Branch data Line data Source code
1 : : // Copyright (c) The Bitcoin Core developers
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : #include <txgraph.h>
6 : : #include <cluster_linearize.h>
7 : : #include <test/fuzz/fuzz.h>
8 : : #include <test/fuzz/FuzzedDataProvider.h>
9 : : #include <test/util/random.h>
10 : : #include <util/bitset.h>
11 : : #include <util/feefrac.h>
12 : :
13 : : #include <algorithm>
14 : : #include <map>
15 : : #include <memory>
16 : : #include <set>
17 : : #include <stdint.h>
18 : : #include <utility>
19 : :
20 : : using namespace cluster_linearize;
21 : :
22 : : namespace {
23 : :
24 : : /** Data type representing a naive simulated TxGraph, keeping all transactions (even from
25 : : * disconnected components) in a single DepGraph. Unlike the real TxGraph, this only models
26 : : * a single graph, and multiple instances are used to simulate main/staging. */
27 : : struct SimTxGraph
28 : : {
29 : : /** Maximum number of transactions to support simultaneously. Set this higher than txgraph's
30 : : * cluster count, so we can exercise situations with more transactions than fit in one
31 : : * cluster. */
32 : : static constexpr unsigned MAX_TRANSACTIONS = MAX_CLUSTER_COUNT_LIMIT * 2;
33 : : /** Set type to use in the simulation. */
34 : : using SetType = BitSet<MAX_TRANSACTIONS>;
35 : : /** Data type for representing positions within SimTxGraph::graph. */
36 : : using Pos = DepGraphIndex;
37 : : /** Constant to mean "missing in this graph". */
38 : : static constexpr auto MISSING = Pos(-1);
39 : :
40 : : /** The dependency graph (for all transactions in the simulation, regardless of
41 : : * connectivity/clustering). */
42 : : DepGraph<SetType> graph;
43 : : /** For each position in graph, which TxGraph::Ref it corresponds with (if any). Use shared_ptr
44 : : * so that a SimTxGraph can be copied to create a staging one, while sharing Refs with
45 : : * the main graph. */
46 : : std::array<std::shared_ptr<TxGraph::Ref>, MAX_TRANSACTIONS> simmap;
47 : : /** For each TxGraph::Ref in graph, the position it corresponds with. */
48 : : std::map<const TxGraph::Ref*, Pos> simrevmap;
49 : : /** The set of TxGraph::Ref entries that have been removed, but not yet destroyed. */
50 : : std::vector<std::shared_ptr<TxGraph::Ref>> removed;
51 : : /** Whether the graph is oversized (true = yes, false = no, std::nullopt = unknown). */
52 : : std::optional<bool> oversized;
53 : : /** The configured maximum number of transactions per cluster. */
54 : : DepGraphIndex max_cluster_count;
55 : :
56 : : /** Construct a new SimTxGraph with the specified maximum cluster count. */
57 : 0 : explicit SimTxGraph(DepGraphIndex max_cluster) : max_cluster_count(max_cluster) {}
58 : :
59 : : // Permit copying and moving.
60 [ # # # # ]: 0 : SimTxGraph(const SimTxGraph&) noexcept = default;
61 : : SimTxGraph& operator=(const SimTxGraph&) noexcept = default;
62 : 0 : SimTxGraph(SimTxGraph&&) noexcept = default;
63 : 0 : SimTxGraph& operator=(SimTxGraph&&) noexcept = default;
64 : :
65 : : /** Check whether this graph is oversized (contains a connected component whose number of
66 : : * transactions exceeds max_cluster_count. */
67 : 0 : bool IsOversized()
68 : : {
69 [ # # ]: 0 : if (!oversized.has_value()) {
70 : : // Only recompute when oversized isn't already known.
71 : 0 : oversized = false;
72 : 0 : auto todo = graph.Positions();
73 : : // Iterate over all connected components of the graph.
