vEvictionCandidates.push_back(candidate);
1711 : : }
1712 : 0 : }
1713 [ # # ]: 0 : const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1714 [ # # ]: 0 : if (!node_id_to_evict) {
1715 : : return false;
1716 : : }
1717 [ # # ]: 0 : LOCK(m_nodes_mutex);
1718 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1719 [ # # ]: 0 : if (pnode->GetId() == *node_id_to_evict) {
1720 [ # # # # : 0 : LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
# # # # ]
1721 : : TRACEPOINT(net, evicted_inbound_connection,
1722 : : pnode->GetId(),
1723 : : pnode->m_addr_name.c_str(),
1724 : : pnode->ConnectionTypeAsString().c_str(),
1725 : : pnode->ConnectedThroughNetwork(),
1726 : 0 : Ticks<std::chrono::seconds>(pnode->m_connected));
1727 : 0 : pnode->fDisconnect = true;
1728 : 0 : return true;
1729 : : }
1730 : : }
1731 : : return false;
1732 : 0 : }
1733 : :
1734 : 0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1735 : 0 : struct sockaddr_storage sockaddr;
1736 : 0 : socklen_t len = sizeof(sockaddr);
1737 : 0 : auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1738 : :
1739 [ # # ]: 0 : if (!sock) {
1740 : 0 : const int nErr = WSAGetLastError();
1741 [ # # ]: 0 : if (nErr != WSAEWOULDBLOCK) {
1742 [ # # # # ]: 0 : LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1743 : : }
1744 : 0 : return;
1745 : : }
1746 : :
1747 [ # # ]: 0 : CService addr;
1748 [ # # # # ]: 0 : if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1749 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
# # ]
1750 : : } else {
1751 [ # # ]: 0 : addr = MaybeFlipIPv6toCJDNS(addr);
1752 : : }
1753 : :
1754 [ # # # # ]: 0 : const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1755 : :
1756 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
1757 [ # # ]: 0 : hListenSocket.AddSocketPermissionFlags(permission_flags);
1758 : :
1759 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1760 : 0 : }
1761 : :
1762 : 0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1763 : : NetPermissionFlags permission_flags,
1764 : : const CService& addr_bind,
1765 : : const CService& addr)
1766 : : {
1767 : 0 : int nInbound = 0;
1768 : :
1769 [ # # ]: 0 : const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1770 : :
1771 : : // Tor inbound connections do not reveal the peer's actual network address.
1772 : : // Therefore do not apply address-based whitelist permissions to them.
1773 [ # # # # ]: 0 : AddWhitelistPermissionFlags(permission_flags, inbound_onion ? std::optional<CNetAddr>{} : addr, vWhitelistedRangeIncoming);
1774 : :
1775 : 0 : {
1776 : 0 : LOCK(m_nodes_mutex);
1777 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
1778 [ # # ]: 0 : if (pnode->IsInboundConn()) nInbound++;
1779 : : }
1780 : 0 : }
1781 : :
1782 [ # # ]: 0 : if (!fNetworkActive) {
1783 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1784 : 0 : return;
1785 : : }
1786 : :
1787 [ # # ]: 0 : if (!sock->IsSelectable()) {
1788 [ # # ]: 0 : LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1789 : 0 : return;
1790 : : }
1791 : :
1792 : : // According to the internet TCP_NODELAY is not carried into accepted sockets
1793 : : // on all platforms. Set it again here just to be sure.
1794 : 0 : const int on{1};
1795 [ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1796 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1797 : : addr.ToStringAddrPort());
1798 : : }
1799 : :
1800 : : // Don't accept connections from banned peers.
1801 [ # # # # ]: 0 : bool banned = m_banman && m_banman->IsBanned(addr);
1802 [ # # # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1803 : : {
1804 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1805 : 0 : return;
1806 : : }
1807 : :
1808 : : // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1809 [ # # # # ]: 0 : bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1810 [ # # # # : 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
# # ]
1811 : : {
1812 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1813 : 0 : return;
1814 : : }
1815 : :
1816 [ # # ]: 0 : if (nInbound >= m_max_inbound)
1817 : : {
1818 [ # # ]: 0 : if (!AttemptToEvictConnection()) {
1819 : : // No connection to evict, disconnect the new connection
1820 [ # # ]: 0 : LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1821 : 0 : return;
1822 : : }
1823 : : }
1824 : :
1825 : 0 : NodeId id = GetNewNodeId();
1826 : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1827 : :
1828 : : // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1829 : : // detected, so use it whenever we signal NODE_P2P_V2.
1830 : 0 : ServiceFlags local_services = GetLocalServices();
1831 : 0 : const bool use_v2transport(local_services & NODE_P2P_V2);
1832 : :
1833 : 0 : uint64_t network_id = GetDeterministicRandomizer(RANDOMIZER_ID_NETWORKKEY)
1834 [ # # ]: 0 : .Write(inbound_onion ? NET_ONION : addr.GetNetClass())
1835 [ # # # # ]: 0 : .Write(addr_bind.GetAddrBytes())
1836 [ # # # # ]: 0 : .Write(addr_bind.GetPort()) // inbound connections use bind port
1837 [ # # ]: 0 : .Finalize();
1838 : 0 : CNode* pnode = new CNode(id,
1839 : 0 : std::move(sock),
1840 [ # # ]: 0 : CAddress{addr, NODE_NONE},
1841 : : CalculateKeyedNetGroup(addr),
1842 : : nonce,
1843 : : addr_bind,
1844 : 0 : /*addrNameIn=*/"",
1845 : : ConnectionType::INBOUND,
1846 : : inbound_onion,
1847 : : network_id,
1848 : 0 : CNodeOptions{
1849 : : .permission_flags = permission_flags,
1850 : : .prefer_evict = discouraged,
1851 : 0 : .recv_flood_size = nReceiveFloodSize,
1852 : : .use_v2transport = use_v2transport,
1853 [ # # # # : 0 : });
# # # # ]
1854 : 0 : pnode->AddRef();
1855 : 0 : m_msgproc->InitializeNode(*pnode, local_services);
1856 : 0 : {
1857 : 0 : LOCK(m_nodes_mutex);
1858 [ # # ]: 0 : m_nodes.push_back(pnode);
1859 : 0 : }
1860 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1861 : : TRACEPOINT(net, inbound_connection,
1862 : : pnode->GetId(),
1863 : : pnode->m_addr_name.c_str(),
1864 : : pnode->ConnectionTypeAsString().c_str(),
1865 : : pnode->ConnectedThroughNetwork(),
1866 : 0 : GetNodeCount(ConnectionDirection::In));
1867 : :
1868 : : // We received a new connection, harvest entropy from the time (and our peer count)
1869 : 0 : RandAddEvent((uint32_t)id);
1870 : : }
1871 : :
1872 : 0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1873 : : {
1874 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1875 : 0 : std::optional<int> max_connections;
1876 [ # # # # ]: 0 : switch (conn_type) {
1877 : : case ConnectionType::INBOUND:
1878 : : case ConnectionType::MANUAL:
1879 : : return false;
1880 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
1881 : 0 : max_connections = m_max_outbound_full_relay;
1882 : 0 : break;
1883 : 0 : case ConnectionType::BLOCK_RELAY:
1884 : 0 : max_connections = m_max_outbound_block_relay;
1885 : 0 : break;
1886 : : // no limit for ADDR_FETCH because -seednode has no limit either
1887 : : case ConnectionType::ADDR_FETCH:
1888 : : break;
1889 : : // no limit for FEELER connections since they're short-lived
1890 : : case ConnectionType::FEELER:
1891 : : break;
1892 : : } // no default case, so the compiler can warn about missing cases
1893 : :
1894 : : // Count existing connections
1895 [ # # # # ]: 0 : int existing_connections = WITH_LOCK(m_nodes_mutex,
1896 : : return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1897 : :
1898 : : // Max connections of specified type already exist
1899 [ # # ]: 0 : if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1900 : :
1901 : : // Max total outbound connections already exist
1902 : 0 : CountingSemaphoreGrant<> grant(*semOutbound, true);
1903 [ # # ]: 0 : if (!grant) return false;
1904 : :
1905 [ # # # # : 0 : OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
# # ]
1906 : 0 : return true;
1907 : : }
1908 : :
1909 : 1 : void CConnman::DisconnectNodes()
1910 : : {
1911 : 1 : AssertLockNotHeld(m_nodes_mutex);
1912 : 1 : AssertLockNotHeld(m_reconnections_mutex);
1913 : :
1914 : : // Use a temporary variable to accumulate desired reconnections, so we don't need
1915 : : // m_reconnections_mutex while holding m_nodes_mutex.
1916 [ + - ]: 1 : decltype(m_reconnections) reconnections_to_add;
1917 : :
1918 : 1 : {
1919 [ + - ]: 1 : LOCK(m_nodes_mutex);
1920 : :
1921 [ - + ]: 1 : const bool network_active{fNetworkActive};
1922 [ - + ]: 1 : if (!network_active) {
1923 : : // Disconnect any connected nodes
1924 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1925 [ # # ]: 0 : if (!pnode->fDisconnect) {
1926 [ # # # # : 0 : LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
# # # # ]
1927 : 0 : pnode->fDisconnect = true;
1928 : : }
1929 : : }
1930 : : }
1931 : :
1932 : : // Disconnect unused nodes
1933 [ + - ]: 1 : std::vector<CNode*> nodes_copy = m_nodes;
1934 [ - + ]: 1 : for (CNode* pnode : nodes_copy)
1935 : : {
1936 [ # # ]: 0 : if (pnode->fDisconnect)
1937 : : {
1938 : : // remove from m_nodes
1939 : 0 : m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1940 : :
1941 : : // Add to reconnection list if appropriate. We don't reconnect right here, because
1942 : : // the creation of a connection is a blocking operation (up to several seconds),
1943 : : // and we don't want to hold up the socket handler thread for that long.
1944 [ # # # # ]: 0 : if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1945 : 0 : reconnections_to_add.push_back({
1946 : 0 : .addr_connect = pnode->addr,
1947 [ # # ]: 0 : .grant = std::move(pnode->grantOutbound),
1948 : 0 : .destination = pnode->m_dest,
1949 : 0 : .conn_type = pnode->m_conn_type,
1950 : : .use_v2transport = false});
1951 [ # # # # : 0 : LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
# # ]
1952 : : }
1953 : :
1954 : : // release outbound grant (if any)
1955 : 0 : pnode->grantOutbound.Release();
1956 : :
1957 : : // close socket and cleanup
1958 [ # # ]: 0 : pnode->CloseSocketDisconnect();
1959 : :
1960 : : // update connection count by network
1961 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1962 : :
1963 : : // hold in disconnected pool until all refs are released
1964 [ # # ]: 0 : pnode->Release();
1965 [ # # ]: 0 : m_nodes_disconnected.push_back(pnode);
1966 : : }
1967 : : }
1968 [ + - ]: 1 : }
1969 : 1 : {
1970 : : // Delete disconnected nodes
1971 [ + - ]: 1 : std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1972 [ - + ]: 1 : for (CNode* pnode : nodes_disconnected_copy)
1973 : : {
1974 : : // Destroy the object only after other threads have stopped using it.
1975 [ # # ]: 0 : if (pnode->GetRefCount() <= 0) {
1976 : 0 : m_nodes_disconnected.remove(pnode);
1977 [ # # ]: 0 : DeleteNode(pnode);
1978 : : }
1979 : : }
1980 : 0 : }
1981 : 1 : {
1982 : : // Move entries from reconnections_to_add to m_reconnections.
1983 [ + - ]: 1 : LOCK(m_reconnections_mutex);
1984 [ + - ]: 1 : m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1985 : 1 : }
1986 [ - - - - : 1 : }
- - ]
1987 : :
1988 : 1 : void CConnman::NotifyNumConnectionsChanged()
1989 : : {
1990 : 1 : size_t nodes_size;
1991 : 1 : {
1992 : 1 : LOCK(m_nodes_mutex);
1993 [ - + + - ]: 1 : nodes_size = m_nodes.size();
1994 : 1 : }
1995 [ - + ]: 1 : if(nodes_size != nPrevNodeCount) {
1996 : 0 : nPrevNodeCount = nodes_size;
1997 [ # # ]: 0 : if (m_client_interface) {
1998 : 0 : m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1999 : : }
2000 : : }
2001 : 1 : }
2002 : :
2003 : 6 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
2004 : : {
2005 : 6 : return node.m_connected + m_peer_connect_timeout < now;
2006 : : }
2007 : :
2008 : 0 : bool CConnman::InactivityCheck(const CNode& node) const
2009 : : {
2010 : : // Tests that see disconnects after using mocktime can start nodes with a
2011 : : // large timeout. For example, -peertimeout=999999999.
2012 : 0 : const auto now{GetTime<std::chrono::seconds>()};
2013 : 0 : const auto last_send{node.m_last_send.load()};
2014 : 0 : const auto last_recv{node.m_last_recv.load()};
2015 : :
2016 [ # # ]: 0 : if (!ShouldRunInactivityChecks(node, now)) return false;
2017 : :
2018 [ # # ]: 0 : bool has_received{last_recv.count() != 0};
2019 : 0 : bool has_sent{last_send.count() != 0};
2020 : :
2021 [ # # ]: 0 : if (!has_received || !has_sent) {
2022 [ # # ]: 0 : std::string has_never;
2023 [ # # # # ]: 0 : if (!has_received) has_never += ", never received from peer";
2024 [ # # # # ]: 0 : if (!has_sent) has_never += ", never sent to peer";
2025 [ # # # # : 0 : LogDebug(BCLog::NET,
# # # # ]
2026 : : "socket no message in first %i seconds%s, %s\n",
2027 : : count_seconds(m_peer_connect_timeout),
2028 : : has_never,
2029 : : node.DisconnectMsg(fLogIPs)
2030 : : );
2031 : 0 : return true;
2032 : 0 : }
2033 : :
2034 [ # # ]: 0 : if (now > last_send + TIMEOUT_INTERVAL) {
2035 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2036 : : "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2037 : : node.DisconnectMsg(fLogIPs)
2038 : : );
2039 : 0 : return true;
2040 : : }
2041 : :
2042 [ # # ]: 0 : if (now > last_recv + TIMEOUT_INTERVAL) {
2043 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2044 : : "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2045 : : node.DisconnectMsg(fLogIPs)
2046 : : );
2047 : 0 : return true;
2048 : : }
2049 : :
2050 [ # # ]: 0 : if (!node.fSuccessfullyConnected) {
2051 [ # # ]: 0 : if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2052 [ # # # # ]: 0 : LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2053 : : } else {
2054 [ # # # # ]: 0 : LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2055 : : }
2056 : 0 : return true;
2057 : : }
2058 : :
2059 : : return false;
2060 : : }
2061 : :
2062 : 1 : Sock::EventsPerSock CConnman::GenerateWaitSockets(std::span<CNode* const> nodes)
2063 : : {
2064 : 1 : Sock::EventsPerSock events_per_sock;
2065 : :
2066 [ - + ]: 1 : for (const ListenSocket& hListenSocket : vhListenSocket) {
2067 [ # # ]: 0 : events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2068 : : }
2069 : :
2070 [ - + ]: 1 : for (CNode* pnode : nodes) {
2071 [ # # ]: 0 : bool select_recv = !pnode->fPauseRecv;
2072 : 0 : bool select_send;
2073 : 0 : {
2074 [ # # ]: 0 : LOCK(pnode->cs_vSend);
2075 : : // Sending is possible if either there are bytes to send right now, or if there will be
2076 : : // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2077 : : // determines both of these in a single call.
2078 [ # # ]: 0 : const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2079 [ # # # # : 0 : select_send = !to_send.empty() || more;
# # ]
2080 : 0 : }
2081 [ # # ]: 0 : if (!select_recv && !select_send) continue;
2082 : :
2083 [ # # ]: 0 : LOCK(pnode->m_sock_mutex);
2084 [ # # ]: 0 : if (pnode->m_sock) {
2085 [ # # # # ]: 0 : Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2086 [ # # ]: 0 : events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2087 : : }
2088 : 0 : }
2089 : :
2090 : 1 : return events_per_sock;
2091 : 0 : }
2092 : :
2093 : 1 : void CConnman::SocketHandler()
2094 : : {
2095 : 1 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2096 : :
2097 [ + - ]: 1 : Sock::EventsPerSock events_per_sock;
2098 : :
2099 : 1 : {
2100 [ + - ]: 1 : const NodesSnapshot snap{*this, /*shuffle=*/false};
2101 : :
2102 : 1 : const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2103 : :
2104 : : // Check for the readiness of the already connected sockets and the
2105 : : // listening sockets in one call ("readiness" as in poll(2) or
2106 : : // select(2)). If none are ready, wait for a short while and return
2107 : : // empty sets.
2108 [ - + + - ]: 2 : events_per_sock = GenerateWaitSockets(snap.Nodes());
2109 [ - + - - : 1 : if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
- - ]
2110 [ + - ]: 1 : m_interrupt_net->sleep_for(timeout);
2111 : : }
2112 : :
2113 : : // Service (send/receive) each of the already connected nodes.
2114 [ + - ]: 1 : SocketHandlerConnected(snap.Nodes(), events_per_sock);
2115 : 1 : }
2116 : :
2117 : : // Accept new connections from listening sockets.
2118 [ + - ]: 1 : SocketHandlerListening(events_per_sock);
2119 : 1 : }
2120 : :
2121 : 1 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2122 : : const Sock::EventsPerSock& events_per_sock)
2123 : : {
2124 : 1 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2125 : :
2126 [ - + ]: 1 : for (CNode* pnode : nodes) {
2127 [ # # ]: 0 : if (m_interrupt_net->interrupted()) {
2128 : : return;
2129 : : }
2130 : :
2131 : : //
2132 : : // Receive
2133 : : //
2134 : 0 : bool recvSet = false;
2135 : 0 : bool sendSet = false;
2136 : 0 : bool errorSet = false;
2137 : 0 : {
2138 : 0 : LOCK(pnode->m_sock_mutex);
2139 [ # # ]: 0 : if (!pnode->m_sock) {
2140 [ # # ]: 0 : continue;
2141 : : }
2142 [ # # # # ]: 0 : const auto it = events_per_sock.find(pnode->m_sock);
2143 [ # # # # ]: 0 : if (it != events_per_sock.end()) {
2144 : 0 : recvSet = it->second.occurred & Sock::RECV;
2145 : 0 : sendSet = it->second.occurred & Sock::SEND;
2146 : 0 : errorSet = it->second.occurred & Sock::ERR;
2147 : : }
2148 : 0 : }
2149 : :
2150 [ # # ]: 0 : if (sendSet) {
2151 : : // Send data
2152 [ # # # # ]: 0 : auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2153 [ # # ]: 0 : if (bytes_sent) {
2154 : 0 : RecordBytesSent(bytes_sent);
2155 : :
2156 : : // If both receiving and (non-optimistic) sending were possible, we first attempt
2157 : : // sending. If that succeeds, but does not fully drain the send queue, do not
2158 : : // attempt to receive. This avoids needlessly queueing data if the remote peer
2159 : : // is slow at receiving data, by means of TCP flow control. We only do this when
2160 : : // sending actually succeeded to make sure progress is always made; otherwise a
2161 : : // deadlock would be possible when both sides have data to send, but neither is
2162 : : // receiving.
2163 [ # # ]: 0 : if (data_left) recvSet = false;
2164 : : }
2165 : : }
2166 : :
2167 [ # # ]: 0 : if (recvSet || errorSet)
2168 : : {
2169 : : // typical socket buffer is 8K-64K
2170 : 0 : uint8_t pchBuf[0x10000];
2171 : 0 : int nBytes = 0;
2172 : 0 : {
2173 : 0 : LOCK(pnode->m_sock_mutex);
2174 [ # # ]: 0 : if (!pnode->m_sock) {
2175 [ # # ]: 0 : continue;
2176 : : }
2177 [ # # # # ]: 0 : nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2178 : 0 : }
2179 [ # # ]: 0 : if (nBytes > 0)
2180 : : {
2181 : 0 : bool notify = false;
2182 [ # # ]: 0 : if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2183 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2184 : : "receiving message bytes failed, %s\n",
2185 : : pnode->DisconnectMsg(fLogIPs)
2186 : : );
2187 : 0 : pnode->CloseSocketDisconnect();
2188 : : }
2189 : 0 : RecordBytesRecv(nBytes);
2190 [ # # ]: 0 : if (notify) {
2191 : 0 : pnode->MarkReceivedMsgsForProcessing();
2192 : 0 : WakeMessageHandler();
2193 : : }
2194 : : }
2195 [ # # ]: 0 : else if (nBytes == 0)
2196 : : {
2197 : : // socket closed gracefully
2198 [ # # ]: 0 : if (!pnode->fDisconnect) {
2199 [ # # # # ]: 0 : LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2200 : : }
2201 : 0 : pnode->CloseSocketDisconnect();
2202 : : }
2203 [ # # ]: 0 : else if (nBytes < 0)
2204 : : {
2205 : : // error
2206 : 0 : int nErr = WSAGetLastError();
2207 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2208 : : {
2209 [ # # ]: 0 : if (!pnode->fDisconnect) {
2210 [ # # # # : 0 : LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
# # ]
2211 : : }
2212 : 0 : pnode->CloseSocketDisconnect();
2213 : : }
2214 : : }
2215 : : }
2216 : :
2217 [ # # ]: 0 : if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2218 : : }
2219 : : }
2220 : :
2221 : 1 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2222 : : {
2223 [ - + ]: 1 : for (const ListenSocket& listen_socket : vhListenSocket) {
2224 [ # # ]: 0 : if (m_interrupt_net->interrupted()) {
2225 : : return;
2226 : : }
2227 [ # # # # ]: 0 : const auto it = events_per_sock.find(listen_socket.sock);
2228 [ # # # # ]: 0 : if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2229 : 0 : AcceptConnection(listen_socket);
2230 : : }
2231 : : }
2232 : : }
2233 : :
2234 : 1 : void CConnman::ThreadSocketHandler()
2235 : : {
2236 : 1 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2237 : :
2238 [ + + ]: 2 : while (!m_interrupt_net->interrupted()) {
2239 : 1 : DisconnectNodes();
2240 : 1 : NotifyNumConnectionsChanged();
2241 : 1 : SocketHandler();
2242 : : }
2243 : 1 : }
2244 : :
2245 : 1 : void CConnman::WakeMessageHandler()
2246 : : {
2247 : 1 : {
2248 : 1 : LOCK(mutexMsgProc);
2249 [ + - ]: 1 : fMsgProcWake = true;
2250 : 1 : }
2251 : 1 : condMsgProc.notify_one();
2252 : 1 : }
2253 : :
2254 : 1 : void CConnman::ThreadDNSAddressSeed()
2255 : : {
2256 : 1 : int outbound_connection_count = 0;
2257 : :
2258 [ + - - + ]: 1 : if (!gArgs.GetArgs("-seednode").empty()) {
2259 : 0 : auto start = NodeClock::now();
2260 : 0 : constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2261 : 0 : LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2262 [ # # ]: 0 : while (!m_interrupt_net->interrupted()) {
2263 [ # # ]: 0 : if (!m_interrupt_net->sleep_for(500ms)) {
2264 : : return;
2265 : : }
2266 : :
2267 : : // Abort if we have spent enough time without reaching our target.
2268 : : // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2269 [ # # ]: 0 : if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2270 : 0 : LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2271 : 0 : break;
2272 : : }
2273 : :
2274 : 0 : outbound_connection_count = GetFullOutboundConnCount();
2275 [ # # ]: 0 : if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2276 : 0 : LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2277 : 0 : break;
2278 : : }
2279 : : }
2280 : : }
2281 : :
2282 : 1 : FastRandomContext rng;
2283 [ + - ]: 1 : std::vector<std::string> seeds = m_params.DNSSeeds();
2284 : 1 : std::shuffle(seeds.begin(), seeds.end(), rng);
2285 : 1 : int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2286 : :
2287 [ + - + - : 1 : if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
- + ]
2288 : : // When -forcednsseed is provided, query all.
2289 [ # # ]: 0 : seeds_right_now = seeds.size();
2290 [ + - + - ]: 1 : } else if (addrman.Size() == 0) {
2291 : : // If we have no known peers, query all.