74 [ # # ]: 0 : while (todo.Any()) {
75 : 0 : auto component = graph.FindConnectedComponent(todo);
76 [ # # ]: 0 : if (component.Count() > max_cluster_count) oversized = true;
77 : 0 : todo -= component;
78 : : }
79 : : }
80 : 0 : return *oversized;
81 : : }
82 : :
83 : : /** Determine the number of (non-removed) transactions in the graph. */
84 [ # # ]: 0 : DepGraphIndex GetTransactionCount() const { return graph.TxCount(); }
85 : :
86 : : /** Get the position where ref occurs in this simulated graph, or -1 if it does not. */
87 : 0 : Pos Find(const TxGraph::Ref* ref) const
88 : : {
89 : 0 : auto it = simrevmap.find(ref);
90 [ # # ]: 0 : if (it != simrevmap.end()) return it->second;
91 : : return MISSING;
92 : : }
93 : :
94 : : /** Given a position in this simulated graph, get the corresponding TxGraph::Ref. */
95 : 0 : TxGraph::Ref* GetRef(Pos pos)
96 : : {
97 [ # # ]: 0 : assert(graph.Positions()[pos]);
98 [ # # ]: 0 : assert(simmap[pos]);
99 : 0 : return simmap[pos].get();
100 : : }
101 : :
102 : : /** Add a new transaction to the simulation. */
103 : 0 : TxGraph::Ref* AddTransaction(const FeePerWeight& feerate)
104 : : {
105 [ # # ]: 0 : assert(graph.TxCount() < MAX_TRANSACTIONS);
106 : 0 : auto simpos = graph.AddTransaction(feerate);
107 [ # # ]: 0 : assert(graph.Positions()[simpos]);
108 [ # # ]: 0 : simmap[simpos] = std::make_shared<TxGraph::Ref>();
109 : 0 : auto ptr = simmap[simpos].get();
110 : 0 : simrevmap[ptr] = simpos;
111 : 0 : return ptr;
112 : : }
113 : :
114 : : /** Add a dependency between two positions in this graph. */
115 : 0 : void AddDependency(TxGraph::Ref* parent, TxGraph::Ref* child)
116 : : {
117 : 0 : auto par_pos = Find(parent);
118 [ # # ]: 0 : if (par_pos == MISSING) return;
119 : 0 : auto chl_pos = Find(child);
120 [ # # ]: 0 : if (chl_pos == MISSING) return;
121 : 0 : graph.AddDependencies(SetType::Singleton(par_pos), chl_pos);
122 : : // This may invalidate our cached oversized value.
123 [ # # # # ]: 0 : if (oversized.has_value() && !*oversized) oversized = std::nullopt;
124 : : }
125 : :
126 : : /** Modify the transaction fee of a ref, if it exists. */
127 : 0 : void SetTransactionFee(TxGraph::Ref* ref, int64_t fee)
128 : : {
129 : 0 : auto pos = Find(ref);
130 [ # # ]: 0 : if (pos == MISSING) return;
131 : 0 : graph.FeeRate(pos).fee = fee;
132 : : }
133 : :
134 : : /** Remove the transaction in the specified position from the graph. */
135 : 0 : void RemoveTransaction(TxGraph::Ref* ref)
136 : : {
137 : 0 : auto pos = Find(ref);
138 [ # # ]: 0 : if (pos == MISSING) return;
139 : 0 : graph.RemoveTransactions(SetType::Singleton(pos));
140 : 0 : simrevmap.erase(simmap[pos].get());
141 : : // Retain the TxGraph::Ref corresponding to this position, so the Ref destruction isn't
142 : : // invoked until the simulation explicitly decided to do so.
143 : 0 : removed.push_back(std::move(simmap[pos]));
144 : 0 : simmap[pos].reset();
145 : : // This may invalidate our cached oversized value.
146 [ # # # # ]: 0 : if (oversized.has_value() && *oversized) oversized = std::nullopt;
147 : : }
148 : :
149 : : /** Destroy the transaction from the graph, including from the removed set. This will
150 : : * trigger TxGraph::Ref::~Ref. reset_oversize controls whether the cached oversized
151 : : * value is cleared (destroying does not clear oversizedness in TxGraph of the main
152 : : * graph while staging exists). */
153 : 0 : void DestroyTransaction(TxGraph::Ref* ref, bool reset_oversize)
154 : : {
155 : 0 : auto pos = Find(ref);
156 [ # # ]: 0 : if (pos == MISSING) {
157 : : // Wipe the ref, if it exists, from the removed vector. Use std::partition rather
158 : : // than std::erase because we don't care about the order of the entries that
159 : : // remain.
160 [ # # # # ]: 0 : auto remove = std::partition(removed.begin(), removed.end(), [&](auto& arg) { return arg.get() != ref; });
161 : 0 : removed.erase(remove, removed.end());
162 : : } else {
163 : 0 : graph.RemoveTransactions(SetType::Singleton(pos));
164 : 0 : simrevmap.erase(simmap[pos].get());
165 : 0 : simmap[pos].reset();
166 : : // This may invalidate our cached oversized value.