2292 : : // This will occur on the first run, or if peers.dat has been
2293 : : // deleted.
2294 [ - + ]: 1 : seeds_right_now = seeds.size();
2295 : : }
2296 : :
2297 : : // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2298 [ + - ]: 1 : if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2299 : : // goal: only query DNS seed if address need is acute
2300 : : // * If we have a reasonable number of peers in addrman, spend
2301 : : // some time trying them first. This improves user privacy by
2302 : : // creating fewer identifying DNS requests, reduces trust by
2303 : : // giving seeds less influence on the network topology, and
2304 : : // reduces traffic to the seeds.
2305 : : // * When querying DNS seeds query a few at once, this ensures
2306 : : // that we don't give DNS seeds the ability to eclipse nodes
2307 : : // that query them.
2308 : : // * If we continue having problems, eventually query all the
2309 : : // DNS seeds, and if that fails too, also try the fixed seeds.
2310 : : // (done in ThreadOpenConnections)
2311 : 1 : int found = 0;
2312 [ + - - + ]: 1 : const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2313 : :
2314 [ + + ]: 2 : for (const std::string& seed : seeds) {
2315 [ - + ]: 1 : if (seeds_right_now == 0) {
2316 : 0 : seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2317 : :
2318 [ # # # # ]: 0 : if (addrman.Size() > 0) {
2319 [ # # ]: 0 : LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2320 : 0 : std::chrono::seconds to_wait = seeds_wait_time;
2321 [ # # ]: 0 : while (to_wait.count() > 0) {
2322 : : // if sleeping for the MANY_PEERS interval, wake up
2323 : : // early to see if we have enough peers and can stop
2324 : : // this thread entirely freeing up its resources
2325 : 0 : std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2326 [ # # # # ]: 0 : if (!m_interrupt_net->sleep_for(w)) return;
2327 [ # # ]: 0 : to_wait -= w;
2328 : :
2329 [ # # # # ]: 0 : if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2330 [ # # ]: 0 : if (found > 0) {
2331 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2332 [ # # ]: 0 : LogPrintf("P2P peers available. Finished DNS seeding.\n");
2333 : : } else {
2334 [ # # ]: 0 : LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2335 : : }
2336 : 0 : return;
2337 : : }
2338 : : }
2339 : : }
2340 : : }
2341 : :
2342 [ + - + - ]: 1 : if (m_interrupt_net->interrupted()) return;
2343 : :
2344 : : // hold off on querying seeds if P2P network deactivated
2345 [ - + ]: 1 : if (!fNetworkActive) {
2346 [ # # ]: 0 : LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2347 : 0 : do {
2348 [ # # # # ]: 0 : if (!m_interrupt_net->sleep_for(1s)) return;
2349 [ # # ]: 0 : } while (!fNetworkActive);
2350 : : }
2351 : :
2352 [ + - ]: 1 : LogPrintf("Loading addresses from DNS seed %s\n", seed);
2353 : : // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2354 : : // for the base dns seed domain in chainparams
2355 [ + - - + ]: 1 : if (HaveNameProxy()) {
2356 [ # # ]: 0 : AddAddrFetch(seed);
2357 : : } else {
2358 : 1 : std::vector<CAddress> vAdd;
2359 : 1 : constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2360 [ + - ]: 1 : std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2361 [ + - ]: 1 : CNetAddr resolveSource;
2362 [ + - - + ]: 1 : if (!resolveSource.SetInternal(host)) {
2363 : 0 : continue;
2364 : : }
2365 : : // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2366 : : // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2367 : : // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2368 : : // returned.
2369 : 1 : unsigned int nMaxIPs = 32;
2370 [ + - + - ]: 1 : const auto addresses{LookupHost(host, nMaxIPs, true)};
2371 [ - + ]: 1 : if (!addresses.empty()) {
2372 [ # # ]: 0 : for (const CNetAddr& ip : addresses) {
2373 [ # # ]: 0 : CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2374 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2375 [ # # ]: 0 : vAdd.push_back(addr);
2376 : 0 : found++;
2377 : 0 : }
2378 [ # # ]: 0 : addrman.Add(vAdd, resolveSource);
2379 : : } else {
2380 : : // If the seed does not support a subdomain with our desired service bits,
2381 : : // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2382 : : // base dns seed domain in chainparams
2383 [ + - ]: 1 : AddAddrFetch(seed);
2384 : : }
2385 : 1 : }
2386 : 1 : --seeds_right_now;
2387 : : }
2388 [ + - ]: 1 : LogPrintf("%d addresses found from DNS seeds\n", found);
2389 : : } else {
2390 [ # # ]: 0 : LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2391 : : }
2392 : 1 : }
2393 : :
2394 : 1 : void CConnman::DumpAddresses()
2395 : : {
2396 : 1 : const auto start{SteadyClock::now()};
2397 : :
2398 : 1 : DumpPeerAddresses(::gArgs, addrman);
2399 : :
2400 [ + - ]: 1 : LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2401 : : addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2402 : 1 : }
2403 : :
2404 : 0 : void CConnman::ProcessAddrFetch()
2405 : : {
2406 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2407 [ # # ]: 0 : std::string strDest;
2408 : 0 : {
2409 [ # # ]: 0 : LOCK(m_addr_fetches_mutex);
2410 [ # # ]: 0 : if (m_addr_fetches.empty())
2411 [ # # ]: 0 : return;
2412 [ # # ]: 0 : strDest = m_addr_fetches.front();
2413 [ # # ]: 0 : m_addr_fetches.pop_front();
2414 : 0 : }
2415 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2416 : : // peer doesn't support it or immediately disconnects us for another reason.
2417 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2418 [ # # ]: 0 : CAddress addr;
2419 : 0 : CountingSemaphoreGrant<> grant(*semOutbound, /*fTry=*/true);
2420 [ # # ]: 0 : if (grant) {
2421 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2422 : : }
2423 : 0 : }
2424 : :
2425 : 3 : bool CConnman::GetTryNewOutboundPeer() const
2426 : : {
2427 : 3 : return m_try_another_outbound_peer;
2428 : : }
2429 : :
2430 : 186 : void CConnman::SetTryNewOutboundPeer(bool flag)
2431 : : {
2432 : 186 : m_try_another_outbound_peer = flag;
2433 [ + - + + ]: 371 : LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2434 : 186 : }
2435 : :
2436 : 0 : void CConnman::StartExtraBlockRelayPeers()
2437 : : {
2438 [ # # ]: 0 : LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2439 : 0 : m_start_extra_block_relay_peers = true;
2440 : 0 : }
2441 : :
2442 : : // Return the number of outbound connections that are full relay (not blocks only)
2443 : 0 : int CConnman::GetFullOutboundConnCount() const
2444 : : {
2445 : 0 : int nRelevant = 0;
2446 : 0 : {
2447 : 0 : LOCK(m_nodes_mutex);
2448 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2449 [ # # # # ]: 0 : if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2450 : : }
2451 : 0 : }
2452 : 0 : return nRelevant;
2453 : : }
2454 : :
2455 : : // Return the number of peers we have over our outbound connection limit
2456 : : // Exclude peers that are marked for disconnect, or are going to be
2457 : : // disconnected soon (eg ADDR_FETCH and FEELER)
2458 : : // Also exclude peers that haven't finished initial connection handshake yet
2459 : : // (so that we don't decide we're over our desired connection limit, and then
2460 : : // evict some peer that has finished the handshake)
2461 : 10 : int CConnman::GetExtraFullOutboundCount() const
2462 : : {
2463 : 10 : int full_outbound_peers = 0;
2464 : 10 : {
2465 : 10 : LOCK(m_nodes_mutex);
2466 [ + + ]: 76 : for (const CNode* pnode : m_nodes) {
2467 [ + - + + : 66 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
+ + ]
2468 : 54 : ++full_outbound_peers;
2469 : : }
2470 : : }
2471 : 10 : }
2472 [ + + ]: 10 : return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2473 : : }
2474 : :
2475 : 10 : int CConnman::GetExtraBlockRelayCount() const
2476 : : {
2477 : 10 : int block_relay_peers = 0;
2478 : 10 : {
2479 : 10 : LOCK(m_nodes_mutex);
2480 [ + + ]: 76 : for (const CNode* pnode : m_nodes) {
2481 [ + - + + : 66 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
+ + ]
2482 : 11 : ++block_relay_peers;
2483 : : }
2484 : : }
2485 : 10 : }
2486 [ + + ]: 10 : return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2487 : : }
2488 : :
2489 : 0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2490 : : {
2491 : 0 : std::unordered_set<Network> networks{};
2492 [ # # ]: 0 : for (int n = 0; n < NET_MAX; n++) {
2493 : 0 : enum Network net = (enum Network)n;
2494 [ # # ]: 0 : if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2495 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
# # # # ]
2496 [ # # ]: 0 : networks.insert(net);
2497 : : }
2498 : : }
2499 : 0 : return networks;
2500 : 0 : }
2501 : :
2502 : 38 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2503 : : {
2504 : 38 : AssertLockHeld(m_nodes_mutex);
2505 : 38 : return m_network_conn_counts[net] > 1;
2506 : : }
2507 : :
2508 : 0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2509 : : {
2510 : 0 : std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2511 : 0 : std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2512 : :
2513 : 0 : LOCK(m_nodes_mutex);
2514 [ # # ]: 0 : for (const auto net : nets) {
2515 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
# # # # #
# ]
2516 : 0 : network = net;
2517 : 0 : return true;
2518 : : }
2519 : : }
2520 : :
2521 : : return false;
2522 : 0 : }
2523 : :
2524 : 1 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2525 : : {
2526 : 1 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2527 : 1 : AssertLockNotHeld(m_reconnections_mutex);
2528 : 1 : FastRandomContext rng;
2529 : : // Connect to specific addresses
2530 [ - + ]: 1 : if (!connect.empty())
2531 : : {
2532 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2533 : : // peer doesn't support it or immediately disconnects us for another reason.
2534 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2535 : 0 : for (int64_t nLoop = 0;; nLoop++)
2536 : : {
2537 [ # # ]: 0 : for (const std::string& strAddr : connect)
2538 : : {
2539 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2540 [ # # # # ]: 0 : OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2541 [ # # # # ]: 0 : for (int i = 0; i < 10 && i < nLoop; i++)
2542 : : {
2543 [ # # # # ]: 0 : if (!m_interrupt_net->sleep_for(500ms)) {
2544 : 0 : return;
2545 : : }
2546 : : }
2547 : 0 : }
2548 [ # # # # ]: 0 : if (!m_interrupt_net->sleep_for(500ms)) {
2549 : : return;
2550 : : }
2551 [ # # ]: 0 : PerformReconnections();
2552 : 0 : }
2553 : : }
2554 : :
2555 : : // Initiate network connections
2556 : 1 : auto start = GetTime<std::chrono::microseconds>();
2557 : :
2558 : : // Minimum time before next feeler connection (in microseconds).
2559 : 1 : auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2560 : 1 : auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2561 [ + - ]: 1 : auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2562 [ + - + - ]: 1 : const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2563 [ + - + - ]: 1 : bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2564 [ + - + - ]: 1 : const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2565 : :
2566 : 1 : auto seed_node_timer = NodeClock::now();
2567 [ + - + - : 1 : bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
+ - ]
2568 : 1 : constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2569 : :
2570 [ - + ]: 1 : if (!add_fixed_seeds) {
2571 [ # # ]: 0 : LogPrintf("Fixed seeds are disabled\n");
2572 : : }
2573 : :
2574 [ + - - + ]: 1 : while (!m_interrupt_net->interrupted()) {
2575 [ # # ]: 0 : if (add_addr_fetch) {
2576 : 0 : add_addr_fetch = false;
2577 : 0 : const auto& seed{SpanPopBack(seed_nodes)};
2578 [ # # ]: 0 : AddAddrFetch(seed);
2579 : :
2580 [ # # # # ]: 0 : if (addrman.Size() == 0) {
2581 [ # # ]: 0 : LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2582 : : } else {
2583 [ # # ]: 0 : LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2584 : : }
2585 : : }
2586 : :
2587 [ # # ]: 0 : ProcessAddrFetch();
2588 : :
2589 [ # # # # ]: 0 : if (!m_interrupt_net->sleep_for(500ms)) {
2590 : : return;
2591 : : }
2592 : :
2593 [ # # ]: 0 : PerformReconnections();
2594 : :
2595 : 0 : CountingSemaphoreGrant<> grant(*semOutbound);
2596 [ # # # # ]: 0 : if (m_interrupt_net->interrupted()) {
2597 : : return;
2598 : : }
2599 : :
2600 [ # # ]: 0 : const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2601 [ # # # # ]: 0 : if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2602 : : // When the node starts with an empty peers.dat, there are a few other sources of peers before
2603 : : // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2604 : : // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2605 : : // 60 seconds for any of those sources to populate addrman.