167 [ # # # # : 0 : if (reset_oversize && oversized.has_value() && *oversized) {
# # ]
168 : 0 : oversized = std::nullopt;
169 : : }
170 : : }
171 : 0 : }
172 : :
173 : : /** Construct the set with all positions in this graph corresponding to the specified
174 : : * TxGraph::Refs. All of them must occur in this graph and not be removed. */
175 : 0 : SetType MakeSet(std::span<TxGraph::Ref* const> arg)
176 : : {
177 : 0 : SetType ret;
178 [ # # ]: 0 : for (TxGraph::Ref* ptr : arg) {
179 : 0 : auto pos = Find(ptr);
180 [ # # ]: 0 : assert(pos != Pos(-1));
181 : 0 : ret.Set(pos);
182 : : }
183 : 0 : return ret;
184 : : }
185 : :
186 : : /** Get the set of ancestors (desc=false) or descendants (desc=true) in this graph. */
187 : 0 : SetType GetAncDesc(TxGraph::Ref* arg, bool desc)
188 : : {
189 : 0 : auto pos = Find(arg);
190 [ # # ]: 0 : if (pos == MISSING) return {};
191 [ # # ]: 0 : return desc ? graph.Descendants(pos) : graph.Ancestors(pos);
192 : : }
193 : :
194 : : /** Given a set of Refs (given as a vector of pointers), expand the set to include all its
195 : : * ancestors (desc=false) or all its descendants (desc=true) in this graph. */
196 : 0 : void IncludeAncDesc(std::vector<TxGraph::Ref*>& arg, bool desc)
197 : : {
198 : 0 : std::vector<TxGraph::Ref*> ret;
199 [ # # ]: 0 : for (auto ptr : arg) {
200 : 0 : auto simpos = Find(ptr);
201 [ # # ]: 0 : if (simpos != MISSING) {
202 [ # # # # ]: 0 : for (auto i : desc ? graph.Descendants(simpos) : graph.Ancestors(simpos)) {
203 [ # # ]: 0 : ret.push_back(simmap[i].get());
204 : : }
205 : : } else {
206 [ # # ]: 0 : ret.push_back(ptr);
207 : : }
208 : : }
209 : : // Deduplicate.
210 : 0 : std::sort(ret.begin(), ret.end());
211 : 0 : ret.erase(std::unique(ret.begin(), ret.end()), ret.end());
212 : : // Replace input.
213 : 0 : arg = std::move(ret);
214 : 0 : }
215 : : };
216 : :
217 : : } // namespace
218 : :
219 [ + - ]: 440 : FUZZ_TARGET(txgraph)
220 : : {
221 : : // This is a big simulation test for TxGraph, which performs a fuzz-derived sequence of valid
222 : : // operations on a TxGraph instance, as well as on a simpler (mostly) reimplementation (see
223 : : // SimTxGraph above), comparing the outcome of functions that return a result, and finally
224 : : // performing a full comparison between the two.
225 : :
226 : 0 : SeedRandomStateForTest(SeedRand::ZEROS);
227 : 0 : FuzzedDataProvider provider(buffer.data(), buffer.size());
228 : :
229 : : /** Internal test RNG, used only for decisions which would require significant amount of data
230 : : * to be read from the provider, without realistically impacting test sensitivity. */
231 : 0 : InsecureRandomContext rng(0xdecade2009added + buffer.size());
232 : :
233 : : /** Variable used whenever an empty TxGraph::Ref is needed. */
234 : 0 : TxGraph::Ref empty_ref;
235 : :
236 : : // Decide the maximum number of transactions per cluster we will use in this simulation.
237 : 0 : auto max_count = provider.ConsumeIntegralInRange<DepGraphIndex>(1, MAX_CLUSTER_COUNT_LIMIT);
238 : :
239 : : // Construct a real graph, and a vector of simulated graphs (main, and possibly staging).
240 : 0 : auto real = MakeTxGraph(max_count);
241 : 0 : std::vector<SimTxGraph> sims;
242 [ # # ]: 0 : sims.reserve(2);
243 [ # # ]: 0 : sims.emplace_back(max_count);
244 : :
245 : : /** Function to pick any Ref (for either sim in sims: from sim.simmap or sim.removed, or the
246 : : * empty Ref). */
247 : 0 : auto pick_fn = [&]() noexcept -> TxGraph::Ref* {
248 [ # # ]: 0 : size_t tx_count[2] = {sims[0].GetTransactionCount(), 0};
249 : : /** The number of possible choices. */
250 [ # # ]: 0 : size_t choices = tx_count[0] + sims[0].removed.size() + 1;
251 [ # # ]: 0 : if (sims.size() == 2) {
252 : 0 : tx_count[1] = sims[1].GetTransactionCount();
253 : 0 : choices += tx_count[1] + sims[1].removed.size();
254 : : }
255 : : /** Pick one of them. */
256 : 0 : auto choice = provider.ConsumeIntegralInRange<size_t>(0, choices - 1);
257 : : // Consider both main and (if it exists) staging.