2606 : 0 : bool add_fixed_seeds_now = false;
2607 : : // It is cheapest to check if enough time has passed first.
2608 [ # # ]: 0 : if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2609 : 0 : add_fixed_seeds_now = true;
2610 [ # # ]: 0 : LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2611 : : }
2612 : :
2613 : : // Perform cheap checks before locking a mutex.
2614 [ # # ]: 0 : else if (!dnsseed && !use_seednodes) {
2615 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
2616 [ # # ]: 0 : if (m_added_node_params.empty()) {
2617 : 0 : add_fixed_seeds_now = true;
2618 [ # # ]: 0 : LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2619 : : }
2620 : 0 : }
2621 : :
2622 [ # # ]: 0 : if (add_fixed_seeds_now) {
2623 [ # # ]: 0 : std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2624 : : // We will not make outgoing connections to peers that are unreachable
2625 : : // (e.g. because of -onlynet configuration).
2626 : : // Therefore, we do not add them to addrman in the first place.
2627 : : // In case previously unreachable networks become reachable
2628 : : // (e.g. in case of -onlynet changes by the user), fixed seeds will
2629 : : // be loaded only for networks for which we have no addresses.
2630 [ # # ]: 0 : seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2631 : 0 : [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2632 [ # # ]: 0 : seed_addrs.end());
2633 [ # # ]: 0 : CNetAddr local;
2634 [ # # # # ]: 0 : local.SetInternal("fixedseeds");
2635 [ # # ]: 0 : addrman.Add(seed_addrs, local);
2636 : 0 : add_fixed_seeds = false;
2637 [ # # # # ]: 0 : LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2638 : 0 : }
2639 : : }
2640 : :
2641 : : //
2642 : : // Choose an address to connect to based on most recently seen
2643 : : //
2644 [ # # ]: 0 : CAddress addrConnect;
2645 : :
2646 : : // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2647 : 0 : int nOutboundFullRelay = 0;
2648 : 0 : int nOutboundBlockRelay = 0;
2649 : 0 : int outbound_privacy_network_peers = 0;
2650 [ # # ]: 0 : std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2651 : :
2652 : 0 : {
2653 [ # # ]: 0 : LOCK(m_nodes_mutex);
2654 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2655 [ # # ]: 0 : if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2656 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2657 : :
2658 : : // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2659 [ # # ]: 0 : switch (pnode->m_conn_type) {
2660 : : // We currently don't take inbound connections into account. Since they are
2661 : : // free to make, an attacker could make them to prevent us from connecting to
2662 : : // certain peers.
2663 : : case ConnectionType::INBOUND:
2664 : : // Short-lived outbound connections should not affect how we select outbound
2665 : : // peers from addrman.
2666 : : case ConnectionType::ADDR_FETCH:
2667 : : case ConnectionType::FEELER:
2668 : : break;
2669 : 0 : case ConnectionType::MANUAL:
2670 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
2671 : 0 : case ConnectionType::BLOCK_RELAY:
2672 : 0 : const CAddress address{pnode->addr};
2673 [ # # # # : 0 : if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
# # ]
2674 : : // Since our addrman-groups for these networks are
2675 : : // random, without relation to the route we
2676 : : // take to connect to these peers or to the
2677 : : // difficulty in obtaining addresses with diverse
2678 : : // groups, we don't worry about diversity with
2679 : : // respect to our addrman groups when connecting to
2680 : : // these networks.
2681 : 0 : ++outbound_privacy_network_peers;
2682 : : } else {
2683 [ # # # # ]: 0 : outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2684 : : }
2685 : : } // no default case, so the compiler can warn about missing cases
2686 : : }
2687 : 0 : }
2688 : :
2689 [ # # # # ]: 0 : if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2690 [ # # ]: 0 : if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2691 : 0 : seed_node_timer = NodeClock::now();
2692 : 0 : add_addr_fetch = true;
2693 : : }
2694 : : }
2695 : :
2696 : 0 : ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2697 : 0 : auto now = GetTime<std::chrono::microseconds>();
2698 : 0 : bool anchor = false;
2699 : 0 : bool fFeeler = false;
2700 : 0 : std::optional<Network> preferred_net;
2701 : :
2702 : : // Determine what type of connection to open. Opening
2703 : : // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2704 : : // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2705 : : // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2706 : : // until we hit our block-relay-only peer limit.
2707 : : // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2708 : : // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2709 : : // these conditions are met, check to see if it's time to try an extra
2710 : : // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2711 : : // timer to decide if we should open a FEELER.
2712 : :
2713 [ # # # # ]: 0 : if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2714 : : conn_type = ConnectionType::BLOCK_RELAY;
2715 : : anchor = true;
2716 [ # # ]: 0 : } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2717 : : // OUTBOUND_FULL_RELAY
2718 [ # # ]: 0 : } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2719 : : conn_type = ConnectionType::BLOCK_RELAY;
2720 [ # # # # ]: 0 : } else if (GetTryNewOutboundPeer()) {
2721 : : // OUTBOUND_FULL_RELAY
2722 [ # # # # ]: 0 : } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2723 : : // Periodically connect to a peer (using regular outbound selection
2724 : : // methodology from addrman) and stay connected long enough to sync
2725 : : // headers, but not much else.
2726 : : //
2727 : : // Then disconnect the peer, if we haven't learned anything new.
2728 : : //
2729 : : // The idea is to make eclipse attacks very difficult to pull off,
2730 : : // because every few minutes we're finding a new peer to learn headers
2731 : : // from.
2732 : : //
2733 : : // This is similar to the logic for trying extra outbound (full-relay)
2734 : : // peers, except:
2735 : : // - we do this all the time on an exponential timer, rather than just when
2736 : : // our tip is stale
2737 : : // - we potentially disconnect our next-youngest block-relay-only peer, if our
2738 : : // newest block-relay-only peer delivers a block more recently.
2739 : : // See the eviction logic in net_processing.cpp.
2740 : : //
2741 : : // Because we can promote these connections to block-relay-only
2742 : : // connections, they do not get their own ConnectionType enum
2743 : : // (similar to how we deal with extra outbound peers).
2744 : 0 : next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2745 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2746 [ # # ]: 0 : } else if (now > next_feeler) {
2747 : 0 : next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2748 : 0 : conn_type = ConnectionType::FEELER;
2749 : 0 : fFeeler = true;
2750 [ # # ]: 0 : } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2751 [ # # ]: 0 : m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2752 [ # # # # : 0 : now > next_extra_network_peer &&
# # ]
2753 [ # # ]: 0 : MaybePickPreferredNetwork(preferred_net)) {
2754 : : // Full outbound connection management: Attempt to get at least one
2755 : : // outbound peer from each reachable network by making extra connections
2756 : : // and then protecting "only" peers from a network during outbound eviction.
2757 : : // This is not attempted if the user changed -maxconnections to a value
2758 : : // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2759 : : // to prevent interactions with otherwise protected outbound peers.
2760 : 0 : next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2761 : : } else {
2762 : : // skip to next iteration of while loop
2763 : 0 : continue;
2764 : : }
2765 : :
2766 [ # # ]: 0 : addrman.ResolveCollisions();
2767 : :
2768 : 0 : const auto current_time{NodeClock::now()};
2769 : 0 : int nTries = 0;
2770 [ # # ]: 0 : const auto reachable_nets{g_reachable_nets.All()};
2771 : :
2772 [ # # # # ]: 0 : while (!m_interrupt_net->interrupted()) {
2773 [ # # # # ]: 0 : if (anchor && !m_anchors.empty()) {
2774 : 0 : const CAddress addr = m_anchors.back();
2775 : 0 : m_anchors.pop_back();
2776 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
# # # # #
# # # #
# ]
2777 [ # # # # : 0 : !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
# # ]
2778 [ # # ]: 0 : outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2779 : 0 : addrConnect = addr;
2780 [ # # # # : 0 : LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2781 : 0 : break;
2782 : 0 : }
2783 : :
2784 : : // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2785 : : // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2786 : : // already-connected network ranges, ...) before trying new addrman addresses.
2787 : 0 : nTries++;
2788 [ # # ]: 0 : if (nTries > 100)
2789 : : break;
2790 : :
2791 [ # # ]: 0 : CAddress addr;
2792 : 0 : NodeSeconds addr_last_try{0s};
2793 : :
2794 [ # # ]: 0 : if (fFeeler) {
2795 : : // First, try to get a tried table collision address. This returns
2796 : : // an empty (invalid) address if there are no collisions to try.
2797 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2798 : :
2799 [ # # # # ]: 0 : if (!addr.IsValid()) {
2800 : : // No tried table collisions. Select a new table address
2801 : : // for our feeler.
2802 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2803 [ # # # # ]: 0 : } else if (AlreadyConnectedToAddress(addr)) {
2804 : : // If test-before-evict logic would have us connect to a
2805 : : // peer that we're already connected to, just mark that
2806 : : // address as Good(). We won't be able to initiate the
2807 : : // connection anyway, so this avoids inadvertently evicting
2808 : : // a currently-connected peer.
2809 [ # # ]: 0 : addrman.Good(addr);
2810 : : // Select a new table address for our feeler instead.
2811 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2812 : : }
2813 : : } else {
2814 : : // Not a feeler
2815 : : // If preferred_net has a value set, pick an extra outbound
2816 : : // peer from that network. The eviction logic in net_processing
2817 : : // ensures that a peer from another network will be evicted.
2818 [ # # ]: 0 : std::tie(addr, addr_last_try) = preferred_net.has_value()
2819 [ # # # # : 0 : ? addrman.Select(false, {*preferred_net})
# # # # #
# ]
2820 [ # # ]: 0 : : addrman.Select(false, reachable_nets);
2821 : : }
2822 : :
2823 : : // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2824 [ # # # # : 0 : if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
# # # # ]
2825 : 0 : continue;
2826 : : }
2827 : :
2828 : : // if we selected an invalid or local address, restart
2829 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr)) {
# # # # ]
2830 : : break;
2831 : : }
2832 : :
2833 [ # # # # ]: 0 : if (!g_reachable_nets.Contains(addr)) {
2834 : 0 : continue;
2835 : : }
2836 : :
2837 : : // only consider very recently tried nodes after 30 failed attempts
2838 [ # # # # ]: 0 : if (current_time - addr_last_try < 10min && nTries < 30) {
2839 : 0 : continue;
2840 : : }
2841 : :
2842 : : // for non-feelers, require all the services we'll want,
2843 : : // for feelers, only require they be a full node (only because most
2844 : : // SPV clients don't have a good address DB available)
2845 [ # # # # : 0 : if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
# # ]
2846 : 0 : continue;
2847 [ # # # # ]: 0 : } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2848 : 0 : continue;
2849 : : }
2850 : :
2851 : : // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2852 [ # # # # : 0 : if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
# # # # #
# # # ]
2853 : 0 : continue;
2854 : : }
2855 : :
2856 : : // Do not make automatic outbound connections to addnode peers, to
2857 : : // not use our limited outbound slots for them and to ensure
2858 : : // addnode connections benefit from their intended protections.
2859 [ # # # # ]: 0 : if (AddedNodesContain(addr)) {
2860 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
# # # # #
# # # # #
# # # # #
# # # # #
# # ]
2861 : : preferred_net.has_value() ? "network-specific " : "",
2862 : : ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2863 : : fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2864 : 0 : continue;
2865 : 0 : }
2866 : :
2867 : 0 : addrConnect = addr;
2868 : : break;
2869 : 0 : }
2870 : :
2871 [ # # # # ]: 0 : if (addrConnect.IsValid()) {
2872 [ # # ]: 0 : if (fFeeler) {
2873 : : // Add small amount of random noise before connection to avoid synchronization.
2874 [ # # # # ]: 0 : if (!m_interrupt_net->sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2875 : 0 : return;
2876 : : }
2877 [ # # # # : 0 : LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2878 : : }
2879 : :
2880 [ # # # # : 0 : if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
# # # # #
# # # #
# ]
2881 : :
2882 : : // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2883 : : // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2884 : : // Don't record addrman failure attempts when node is offline. This can be identified since all local
2885 : : // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2886 [ # # ]: 0 : const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2887 : : // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2888 [ # # ]: 0 : const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2889 [ # # ]: 0 : OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*pszDest=*/nullptr, conn_type, use_v2transport);
2890 : : }
2891 : 0 : }
2892 : 1 : }
2893 : :
2894 : 1 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2895 : : {
2896 : 1 : std::vector<CAddress> ret;
2897 [ + - ]: 1 : LOCK(m_nodes_mutex);
2898 [ - + ]: 1 : for (const CNode* pnode : m_nodes) {
2899 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) {
2900 [ # # ]: 0 : ret.push_back(pnode->addr);
2901 : : }
2902 : : }
2903 : :
2904 [ + - ]: 1 : return ret;
2905 : 1 : }
2906 : :
2907 : 4 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2908 : : {
2909 : 4 : std::vector<AddedNodeInfo> ret;
2910 : :
2911 [ + - ]: 4 : std::list<AddedNodeParams> lAddresses(0);
2912 : 4 : {
2913 [ + - ]: 4 : LOCK(m_added_nodes_mutex);
2914 [ - + + - ]: 4 : ret.reserve(m_added_node_params.size());
2915 [ + - ]: 4 : std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2916 : 0 : }
2917 : :
2918 : :
2919 : : // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2920 [ + - ]: 4 : std::map<CService, bool> mapConnected;
2921 : 4 : std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2922 : 4 : {
2923 [ + - ]: 4 : LOCK(m_nodes_mutex);
2924 [ + + ]: 20 : for (const CNode* pnode : m_nodes) {
2925 [ + - + - ]: 16 : if (pnode->addr.IsValid()) {
2926 [ + - ]: 16 : mapConnected[pnode->addr] = pnode->IsInboundConn();
2927 : : }
2928 [ - + ]: 16 : std::string addrName{pnode->m_addr_name};
2929 [ + - ]: 16 : if (!addrName.empty()) {
2930 [ + - ]: 16 : mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2931 : : }
2932 : 16 : }
2933 : 0 : }
2934 : :
2935 [ + + ]: 19 : for (const auto& addr : lAddresses) {
2936 [ + - + - : 30 : CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
+ - + - ]
2937 [ + - + - ]: 15 : AddedNodeInfo addedNode{addr, CService(), false, false};
2938 [ + - + - ]: 15 : if (service.IsValid()) {
2939 : : // strAddNode is an IP:port
2940 [ + - ]: 15 : auto it = mapConnected.find(service);
2941 [ + - ]: 15 : if (it != mapConnected.end()) {
2942 [ + + ]: 15 : if (!include_connected) {
2943 : 5 : continue;
2944 : : }
2945 : 10 : addedNode.resolvedAddress = service;
2946 : 10 : addedNode.fConnected = true;
2947 : 10 : addedNode.fInbound = it->second;
2948 : : }
2949 : : } else {
2950 : : // strAddNode is a name
2951 : 0 : auto it = mapConnectedByName.find(addr.m_added_node);
2952 [ # # ]: 0 : if (it != mapConnectedByName.end()) {
2953 [ # # ]: 0 : if (!include_connected) {
2954 : 0 : continue;
2955 : : }
2956 : 0 : addedNode.resolvedAddress = it->second.second;
2957 : 0 : addedNode.fConnected = true;
2958 : 0 : addedNode.fInbound = it->second.first;
2959 : : }
2960 : : }
2961 [ + - ]: 10 : ret.emplace_back(std::move(addedNode));
2962 : 15 : }
2963 : :
2964 : 4 : return ret;
2965 : 4 : }
2966 : :
2967 : 1 : void CConnman::ThreadOpenAddedConnections()
2968 : : {
2969 : 1 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2970 : 1 : AssertLockNotHeld(m_reconnections_mutex);
2971 : 1 : while (true)
2972 : : {
2973 : 1 : CountingSemaphoreGrant<> grant(*semAddnode);
2974 [ + - ]: 1 : std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2975 : 1 : bool tried = false;
2976 [ - + ]: 1 : for (const AddedNodeInfo& info : vInfo) {
2977 [ # # ]: 0 : if (!grant) {
2978 : : // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2979 : : // the addednodeinfo state might change.
2980 : : break;
2981 : : }
2982 : 0 : tried = true;
2983 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2984 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2985 [ # # # # ]: 0 : if (!m_interrupt_net->sleep_for(500ms)) return;
2986 : 0 : grant = CountingSemaphoreGrant<>(*semAddnode, /*fTry=*/true);
2987 : 0 : }
2988 : : // See if any reconnections are desired.
2989 [ + - ]: 1 : PerformReconnections();
2990 : : // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2991 [ - + + - : 1 : if (!m_interrupt_net->sleep_for(tried ? 60s : 2s)) {
- + ]
2992 : : return;
2993 : : }
2994 : 1 : }
2995 : : }
2996 : :
2997 : : // if successful, this moves the passed grant to the constructed node
2998 : 0 : bool CConnman::OpenNetworkConnection(const CAddress& addrConnect,
2999 : : bool fCountFailure,
3000 : : CountingSemaphoreGrant<>&& grant_outbound,
3001 : : const char* pszDest,
3002 : : ConnectionType conn_type,
3003 : : bool use_v2transport,
3004 : : const std::optional<Proxy>& proxy_override)
3005 : : {
3006 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3007 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
3008 : :
3009 : : //
3010 : : // Initiate outbound network connection
3011 : : //
3012 [ # # ]: 0 : if (m_interrupt_net->interrupted()) {
3013 : : return false;
3014 : : }
3015 [ # # ]: 0 : if (!fNetworkActive) {
3016 : : return false;
3017 : : }
3018 [ # # ]: 0 : if (!pszDest) {
3019 [ # # # # : 0 : bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
# # ]
3020 [ # # # # : 0 : if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
# # ]
3021 : 0 : return false;
3022 : : }
3023 [ # # ]: 0 : } else if (AlreadyConnectedToHost(pszDest)) {
3024 : : return false;
3025 : : }
3026 : :
3027 [ # # ]: 0 : CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport, proxy_override);
3028 : :
3029 [ # # ]: 0 : if (!pnode)
3030 : : return false;
3031 : 0 : pnode->grantOutbound = std::move(grant_outbound);
3032 : :
3033 : 0 : m_msgproc->InitializeNode(*pnode, m_local_services);
3034 : 0 : {
3035 : 0 : LOCK(m_nodes_mutex);
3036 [ # # ]: 0 : m_nodes.push_back(pnode);
3037 : :
3038 : : // update connection count by network
3039 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3040 : 0 : }
3041 : :
3042 : : TRACEPOINT(net, outbound_connection,
3043 : : pnode->GetId(),
3044 : : pnode->m_addr_name.c_str(),
3045 : : pnode->ConnectionTypeAsString().c_str(),
3046 : : pnode->ConnectedThroughNetwork(),
3047 : 0 : GetNodeCount(ConnectionDirection::Out));
3048 : :
3049 : 0 : return true;
3050 : : }
3051 : :
3052 : : Mutex NetEventsInterface::g_msgproc_mutex;
3053 : :
3054 : 1 : void CConnman::ThreadMessageHandler()
3055 : : {
3056 : 1 : LOCK(NetEventsInterface::g_msgproc_mutex);
3057 : :
3058 [ + + ]: 3 : while (!flagInterruptMsgProc)
3059 : : {
3060 : 1 : bool fMoreWork = false;
3061 : :
3062 : 1 : {
3063 : : // Randomize the order in which we process messages from/to our peers.
3064 : : // This prevents attacks in which an attacker exploits having multiple
3065 : : // consecutive connections in the m_nodes list.
3066 [ + - ]: 1 : const NodesSnapshot snap{*this, /*shuffle=*/true};
3067 : :
3068 [ - + ]: 1 : for (CNode* pnode : snap.Nodes()) {
3069 [ # # ]: 0 : if (pnode->fDisconnect)
3070 : 0 : continue;
3071 : :
3072 : : // Receive messages
3073 [ # # ]: 0 : bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3074 [ # # # # ]: 0 : fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3075 [ # # ]: 0 : if (flagInterruptMsgProc)
3076 : : return;
3077 : : // Send messages
3078 [ # # ]: 0 : m_msgproc->SendMessages(pnode);
3079 : :
3080 [ # # ]: 0 : if (flagInterruptMsgProc)
3081 : : return;
3082 : : }
3083 [ - - ]: 1 : }
3084 : :
3085 [ + - ]: 1 : WAIT_LOCK(mutexMsgProc, lock);
3086 [ + - ]: 1 : if (!fMoreWork) {
3087 [ + - + - ]: 4 : condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3088 : : }
3089 [ + - ]: 1 : fMsgProcWake = false;
3090 : 1 : }
3091 : 1 : }
3092 : :
3093 : 0 : void CConnman::ThreadI2PAcceptIncoming()
3094 : : {
3095 : 0 : static constexpr auto err_wait_begin = 1s;
3096 : 0 : static constexpr auto err_wait_cap = 5min;
3097 : 0 : auto err_wait = err_wait_begin;
3098 : :
3099 : 0 : bool advertising_listen_addr = false;
3100 : 0 : i2p::Connection conn;
3101 : :
3102 : 0 : auto SleepOnFailure = [&]() {
3103 : 0 : m_interrupt_net->sleep_for(err_wait);
3104 [ # # ]: 0 : if (err_wait < err_wait_cap) {
3105 : 0 : err_wait += 1s;
3106 : : }
3107 : 0 : };
3108 : :
3109 [ # # # # ]: 0 : while (!m_interrupt_net->interrupted()) {
3110 : :
3111 [ # # # # ]: 0 : if (!m_i2p_sam_session->Listen(conn)) {
3112 [ # # # # : 0 : if (advertising_listen_addr && conn.me.IsValid()) {
# # ]
3113 [ # # ]: 0 : RemoveLocal(conn.me);
3114 : : advertising_listen_addr = false;
3115 : : }
3116 [ # # ]: 0 : SleepOnFailure();
3117 : 0 : continue;
3118 : : }
3119 : :
3120 [ # # ]: 0 : if (!advertising_listen_addr) {
3121 [ # # ]: 0 : AddLocal(conn.me, LOCAL_MANUAL);
3122 : : advertising_listen_addr = true;
3123 : : }
3124 : :
3125 [ # # # # ]: 0 : if (!m_i2p_sam_session->Accept(conn)) {
3126 [ # # ]: 0 : SleepOnFailure();
3127 : 0 : continue;
3128 : : }
3129 : :
3130 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None, conn.me, conn.peer);
3131 : :
3132 : 0 : err_wait = err_wait_begin;
3133 : : }
3134 : 0 : }
3135 : :
3136 : 0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3137 : : {
3138 : 0 : int nOne = 1;
3139 : :
3140 : : // Create socket for listening for incoming connections
3141 : 0 : struct sockaddr_storage sockaddr;
3142 : 0 : socklen_t len = sizeof(sockaddr);
3143 [ # # ]: 0 : if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3144 : : {
3145 [ # # # # ]: 0 : strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3146 [ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3147 : 0 : return false;
3148 : : }
3149 : :
3150 : 0 : std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3151 [ # # ]: 0 : if (!sock) {
3152 [ # # # # : 0 : strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
# # ]
3153 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3154 : 0 : return false;
3155 : : }
3156 : :
3157 : : // Allow binding if the port is still in TIME_WAIT state after
3158 : : // the program was closed and restarted.
3159 [ # # # # ]: 0 : if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &nOne, sizeof(int)) == SOCKET_ERROR) {
3160 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3161 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3162 : : }
3163 : :
3164 : : // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3165 : : // and enable it by default or not. Try to enable it, if possible.