258 [ # # ]: 0 : for (size_t level = 0; level < sims.size(); ++level) {
259 [ # # ]: 0 : auto& sim = sims[level];
260 [ # # ]: 0 : if (choice < tx_count[level]) {
261 : : // Return from graph.
262 [ # # ]: 0 : for (auto i : sim.graph.Positions()) {
263 [ # # ]: 0 : if (choice == 0) return sim.GetRef(i);
264 : 0 : --choice;
265 : : }
266 : 0 : assert(false);
267 : : } else {
268 : 0 : choice -= tx_count[level];
269 : : }
270 [ # # ]: 0 : if (choice < sim.removed.size()) {
271 : : // Return from removed.
272 : 0 : return sim.removed[choice].get();
273 : : } else {
274 : 0 : choice -= sim.removed.size();
275 : : }
276 : : }
277 : : // Return empty.
278 [ # # ]: 0 : assert(choice == 0);
279 : 0 : return &empty_ref;
280 : 0 : };
281 : :
282 [ # # # # ]: 0 : LIMITED_WHILE(provider.remaining_bytes() > 0, 200) {
283 : : // Read a one-byte command.
284 : 0 : int command = provider.ConsumeIntegral<uint8_t>();
285 : : // Treat the lowest bit of a command as a flag (which selects a variant of some of the
286 : : // operations), and the second-lowest bit as a way of selecting main vs. staging, and leave
287 : : // the rest of the bits in command.
288 : 0 : bool alt = command & 1;
289 : 0 : bool use_main = command & 2;
290 : 0 : command >>= 2;
291 : :
292 : : // Provide convenient aliases for the top simulated graph (main, or staging if it exists),
293 : : // one for the simulated graph selected based on use_main (for operations that can operate
294 : : // on both graphs), and one that always refers to the main graph.
295 : 0 : auto& top_sim = sims.back();
296 [ # # ]: 0 : auto& sel_sim = use_main ? sims[0] : top_sim;
297 : 0 : auto& main_sim = sims[0];
298 : :
299 : : // Keep decrementing command for each applicable operation, until one is hit. Multiple
300 : : // iterations may be necessary.
301 : 0 : while (true) {
302 [ # # # # ]: 0 : if (top_sim.GetTransactionCount() < SimTxGraph::MAX_TRANSACTIONS && command-- == 0) {
303 : : // AddTransaction.
304 : 0 : int64_t fee;
305 : 0 : int32_t size;
306 [ # # ]: 0 : if (alt) {
307 : : // If alt is true, pick fee and size from the entire range.
308 : 0 : fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
309 : 0 : size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
310 : : } else {
311 : : // Otherwise, use smaller range which consume fewer fuzz input bytes, as just
312 : : // these are likely sufficient to trigger all interesting code paths already.
313 : 0 : fee = provider.ConsumeIntegral<uint8_t>();
314 : 0 : size = provider.ConsumeIntegral<uint8_t>() + 1;
315 : : }
316 : 0 : FeePerWeight feerate{fee, size};
317 : : // Create a real TxGraph::Ref.
318 : 0 : auto ref = real->AddTransaction(feerate);
319 : : // Create a shared_ptr place in the simulation to put the Ref in.
320 [ # # ]: 0 : auto ref_loc = top_sim.AddTransaction(feerate);
321 : : // Move it in place.
322 : 0 : *ref_loc = std::move(ref);
323 : 0 : break;
324 [ # # # # ]: 0 : } else if (top_sim.GetTransactionCount() + top_sim.removed.size() > 1 && command-- == 0) {
325 : : // AddDependency.
326 : 0 : auto par = pick_fn();
327 : 0 : auto chl = pick_fn();
328 : 0 : auto pos_par = top_sim.Find(par);
329 : 0 : auto pos_chl = top_sim.Find(chl);
330 [ # # ]: 0 : if (pos_par != SimTxGraph::MISSING && pos_chl != SimTxGraph::MISSING) {
331 : : // Determine if adding this would introduce a cycle (not allowed by TxGraph),
332 : : // and if so, skip.
333 [ # # ]: 0 : if (top_sim.graph.Ancestors(pos_par)[pos_chl]) break;
334 : : }
335 : 0 : top_sim.AddDependency(par, chl);
336 : 0 : real->AddDependency(*par, *chl);
337 : 0 : break;
338 [ # # # # ]: 0 : } else if (top_sim.removed.size() < 100 && command-- == 0) {
339 : : // RemoveTransaction. Either all its ancestors or all its descendants are also
340 : : // removed (if any), to make sure TxGraph's reordering of removals and dependencies
341 : : // has no effect.
342 : 0 : std::vector<TxGraph::Ref*> to_remove;
343 [ # # ]: 0 : to_remove.push_back(pick_fn());
344 [ # # ]: 0 : top_sim.IncludeAncDesc(to_remove, alt);
345 : : // The order in which these ancestors/descendants are removed should not matter;
346 : : // randomly shuffle them.
347 : 0 : std::shuffle(to_remove.begin(), to_remove.end(), rng);
348 [ # # ]: 0 : for (TxGraph::Ref* ptr : to_remove) {
349 : 0 : real->RemoveTransaction(*ptr);
350 [ # # ]: 0 : top_sim.RemoveTransaction(ptr);
351 : : }
352 : 0 : break;
353 [ # # # # ]: 0 : } else if (sel_sim.removed.size() > 0 && command-- == 0) {
354 : : // ~Ref (of an already-removed transaction). Destroying a TxGraph::Ref has an
355 : : // observable effect on the TxGraph it refers to, so this simulation permits doing
356 : : // so separately from other actions on TxGraph.
357 : :
358 : : // Pick a Ref of sel_sim.removed to destroy. Note that the same Ref may still occur
359 : : // in the other graph, and thus not actually trigger ~Ref yet (which is exactly
360 : : // what we want, as destroying Refs is only allowed when it does not refer to an
361 : : // existing transaction in either graph).
362 : 0 : auto removed_pos = provider.ConsumeIntegralInRange<size_t>(0, sel_sim.removed.size() - 1);
363 [ # # ]: 0 : if (removed_pos != sel_sim.removed.size() - 1) {
364 : 0 : std::swap(sel_sim.removed[removed_pos], sel_sim.removed.back());
365 : : }
366 : 0 : sel_sim.removed.pop_back();
367 : 0 : break;
368 [ # # # # : 0 : } else if (command-- == 0) {
# # ]
369 : : // ~Ref (of any transaction).
370 : 0 : std::vector<TxGraph::Ref*> to_destroy;
371 [ # # ]: 0 : to_destroy.push_back(pick_fn());
372 : 0 : while (true) {
373 : : // Keep adding either the ancestors or descendants the already picked
374 : : // transactions have in both graphs (main and staging) combined. Destroying
375 : : // will trigger deletions in both, so to have consistent TxGraph behavior, the
376 : : // set must be closed under ancestors, or descendants, in both graphs.
377 : 0 : auto old_size = to_destroy.size();
378 [ # # # # ]: 0 : for (auto& sim : sims) sim.IncludeAncDesc(to_destroy, alt);
379 [ # # ]: 0 : if (to_destroy.size() == old_size) break;
380 : : }
381 : : // The order in which these ancestors/descendants are destroyed should not matter;
382 : : // randomly shuffle them.
383 : 0 : std::shuffle(to_destroy.begin(), to_destroy.end(), rng);
384 [ # # ]: 0 : for (TxGraph::Ref* ptr : to_destroy) {
385 [ # # ]: 0 : for (size_t level = 0; level < sims.size(); ++level) {
386 : 0 : sims[level].DestroyTransaction(ptr, level == sims.size() - 1);
387 : : }
388 : : }
389 : 0 : break;
390 : 0 : } else if (command-- == 0) {
391 : : // SetTransactionFee.
392 : 0 : int64_t fee;
393 [ # # ]: 0 : if (alt) {
394 : 0 : fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
395 : : } else {
396 : 0 : fee = provider.ConsumeIntegral<uint8_t>();
397 : : }
398 : 0 : auto ref = pick_fn();
399 : 0 : real->SetTransactionFee(*ref, fee);
400 [ # # ]: 0 : for (auto& sim : sims) {
401 : 0 : sim.SetTransactionFee(ref, fee);
402 : : }
403 : : break;
404 : : } else if (command-- == 0) {
405 : : // GetTransactionCount.
406 [ # # ]: 0 : assert(real->GetTransactionCount(use_main) == sel_sim.GetTransactionCount());
407 : : break;
408 : : } else if (command-- == 0) {
409 : : // Exists.