3166 [ # # ]: 0 : if (addrBind.IsIPv6()) {
3167 : : #ifdef IPV6_V6ONLY
3168 [ # # # # ]: 0 : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, &nOne, sizeof(int)) == SOCKET_ERROR) {
3169 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3170 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3171 : : }
3172 : : #endif
3173 : : #ifdef WIN32
3174 : : int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3175 : : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, &nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3176 : : strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3177 : : LogPrintf("%s\n", strError.original);
3178 : : }
3179 : : #endif
3180 : : }
3181 : :
3182 [ # # # # ]: 0 : if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3183 : 0 : int nErr = WSAGetLastError();
3184 [ # # ]: 0 : if (nErr == WSAEADDRINUSE)
3185 [ # # # # ]: 0 : strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3186 : : else
3187 [ # # # # : 0 : strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
# # ]
3188 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3189 : 0 : return false;
3190 : : }
3191 [ # # # # ]: 0 : LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3192 : :
3193 : : // Listen for incoming connections
3194 [ # # # # ]: 0 : if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3195 : : {
3196 [ # # # # ]: 0 : strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3197 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3198 : 0 : return false;
3199 : : }
3200 : :
3201 [ # # ]: 0 : vhListenSocket.emplace_back(std::move(sock), permissions);
3202 : : return true;
3203 : 0 : }
3204 : :
3205 : 1 : void Discover()
3206 : : {
3207 [ + - ]: 1 : if (!fDiscover)
3208 : : return;
3209 : :
3210 [ + + ]: 2 : for (const CNetAddr &addr: GetLocalAddresses()) {
3211 [ + - - + ]: 1 : if (AddLocal(addr, LOCAL_IF))
3212 [ # # # # ]: 0 : LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3213 : : }
3214 : : }
3215 : :
3216 : 183 : void CConnman::SetNetworkActive(bool active)
3217 : : {
3218 : 183 : LogPrintf("%s: %s\n", __func__, active);
3219 : :
3220 [ + + ]: 183 : if (fNetworkActive == active) {
3221 : : return;
3222 : : }
3223 : :
3224 [ - + ]: 2 : fNetworkActive = active;
3225 : :
3226 [ - + ]: 2 : if (m_client_interface) {
3227 : 0 : m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3228 : : }
3229 : : }
3230 : :
3231 : 181 : CConnman::CConnman(uint64_t nSeed0In,
3232 : : uint64_t nSeed1In,
3233 : : AddrMan& addrman_in,
3234 : : const NetGroupManager& netgroupman,
3235 : : const CChainParams& params,
3236 : : bool network_active,
3237 : 181 : std::shared_ptr<CThreadInterrupt> interrupt_net)
3238 : 181 : : addrman(addrman_in)
3239 [ + - ]: 181 : , m_netgroupman{netgroupman}
3240 : 181 : , nSeed0(nSeed0In)
3241 : 181 : , nSeed1(nSeed1In)
3242 [ + - - - ]: 181 : , m_interrupt_net{interrupt_net}
3243 [ + - + - : 362 : , m_params(params)
+ - + - ]
3244 : : {
3245 [ + - ]: 181 : SetTryNewOutboundPeer(false);
3246 : :
3247 : 181 : Options connOptions;
3248 [ + - ]: 181 : Init(connOptions);
3249 [ + - ]: 181 : SetNetworkActive(network_active);
3250 : 181 : }
3251 : :
3252 : 0 : NodeId CConnman::GetNewNodeId()
3253 : : {
3254 : 0 : return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3255 : : }
3256 : :
3257 : 0 : uint16_t CConnman::GetDefaultPort(Network net) const
3258 : : {
3259 [ # # ]: 0 : return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3260 : : }
3261 : :
3262 : 44 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3263 : : {
3264 : 44 : CNetAddr a;
3265 [ - + + - : 44 : return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
- + - - -
- ]
3266 : 44 : }
3267 : :
3268 : 0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3269 : : {
3270 : 0 : const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3271 : :
3272 [ # # ]: 0 : bilingual_str strError;
3273 [ # # # # ]: 0 : if (!BindListenPort(addr, strError, permissions)) {
3274 [ # # # # ]: 0 : if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3275 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3276 : : }
3277 : 0 : return false;
3278 : : }
3279 : :
3280 [ # # # # : 0 : if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
# # # # #
# ]
3281 [ # # ]: 0 : AddLocal(addr, LOCAL_BIND);
3282 : : }
3283 : :
3284 : : return true;
3285 : 0 : }
3286 : :
3287 : 0 : bool CConnman::InitBinds(const Options& options)
3288 : : {
3289 [ # # ]: 0 : for (const auto& addrBind : options.vBinds) {
3290 [ # # ]: 0 : if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3291 : : return false;
3292 : : }
3293 : : }
3294 [ # # ]: 0 : for (const auto& addrBind : options.vWhiteBinds) {
3295 [ # # ]: 0 : if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3296 : : return false;
3297 : : }
3298 : : }
3299 [ # # ]: 0 : for (const auto& addr_bind : options.onion_binds) {
3300 [ # # ]: 0 : if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3301 : : return false;
3302 : : }
3303 : : }
3304 [ # # ]: 0 : if (options.bind_on_any) {
3305 : : // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3306 : : // may not have IPv6 support and the user did not explicitly ask us to
3307 : : // bind on that.
3308 : 0 : const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3309 [ # # ]: 0 : Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3310 : :
3311 : 0 : struct in_addr inaddr_any;
3312 : 0 : inaddr_any.s_addr = htonl(INADDR_ANY);
3313 [ # # # # ]: 0 : const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3314 [ # # # # ]: 0 : if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3315 : 0 : return false;
3316 : : }
3317 : 0 : }
3318 : : return true;
3319 : : }
3320 : :
3321 : 1 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3322 : : {
3323 : 1 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3324 : 1 : Init(connOptions);
3325 : :
3326 [ - + - - ]: 1 : if (fListen && !InitBinds(connOptions)) {
3327 [ # # ]: 0 : if (m_client_interface) {
3328 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3329 [ # # ]: 0 : _("Failed to listen on any port. Use -listen=0 if you want this."),
3330 : 0 : "", CClientUIInterface::MSG_ERROR);
3331 : : }
3332 : 0 : return false;
3333 : : }
3334 : :
3335 : 1 : Proxy i2p_sam;
3336 [ + - - + : 1 : if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
- - ]
3337 [ # # # # ]: 0 : m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3338 [ # # ]: 0 : i2p_sam, m_interrupt_net);
3339 : : }
3340 : :
3341 : : // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3342 [ + - ]: 1 : std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3343 [ - + ]: 1 : if (!seed_nodes.empty()) {
3344 : 0 : std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3345 : : }
3346 : :
3347 [ + - ]: 1 : if (m_use_addrman_outgoing) {
3348 : : // Load addresses from anchors.dat
3349 [ + - + - : 3 : m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
+ - ]
3350 [ - + - + ]: 1 : if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3351 [ # # ]: 0 : m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3352 : : }
3353 [ - + + - ]: 1 : LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3354 : : }
3355 : :
3356 [ + - ]: 1 : if (m_client_interface) {
3357 [ + - + - ]: 2 : m_client_interface->InitMessage(_("Starting network threads…"));
3358 : : }
3359 : :
3360 : 1 : fAddressesInitialized = true;
3361 : :
3362 [ + - ]: 1 : if (semOutbound == nullptr) {
3363 : : // initialize semaphore
3364 [ - + + - ]: 1 : semOutbound = std::make_unique<std::counting_semaphore<>>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3365 : : }
3366 [ + - ]: 1 : if (semAddnode == nullptr) {
3367 : : // initialize semaphore
3368 [ + - ]: 1 : semAddnode = std::make_unique<std::counting_semaphore<>>(m_max_addnode);
3369 : : }
3370 : :
3371 : : //
3372 : : // Start threads
3373 : : //
3374 [ - + ]: 1 : assert(m_msgproc);
3375 [ + - ]: 1 : m_interrupt_net->reset();
3376 [ + - ]: 1 : flagInterruptMsgProc = false;
3377 : :
3378 : 1 : {
3379 [ + - ]: 1 : LOCK(mutexMsgProc);
3380 [ + - ]: 1 : fMsgProcWake = false;
3381 : 1 : }
3382 : :
3383 : : // Send and receive from sockets, accept connections
3384 [ + - ]: 2 : threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3385 : :
3386 [ + - + - : 1 : if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
- + ]
3387 [ # # ]: 0 : LogPrintf("DNS seeding disabled\n");
3388 : : else
3389 [ + - ]: 2 : threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3390 : :
3391 : : // Initiate manual connections
3392 [ + - ]: 2 : threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3393 : :
3394 [ + - + - ]: 1 : if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3395 [ # # ]: 0 : if (m_client_interface) {
3396 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3397 [ # # ]: 0 : _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3398 [ # # ]: 0 : "", CClientUIInterface::MSG_ERROR);
3399 : : }
3400 : 0 : return false;
3401 : : }
3402 [ - + - - ]: 1 : if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3403 : 1 : threadOpenConnections = std::thread(
3404 [ + - ]: 1 : &util::TraceThread, "opencon",
3405 [ + - + - : 4 : [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
- + + - ]
3406 : : }
3407 : :
3408 : : // Process messages
3409 [ + - ]: 2 : threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3410 : :
3411 [ - + ]: 1 : if (m_i2p_sam_session) {
3412 : 0 : threadI2PAcceptIncoming =
3413 [ # # ]: 0 : std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3414 : : }
3415 : :
3416 : : // Dump network addresses
3417 [ + - ]: 1 : scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3418 : :
3419 : : // Run the ASMap Health check once and then schedule it to run every 24h.
3420 [ + - - + ]: 1 : if (m_netgroupman.UsingASMap()) {
3421 [ # # ]: 0 : ASMapHealthCheck();
3422 [ # # ]: 0 : scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3423 : : }
3424 : :
3425 : : return true;
3426 : 2 : }
3427 : :
3428 : : class CNetCleanup
3429 : : {
3430 : : public:
3431 : : CNetCleanup() = default;
3432 : :
3433 : : ~CNetCleanup()
3434 : : {
3435 : : #ifdef WIN32
3436 : : // Shutdown Windows Sockets
3437 : : WSACleanup();
3438 : : #endif
3439 : : }
3440 : : };
3441 : : static CNetCleanup instance_of_cnetcleanup;
3442 : :
3443 : 182 : void CConnman::Interrupt()
3444 : : {
3445 : 182 : {
3446 : 182 : LOCK(mutexMsgProc);
3447 [ + - ]: 182 : flagInterruptMsgProc = true;
3448 : 182 : }
3449 : 182 : condMsgProc.notify_all();
3450 : :
3451 : 182 : (*m_interrupt_net)();
3452 : 182 : g_socks5_interrupt();
3453 : :
3454 [ + + ]: 182 : if (semOutbound) {
3455 [ + + ]: 12 : for (int i=0; i<m_max_automatic_outbound; i++) {
3456 : 11 : semOutbound->release();
3457 : : }
3458 : : }
3459 : :
3460 [ + + ]: 182 : if (semAddnode) {
3461 [ + + ]: 9 : for (int i=0; i<m_max_addnode; i++) {
3462 : 8 : semAddnode->release();
3463 : : }
3464 : : }
3465 : 182 : }
3466 : :
3467 : 182 : void CConnman::StopThreads()
3468 : : {
3469 [ - + ]: 182 : if (threadI2PAcceptIncoming.joinable()) {
3470 : 0 : threadI2PAcceptIncoming.join();
3471 : : }
3472 [ + + ]: 182 : if (threadMessageHandler.joinable())
3473 : 1 : threadMessageHandler.join();
3474 [ + + ]: 182 : if (threadOpenConnections.joinable())
3475 : 1 : threadOpenConnections.join();
3476 [ + + ]: 182 : if (threadOpenAddedConnections.joinable())
3477 : 1 : threadOpenAddedConnections.join();
3478 [ + + ]: 182 : if (threadDNSAddressSeed.joinable())
3479 : 1 : threadDNSAddressSeed.join();
3480 [ + + ]: 182 : if (threadSocketHandler.joinable())
3481 : 1 : threadSocketHandler.join();
3482 : 182 : }
3483 : :
3484 : 182 : void CConnman::StopNodes()
3485 : : {
3486 [ + + ]: 182 : if (fAddressesInitialized) {
3487 : 1 : DumpAddresses();
3488 : 1 : fAddressesInitialized = false;
3489 : :
3490 [ + - ]: 1 : if (m_use_addrman_outgoing) {
3491 : : // Anchor connections are only dumped during clean shutdown.
3492 : 1 : std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3493 [ - + - + ]: 1 : if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3494 [ # # ]: 0 : anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3495 : : }
3496 [ + - + - : 3 : DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
+ - ]
3497 : 1 : }
3498 : : }
3499 : :
3500 : : // Delete peer connections.
3501 : 182 : std::vector<CNode*> nodes;
3502 [ + - + - ]: 364 : WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3503 [ - + ]: 182 : for (CNode* pnode : nodes) {
3504 [ # # # # : 0 : LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
# # # # ]
3505 [ # # ]: 0 : pnode->CloseSocketDisconnect();
3506 [ # # ]: 0 : DeleteNode(pnode);
3507 : : }
3508 : :
3509 [ - + ]: 182 : for (CNode* pnode : m_nodes_disconnected) {
3510 [ # # ]: 0 : DeleteNode(pnode);
3511 : : }
3512 : 182 : m_nodes_disconnected.clear();
3513 : 182 : vhListenSocket.clear();
3514 [ + + ]: 182 : semOutbound.reset();
3515 [ + + ]: 183 : semAddnode.reset();
3516 : 182 : }
3517 : :
3518 : 0 : void CConnman::DeleteNode(CNode* pnode)
3519 : : {
3520 [ # # ]: 0 : assert(pnode);
3521 : 0 : m_msgproc->FinalizeNode(*pnode);
3522 : 0 : delete pnode;
3523 : 0 : }
3524 : :
3525 [ + - ]: 181 : CConnman::~CConnman()
3526 : : {
3527 : 181 : Interrupt();
3528 : 181 : Stop();
3529 : 362 : }
3530 : :
3531 : 0 : std::vector<CAddress> CConnman::GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3532 : : {
3533 : 0 : std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3534 [ # # ]: 0 : if (m_banman) {
3535 [ # # ]: 0 : addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3536 [ # # # # ]: 0 : [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3537 [ # # ]: 0 : addresses.end());
3538 : : }
3539 : 0 : return addresses;
3540 : 0 : }
3541 : :
3542 : 0 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3543 : : {
3544 : 0 : uint64_t network_id = requestor.m_network_key;
3545 : 0 : const auto current_time = GetTime<std::chrono::microseconds>();
3546 [ # # ]: 0 : auto r = m_addr_response_caches.emplace(network_id, CachedAddrResponse{});
3547 [ # # ]: 0 : CachedAddrResponse& cache_entry = r.first->second;
3548 [ # # ]: 0 : if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3549 : 0 : cache_entry.m_addrs_response_cache = GetAddressesUnsafe(max_addresses, max_pct, /*network=*/std::nullopt);
3550 : : // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3551 : : // and the usefulness of ADDR responses to honest users.
3552 : : //
3553 : : // Longer cache lifetime makes it more difficult for an attacker to scrape
3554 : : // enough AddrMan data to maliciously infer something useful.
3555 : : // By the time an attacker scraped enough AddrMan records, most of
3556 : : // the records should be old enough to not leak topology info by
3557 : : // e.g. analyzing real-time changes in timestamps.
3558 : : //
3559 : : // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3560 : : // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3561 : : // most of it could be scraped (considering that timestamps are updated via
3562 : : // ADDR self-announcements and when nodes communicate).
3563 : : // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3564 : : // (because even several timestamps of the same handful of nodes may leak privacy).
3565 : : //
3566 : : // On the other hand, longer cache lifetime makes ADDR responses
3567 : : // outdated and less useful for an honest requestor, e.g. if most nodes
3568 : : // in the ADDR response are no longer active.
3569 : : //
3570 : : // However, the churn in the network is known to be rather low. Since we consider
3571 : : // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3572 : : // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3573 : : // in terms of the freshness of the response.
3574 : 0 : cache_entry.m_cache_entry_expiration = current_time +
3575 : 0 : 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3576 : : }
3577 : 0 : return cache_entry.m_addrs_response_cache;
3578 : : }
3579 : :
3580 : 7 : bool CConnman::AddNode(const AddedNodeParams& add)
3581 : : {
3582 [ + - + - ]: 7 : const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3583 [ + - ]: 7 : const bool resolved_is_valid{resolved.IsValid()};
3584 : :
3585 [ + - ]: 7 : LOCK(m_added_nodes_mutex);
3586 [ + + ]: 17 : for (const auto& it : m_added_node_params) {
3587 [ + - + - : 36 : if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
+ - + - +
- + - + +
+ - + + -
- - - ]
3588 : : }
3589 : :
3590 [ + - ]: 5 : m_added_node_params.push_back(add);
3591 : : return true;
3592 : 7 : }
3593 : :
3594 : 0 : bool CConnman::RemoveAddedNode(std::string_view node)
3595 : : {
3596 : 0 : LOCK(m_added_nodes_mutex);
3597 [ # # ]: 0 : for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3598 [ # # # # ]: 0 : if (node == it->m_added_node) {
3599 : 0 : m_added_node_params.erase(it);
3600 : 0 : return true;
3601 : : }
3602 : : }
3603 : : return false;
3604 : 0 : }
3605 : :
3606 : 6 : bool CConnman::AddedNodesContain(const CAddress& addr) const
3607 : : {
3608 : 6 : AssertLockNotHeld(m_added_nodes_mutex);
3609 : 6 : const std::string addr_str{addr.ToStringAddr()};
3610 [ + - ]: 6 : const std::string addr_port_str{addr.ToStringAddrPort()};
3611 [ + - ]: 6 : LOCK(m_added_nodes_mutex);
3612 [ - + ]: 6 : return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3613 [ + - + + ]: 6 : && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3614 [ + - + + : 26 : [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
+ - ]
3615 : 6 : }
3616 : :
3617 : 9 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3618 : : {
3619 : 9 : LOCK(m_nodes_mutex);
3620 [ + + ]: 9 : if (flags == ConnectionDirection::Both) // Shortcut if we want total
3621 [ - + ]: 3 : return m_nodes.size();
3622 : :
3623 : 6 : int nNum = 0;
3624 [ - + ]: 6 : for (const auto& pnode : m_nodes) {
3625 [ # # # # ]: 0 : if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3626 : 0 : nNum++;
3627 : : }
3628 : : }
3629 : :
3630 : 6 : return nNum;
3631 : 9 : }
3632 : :
3633 : :
3634 : 0 : std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3635 : : {
3636 : 0 : LOCK(g_maplocalhost_mutex);
3637 [ # # # # ]: 0 : return mapLocalHost;
3638 : 0 : }
3639 : :
3640 : 4 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3641 : : {
3642 : 4 : return m_netgroupman.GetMappedAS(addr);
3643 : : }
3644 : :
3645 : 0 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3646 : : {
3647 : 0 : vstats.clear();
3648 : 0 : LOCK(m_nodes_mutex);
3649 [ # # # # ]: 0 : vstats.reserve(m_nodes.size());
3650 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
3651 [ # # ]: 0 : vstats.emplace_back();
3652 [ # # ]: 0 : pnode->CopyStats(vstats.back());
3653 [ # # ]: 0 : vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3654 : : }
3655 : 0 : }
3656 : :
3657 : 0 : bool CConnman::DisconnectNode(std::string_view strNode)
3658 : : {
3659 : 0 : LOCK(m_nodes_mutex);
3660 [ # # ]: 0 : auto it = std::ranges::find_if(m_nodes, [&strNode](CNode* node) { return node->m_addr_name == strNode; });
3661 [ # # ]: 0 : if (it != m_nodes.end()) {
3662 : 0 : CNode* node{*it};
3663 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), node->DisconnectMsg(fLogIPs));
# # # # #
# # # #
# ]
3664 : 0 : node->fDisconnect = true;
3665 : 0 : return true;
3666 : : }
3667 : : return false;
3668 : 0 : }
3669 : :
3670 : 11 : bool CConnman::DisconnectNode(const CSubNet& subnet)
3671 : : {
3672 : 11 : bool disconnected = false;
3673 : 11 : LOCK(m_nodes_mutex);
3674 [ + + ]: 17 : for (CNode* pnode : m_nodes) {
3675 [ + - + + ]: 6 : if (subnet.Match(pnode->addr)) {
3676 [ + - + - : 9 : LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
+ - - + -
- - - + -
+ - - + -
- ]
3677 : 3 : pnode->fDisconnect = true;
3678 : 3 : disconnected = true;
3679 : : }
3680 : : }
3681 [ + - ]: 11 : return disconnected;
3682 : 11 : }
3683 : :
3684 : 6 : bool CConnman::DisconnectNode(const CNetAddr& addr)
3685 : : {
3686 [ + - ]: 6 : return DisconnectNode(CSubNet(addr));
3687 : : }
3688 : :
3689 : 0 : bool CConnman::DisconnectNode(NodeId id)
3690 : : {
3691 : 0 : LOCK(m_nodes_mutex);
3692 [ # # ]: 0 : for(CNode* pnode : m_nodes) {
3693 [ # # ]: 0 : if (id == pnode->GetId()) {
3694 [ # # # # : 0 : LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
# # # # ]
3695 : 0 : pnode->fDisconnect = true;
3696 : 0 : return true;
3697 : : }
3698 : : }
3699 : : return false;
3700 : 0 : }
3701 : :
3702 : 0 : void CConnman::RecordBytesRecv(uint64_t bytes)
3703 : : {
3704 : 0 : nTotalBytesRecv += bytes;
3705 : 0 : }
3706 : :
3707 : 0 : void CConnman::RecordBytesSent(uint64_t bytes)
3708 : : {
3709 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3710 : 0 : LOCK(m_total_bytes_sent_mutex);
3711 : :
3712 : 0 : nTotalBytesSent += bytes;
3713 : :
3714 : 0 : const auto now = GetTime<std::chrono::seconds>();
3715 [ # # ]: 0 : if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3716 : : {
3717 : : // timeframe expired, reset cycle
3718 : 0 : nMaxOutboundCycleStartTime = now;
3719 : 0 : nMaxOutboundTotalBytesSentInCycle = 0;
3720 : : }
3721 : :
3722 [ # # ]: 0 : nMaxOutboundTotalBytesSentInCycle += bytes;
3723 : 0 : }
3724 : :
3725 : 0 : uint64_t CConnman::GetMaxOutboundTarget() const
3726 : : {
3727 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3728 : 0 : LOCK(m_total_bytes_sent_mutex);
3729 [ # # ]: 0 : return nMaxOutboundLimit;
3730 : 0 : }
3731 : :
3732 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3733 : : {
3734 : 0 : return MAX_UPLOAD_TIMEFRAME;
3735 : : }
3736 : :
3737 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3738 : : {
3739 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3740 : 0 : LOCK(m_total_bytes_sent_mutex);
3741 [ # # ]: 0 : return GetMaxOutboundTimeLeftInCycle_();
3742 : 0 : }
3743 : :
3744 : 0 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3745 : : {
3746 : 0 : AssertLockHeld(m_total_bytes_sent_mutex);
3747 : :
3748 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3749 : 0 : return 0s;
3750 : :
3751 [ # # ]: 0 : if (nMaxOutboundCycleStartTime.count() == 0)
3752 : 0 : return MAX_UPLOAD_TIMEFRAME;
3753 : :
3754 : 0 : const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3755 : 0 : const auto now = GetTime<std::chrono::seconds>();
3756 [ # # ]: 0 : return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3757 : : }
3758 : :
3759 : 0 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3760 : : {
3761 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3762 : 0 : LOCK(m_total_bytes_sent_mutex);
3763 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3764 : : return false;
3765 : :
3766 [ # # ]: 0 : if (historicalBlockServingLimit)
3767 : : {
3768 : : // keep a large enough buffer to at least relay each block once
3769 [ # # ]: 0 : const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3770 : 0 : const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3771 [ # # # # ]: 0 : if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3772 : 0 : return true;
3773 : : }
3774 [ # # ]: 0 : else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3775 : 0 : return true;
3776 : :
3777 : : return false;
3778 : 0 : }
3779 : :
3780 : 0 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
3781 : : {