410 : 0 : auto ref = pick_fn();
411 : 0 : bool exists = real->Exists(*ref, use_main);
412 : 0 : bool should_exist = sel_sim.Find(ref) != SimTxGraph::MISSING;
413 [ # # ]: 0 : assert(exists == should_exist);
414 : : break;
415 : : } else if (command-- == 0) {
416 : : // IsOversized.
417 [ # # ]: 0 : assert(sel_sim.IsOversized() == real->IsOversized(use_main));
418 : : break;
419 [ # # ]: 0 : } else if (command-- == 0) {
420 : : // GetIndividualFeerate.
421 : 0 : auto ref = pick_fn();
422 : 0 : auto feerate = real->GetIndividualFeerate(*ref);
423 : 0 : bool found{false};
424 [ # # ]: 0 : for (auto& sim : sims) {
425 : 0 : auto simpos = sim.Find(ref);
426 [ # # ]: 0 : if (simpos != SimTxGraph::MISSING) {
427 : 0 : found = true;
428 [ # # ]: 0 : assert(feerate == sim.graph.FeeRate(simpos));
429 : : }
430 : : }
431 [ # # # # ]: 0 : if (!found) assert(feerate.IsEmpty());
432 : : break;
433 [ # # # # ]: 0 : } else if (!main_sim.IsOversized() && command-- == 0) {
434 : : // GetMainChunkFeerate.
435 : 0 : auto ref = pick_fn();
436 : 0 : auto feerate = real->GetMainChunkFeerate(*ref);
437 : 0 : auto simpos = main_sim.Find(ref);
438 [ # # ]: 0 : if (simpos == SimTxGraph::MISSING) {
439 [ # # ]: 0 : assert(feerate.IsEmpty());
440 : : } else {
441 : : // Just do some quick checks that the reported value is in range. A full
442 : : // recomputation of expected chunk feerates is done at the end.
443 [ # # ]: 0 : assert(feerate.size >= main_sim.graph.FeeRate(simpos).size);
444 : : }
445 : : break;
446 [ # # # # ]: 0 : } else if (!sel_sim.IsOversized() && command-- == 0) {
447 : : // GetAncestors/GetDescendants.
448 : 0 : auto ref = pick_fn();
449 [ # # ]: 0 : auto result = alt ? real->GetDescendants(*ref, use_main)
450 : 0 : : real->GetAncestors(*ref, use_main);
451 [ # # ]: 0 : assert(result.size() <= max_count);
452 : 0 : auto result_set = sel_sim.MakeSet(result);
453 [ # # ]: 0 : assert(result.size() == result_set.Count());
454 : 0 : auto expect_set = sel_sim.GetAncDesc(ref, alt);
455 [ # # ]: 0 : assert(result_set == expect_set);
456 : 0 : break;
457 [ # # # # ]: 0 : } else if (!sel_sim.IsOversized() && command-- == 0) {
458 : : // GetAncestorsUnion/GetDescendantsUnion.
459 : 0 : std::vector<TxGraph::Ref*> refs;
460 : : // Gather a list of up to 15 Ref pointers.
461 : 0 : auto count = provider.ConsumeIntegralInRange<size_t>(0, 15);
462 [ # # ]: 0 : refs.resize(count);
463 [ # # ]: 0 : for (size_t i = 0; i < count; ++i) {
464 : 0 : refs[i] = pick_fn();
465 : : }
466 : : // Their order should not matter, shuffle them.
467 : 0 : std::shuffle(refs.begin(), refs.end(), rng);
468 : : // Invoke the real function, and convert to SimPos set.
469 [ # # ]: 0 : auto result = alt ? real->GetDescendantsUnion(refs, use_main)
470 : 0 : : real->GetAncestorsUnion(refs, use_main);
471 : 0 : auto result_set = sel_sim.MakeSet(result);
472 [ # # ]: 0 : assert(result.size() == result_set.Count());
473 : : // Compute the expected result.
474 : 0 : SimTxGraph::SetType expect_set;
475 [ # # ]: 0 : for (TxGraph::Ref* ref : refs) expect_set |= sel_sim.GetAncDesc(ref, alt);
476 : : // Compare.
477 [ # # ]: 0 : assert(result_set == expect_set);
478 : 0 : break;
479 [ # # # # ]: 0 : } else if (!sel_sim.IsOversized() && command-- == 0) {
480 : : // GetCluster.
481 : 0 : auto ref = pick_fn();
482 : 0 : auto result = real->GetCluster(*ref, use_main);
483 : : // Check cluster count limit.
484 [ # # ]: 0 : assert(result.size() <= max_count);
485 : : // Require the result to be topologically valid and not contain duplicates.