3782 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3783 : 0 : LOCK(m_total_bytes_sent_mutex);
3784 [ # # ]: 0 : if (nMaxOutboundLimit == 0)
3785 : : return 0;
3786 : :
3787 [ # # ]: 0 : return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3788 : 0 : }
3789 : :
3790 : 0 : uint64_t CConnman::GetTotalBytesRecv() const
3791 : : {
3792 : 0 : return nTotalBytesRecv;
3793 : : }
3794 : :
3795 : 0 : uint64_t CConnman::GetTotalBytesSent() const
3796 : : {
3797 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3798 : 0 : LOCK(m_total_bytes_sent_mutex);
3799 [ # # ]: 0 : return nTotalBytesSent;
3800 : 0 : }
3801 : :
3802 : 362 : ServiceFlags CConnman::GetLocalServices() const
3803 : : {
3804 : 362 : return m_local_services;
3805 : : }
3806 : :
3807 : 40 : static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3808 : : {
3809 [ - + ]: 40 : if (use_v2transport) {
3810 [ # # ]: 0 : return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3811 : : } else {
3812 [ - + ]: 40 : return std::make_unique<V1Transport>(id);
3813 : : }
3814 : : }
3815 : :
3816 : 40 : CNode::CNode(NodeId idIn,
3817 : : std::shared_ptr<Sock> sock,
3818 : : const CAddress& addrIn,
3819 : : uint64_t nKeyedNetGroupIn,
3820 : : uint64_t nLocalHostNonceIn,
3821 : : const CService& addrBindIn,
3822 : : const std::string& addrNameIn,
3823 : : ConnectionType conn_type_in,
3824 : : bool inbound_onion,
3825 : : uint64_t network_key,
3826 : 40 : CNodeOptions&& node_opts)
3827 : 40 : : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3828 : 40 : m_permission_flags{node_opts.permission_flags},
3829 [ - + ]: 40 : m_sock{sock},
3830 : 40 : m_connected{GetTime<std::chrono::seconds>()},
3831 : 40 : addr{addrIn},
3832 : 40 : addrBind{addrBindIn},
3833 [ + - + - ]: 40 : m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3834 [ - + ]: 40 : m_dest(addrNameIn),
3835 : 40 : m_inbound_onion{inbound_onion},
3836 [ + - ]: 40 : m_prefer_evict{node_opts.prefer_evict},
3837 : 40 : nKeyedNetGroup{nKeyedNetGroupIn},
3838 : 40 : m_network_key{network_key},
3839 : 40 : m_conn_type{conn_type_in},
3840 : 40 : id{idIn},
3841 : 40 : nLocalHostNonce{nLocalHostNonceIn},
3842 [ + - ]: 40 : m_recv_flood_size{node_opts.recv_flood_size},
3843 [ + - + - : 80 : m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
+ + ]
3844 : : {
3845 [ + + + - ]: 40 : if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3846 : :
3847 [ + + ]: 1440 : for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3848 [ + - ]: 1400 : mapRecvBytesPerMsgType[msg] = 0;
3849 : : }
3850 [ + - ]: 40 : mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3851 : :
3852 [ + + ]: 40 : if (fLogIPs) {
3853 [ + - + - : 6 : LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
+ - ]
3854 : : } else {
3855 [ + - + - : 34 : LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
+ - ]
3856 : : }
3857 [ - - ]: 40 : }
3858 : :
3859 : 2 : void CNode::MarkReceivedMsgsForProcessing()
3860 : : {
3861 : 2 : AssertLockNotHeld(m_msg_process_queue_mutex);
3862 : :
3863 : 2 : size_t nSizeAdded = 0;
3864 [ + + ]: 4 : for (const auto& msg : vRecvMsg) {
3865 : : // vRecvMsg contains only completed CNetMessage
3866 : : // the single possible partially deserialized message are held by TransportDeserializer
3867 : 2 : nSizeAdded += msg.GetMemoryUsage();
3868 : : }
3869 : :
3870 : 2 : LOCK(m_msg_process_queue_mutex);
3871 : 2 : m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3872 : 2 : m_msg_process_queue_size += nSizeAdded;
3873 [ + - ]: 2 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3874 : 2 : }
3875 : :
3876 : 2 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3877 : : {
3878 : 2 : LOCK(m_msg_process_queue_mutex);
3879 [ - + ]: 2 : if (m_msg_process_queue.empty()) return std::nullopt;
3880 : :
3881 : 2 : std::list<CNetMessage> msgs;
3882 : : // Just take one message
3883 : 2 : msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3884 : 2 : m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3885 : 2 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3886 : :
3887 : 4 : return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3888 : 2 : }
3889 : :
3890 : 55 : bool CConnman::NodeFullyConnected(const CNode* pnode)
3891 : : {
3892 [ + - + - : 55 : return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
+ + ]
3893 : : }
3894 : :
3895 : 22 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3896 : : {
3897 : 22 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3898 [ - + ]: 22 : size_t nMessageSize = msg.data.size();
3899 [ + - ]: 22 : LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3900 [ + - + + ]: 22 : if (gArgs.GetBoolArg("-capturemessages", false)) {
3901 [ - + ]: 10 : CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3902 : : }
3903 : :
3904 : : TRACEPOINT(net, outbound_message,
3905 : : pnode->GetId(),
3906 : : pnode->m_addr_name.c_str(),
3907 : : pnode->ConnectionTypeAsString().c_str(),
3908 : : msg.m_type.c_str(),
3909 : : msg.data.size(),
3910 : : msg.data.data()
3911 : 22 : );
3912 : :
3913 : 22 : size_t nBytesSent = 0;
3914 : 22 : {
3915 : 22 : LOCK(pnode->cs_vSend);
3916 : : // Check if the transport still has unsent bytes, and indicate to it that we're about to
3917 : : // give it a message to send.
3918 [ + + ]: 22 : const auto& [to_send, more, _msg_type] =
3919 [ + + ]: 22 : pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3920 [ + + - + ]: 22 : const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3921 : :
3922 : : // Update memory usage of send buffer.
3923 : 22 : pnode->m_send_memusage += msg.GetMemoryUsage();
3924 [ + - ]: 22 : if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3925 : : // Move message to vSendMsg queue.
3926 [ + - ]: 22 : pnode->vSendMsg.push_back(std::move(msg));
3927 : :
3928 : : // If there was nothing to send before, and there is now (predicted by the "more" value
3929 : : // returned by the GetBytesToSend call above), attempt "optimistic write":
3930 : : // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3931 : : // doing a send, try sending from the calling thread if the queue was empty before.
3932 : : // With a V1Transport, more will always be true here, because adding a message always
3933 : : // results in sendable bytes there, but with V2Transport this is not the case (it may
3934 : : // still be in the handshake).
3935 [ + + + - ]: 22 : if (queue_was_empty && more) {
3936 [ + - ]: 6 : std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3937 : : }
3938 : 22 : }
3939 [ - + ]: 22 : if (nBytesSent) RecordBytesSent(nBytesSent);
3940 : 22 : }
3941 : :
3942 : 7 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3943 : : {
3944 : 7 : CNode* found = nullptr;
3945 : 7 : LOCK(m_nodes_mutex);
3946 [ + - ]: 44 : for (auto&& pnode : m_nodes) {
3947 [ + + ]: 44 : if(pnode->GetId() == id) {
3948 : : found = pnode;
3949 : : break;
3950 : : }
3951 : : }
3952 [ + - + - : 8 : return found != nullptr && NodeFullyConnected(found) && func(found);
+ - + - +
+ + - ]
3953 : 7 : }
3954 : :
3955 : 0 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3956 : : {
3957 : 0 : return CSipHasher(nSeed0, nSeed1).Write(id);
3958 : : }
3959 : :
3960 : 0 : uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3961 : : {
3962 : 0 : std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3963 : :
3964 [ # # # # : 0 : return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
# # ]
3965 : 0 : }
3966 : :
3967 : 1 : void CConnman::PerformReconnections()
3968 : : {
3969 : 1 : AssertLockNotHeld(m_reconnections_mutex);
3970 : 1 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3971 : 1 : while (true) {
3972 : : // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3973 [ + - ]: 1 : decltype(m_reconnections) todo;
3974 : 1 : {
3975 [ + - ]: 1 : LOCK(m_reconnections_mutex);
3976 [ - + ]: 1 : if (m_reconnections.empty()) break;
3977 [ # # ]: 0 : todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3978 : 1 : }
3979 : :
3980 [ # # ]: 0 : auto& item = *todo.begin();
3981 [ # # ]: 0 : OpenNetworkConnection(item.addr_connect,
3982 : : // We only reconnect if the first attempt to connect succeeded at
3983 : : // connection time, but then failed after the CNode object was
3984 : : // created. Since we already know connecting is possible, do not
3985 : : // count failure to reconnect.
3986 : : /*fCountFailure=*/false,
3987 [ # # ]: 0 : std::move(item.grant),
3988 : 0 : item.destination.empty() ? nullptr : item.destination.c_str(),
3989 : : item.conn_type,
3990 [ # # ]: 0 : item.use_v2transport);
3991 : 0 : }
3992 : 1 : }
3993 : :
3994 : 0 : void CConnman::ASMapHealthCheck()
3995 : : {
3996 : 0 : const std::vector<CAddress> v4_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV4, /*filtered=*/false)};
3997 [ # # ]: 0 : const std::vector<CAddress> v6_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV6, /*filtered=*/false)};
3998 : 0 : std::vector<CNetAddr> clearnet_addrs;
3999 [ # # # # : 0 : clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
# # ]
4000 [ # # ]: 0 : std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
4001 [ # # ]: 0 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
4002 [ # # ]: 0 : std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
4003 [ # # ]: 0 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
4004 [ # # ]: 0 : m_netgroupman.ASMapHealthCheck(clearnet_addrs);
4005 : 0 : }
4006 : :
4007 : : // Dump binary message to file, with timestamp.
4008 : 5 : static void CaptureMessageToFile(const CAddress& addr,
4009 : : const std::string& msg_type,
4010 : : std::span<const unsigned char> data,
4011 : : bool is_incoming)
4012 : : {
4013 : : // Note: This function captures the message at the time of processing,
4014 : : // not at socket receive/send time.
4015 : : // This ensures that the messages are always in order from an application
4016 : : // layer (processing) perspective.
4017 : 5 : auto now = GetTime<std::chrono::microseconds>();
4018 : :
4019 : : // Windows folder names cannot include a colon
4020 : 5 : std::string clean_addr = addr.ToStringAddrPort();
4021 [ - + ]: 5 : std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
4022 : :
4023 [ - + + - : 30 : fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
+ - + - ]
4024 [ + - ]: 5 : fs::create_directories(base_path);
4025 : :
4026 [ + - + - ]: 15 : fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4027 [ + - + - ]: 10 : AutoFile f{fsbridge::fopen(path, "ab")};
4028 : :
4029 [ + - ]: 5 : ser_writedata64(f, now.count());
4030 [ - + + - ]: 5 : f << std::span{msg_type};
4031 [ - + + + ]: 23 : for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4032 [ + - ]: 36 : f << uint8_t{'\0'};
4033 : : }
4034 [ + - ]: 5 : uint32_t size = data.size();
4035 [ + - ]: 5 : ser_writedata32(f, size);
4036 [ + - ]: 5 : f << data;
4037 : :
4038 [ + - - + ]: 10 : if (f.fclose() != 0) {
4039 : 0 : throw std::ios_base::failure(
4040 [ # # # # : 0 : strprintf("Error closing %s after write, file contents are likely incomplete", fs::PathToString(path)));
# # ]
4041 : : }
4042 : 15 : }
4043 : :
4044 : : std::function<void(const CAddress& addr,
4045 : : const std::string& msg_type,
4046 : : std::span<const unsigned char> data,
4047 : : bool is_incoming)>
4048 : : CaptureMessage = CaptureMessageToFile;
|