486 : 0 : auto left = sel_sim.graph.Positions();
487 [ # # ]: 0 : for (auto refptr : result) {
488 : 0 : auto simpos = sel_sim.Find(refptr);
489 [ # # ]: 0 : assert(simpos != SimTxGraph::MISSING);
490 [ # # ]: 0 : assert(left[simpos]);
491 : 0 : left.Reset(simpos);
492 [ # # ]: 0 : assert(!sel_sim.graph.Ancestors(simpos).Overlaps(left));
493 : : }
494 : : // Require the set to be connected.
495 : 0 : auto result_set = sel_sim.MakeSet(result);
496 [ # # ]: 0 : assert(sel_sim.graph.IsConnected(result_set));
497 : : // If ref exists, the result must contain it. If not, it must be empty.
498 : 0 : auto simpos = sel_sim.Find(ref);
499 [ # # ]: 0 : if (simpos != SimTxGraph::MISSING) {
500 [ # # ]: 0 : assert(result_set[simpos]);
501 : : } else {
502 [ # # ]: 0 : assert(result_set.None());
503 : : }
504 : : // Require the set not to have ancestors or descendants outside of it.
505 [ # # ]: 0 : for (auto i : result_set) {
506 [ # # ]: 0 : assert(sel_sim.graph.Ancestors(i).IsSubsetOf(result_set));
507 [ # # ]: 0 : assert(sel_sim.graph.Descendants(i).IsSubsetOf(result_set));
508 : : }
509 : 0 : break;
510 [ # # ]: 0 : } else if (command-- == 0) {
511 : : // HaveStaging.
512 [ # # ]: 0 : assert((sims.size() == 2) == real->HaveStaging());
513 : : break;
514 [ # # # # ]: 0 : } else if (sims.size() < 2 && command-- == 0) {
515 : : // StartStaging.
516 [ # # ]: 0 : sims.emplace_back(sims.back());
517 : 0 : real->StartStaging();
518 : 0 : break;
519 [ # # # # ]: 0 : } else if (sims.size() > 1 && command-- == 0) {
520 : : // CommitStaging.
521 : 0 : real->CommitStaging();
522 : 0 : sims.erase(sims.begin());
523 : : break;
524 [ # # # # ]: 0 : } else if (sims.size() > 1 && command-- == 0) {
525 : : // AbortStaging.
526 : 0 : real->AbortStaging();
527 : 0 : sims.pop_back();
528 : : // Reset the cached oversized value (if TxGraph::Ref destructions triggered
529 : : // removals of main transactions while staging was active, then aborting will
530 : : // cause it to be re-evaluated in TxGraph).
531 [ # # ]: 0 : sims.back().oversized = std::nullopt;
532 : : break;
533 [ # # # # ]: 0 : } else if (!main_sim.IsOversized() && command-- == 0) {
534 : : // CompareMainOrder.
535 : 0 : auto ref_a = pick_fn();
536 : 0 : auto ref_b = pick_fn();
537 : 0 : auto sim_a = main_sim.Find(ref_a);
538 : 0 : auto sim_b = main_sim.Find(ref_b);
539 : : // Both transactions must exist in the main graph.
540 [ # # ]: 0 : if (sim_a == SimTxGraph::MISSING || sim_b == SimTxGraph::MISSING) break;
541 : 0 : auto cmp = real->CompareMainOrder(*ref_a, *ref_b);
542 : : // Distinct transactions have distinct places.
543 [ # # # # ]: 0 : if (sim_a != sim_b) assert(cmp != 0);
544 : : // Ancestors go before descendants.
545 [ # # # # ]: 0 : if (main_sim.graph.Ancestors(sim_a)[sim_b]) assert(cmp >= 0);
546 [ # # # # ]: 0 : if (main_sim.graph.Descendants(sim_a)[sim_b]) assert(cmp <= 0);
547 : : // Do not verify consistency with chunk feerates, as we cannot easily determine
548 : : // these here without making more calls to real, which could affect its internal
549 : : // state. A full comparison is done at the end.
550 : : break;
551 [ # # # # ]: 0 : } else if (!sel_sim.IsOversized() && command-- == 0) {
552 : : // CountDistinctClusters.
553 : 0 : std::vector<TxGraph::Ref*> refs;
554 : : // Gather a list of up to 15 (or up to 255) Ref pointers.
555 [ # # ]: 0 : auto count = provider.ConsumeIntegralInRange<size_t>(0, alt ? 255 : 15);
556 [ # # ]: 0 : refs.resize(count);
557 [ # # ]: 0 : for (size_t i = 0; i < count; ++i) {
558 : 0 : refs[i] = pick_fn();
559 : : }
560 : : // Their order should not matter, shuffle them.
561 : 0 : std::shuffle(refs.begin(), refs.end(), rng);
562 : : // Invoke the real function.
563 : 0 : auto result = real->CountDistinctClusters(refs, use_main);
564 : : // Build a set with representatives of the clusters the Refs occur in in the
565 : : // simulated graph. For each, remember the lowest-index transaction SimPos in the
566 : : // cluster.
567 : 0 : SimTxGraph::SetType sim_reps;
568 [ # # ]: 0 : for (auto ref : refs) {
569 : : // Skip Refs that do not occur in the simulated graph.
570 : 0 : auto simpos = sel_sim.Find(ref);
571 [ # # ]: 0 : if (simpos == SimTxGraph::MISSING) continue;
572 : : // Find the component that includes ref.
573 : 0 : auto component = sel_sim.graph.GetConnectedComponent(sel_sim.graph.Positions(), simpos);
574 : : // Remember the lowest-index SimPos in component, as a representative for it.
575 [ # # ]: 0 : assert(component.Any());
576 : 0 : sim_reps.Set(component.First());
577 : : }
578 : : // Compare the number of deduplicated representatives with the value returned by
579 : : // the real function.
580 [ # # ]: 0 : assert(result == sim_reps.Count());
581 : 0 : break;
582 [ # # ]: 0 : } else if (command-- == 0) {
583 : : // DoWork.
584 : 0 : real->DoWork();
585 : 0 : break;
586 : : }
587 : : }
588 : : }
589 : :
590 : : // After running all modifications, perform an internal sanity check (before invoking
591 : : // inspectors that may modify the internal state).
592 [ # # ]: 0 : real->SanityCheck();
593 : :
594 [ # # ]: 0 : if (!sims[0].IsOversized()) {
595 : : // If the main graph is not oversized, verify the total ordering implied by
596 : : // CompareMainOrder.
597 : : // First construct two distinct randomized permutations of the positions in sims[0].
598 : 0 : std::vector<SimTxGraph::Pos> vec1;
599 [ # # # # ]: 0 : for (auto i : sims[0].graph.Positions()) vec1.push_back(i);
600 : 0 : std::shuffle(vec1.begin(), vec1.end(), rng);
601 [ # # ]: 0 : auto vec2 = vec1;
602 : 0 : std::shuffle(vec2.begin(), vec2.end(), rng);
603 [ # # ]: 0 : if (vec1 == vec2) std::next_permutation(vec2.begin(), vec2.end());
604 : : // Sort both according to CompareMainOrder. By having randomized starting points, the order
605 : : // of CompareMainOrder invocations is somewhat randomized as well.
606 : 0 : auto cmp = [&](SimTxGraph::Pos a, SimTxGraph::Pos b) noexcept {
607 : 0 : return real->CompareMainOrder(*sims[0].GetRef(a), *sims[0].GetRef(b)) < 0;
608 : 0 : };
609 : 0 : std::sort(vec1.begin(), vec1.end(), cmp);
610 : 0 : std::sort(vec2.begin(), vec2.end(), cmp);
611 : :
612 : : // Verify the resulting orderings are identical. This could only fail if the ordering was
613 : : // not total.
614 [ # # ]: 0 : assert(vec1 == vec2);
615 : :
616 : : // Verify that the ordering is topological.
617 : 0 : auto todo = sims[0].graph.Positions();
618 [ # # ]: 0 : for (auto i : vec1) {
619 : 0 : todo.Reset(i);
620 [ # # ]: 0 : assert(!sims[0].graph.Ancestors(i).Overlaps(todo));
621 : : }
622 [ # # ]: 0 : assert(todo.None());
623 : :
624 : : // For every transaction in the total ordering, find a random one before it and after it,
625 : : // and compare their chunk feerates, which must be consistent with the ordering.
626 [ # # ]: 0 : for (size_t pos = 0; pos < vec1.size(); ++pos) {
627 : 0 : auto pos_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[pos]));
628 [ # # ]: 0 : if (pos > 0) {
629 : 0 : size_t before = rng.randrange<size_t>(pos);
630 : 0 : auto before_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[before]));
631 [ # # ]: 0 : assert(FeeRateCompare(before_feerate, pos_feerate) >= 0);
632 : : }
633 [ # # ]: 0 : if (pos + 1 < vec1.size()) {
634 : 0 : size_t after = pos + 1 + rng.randrange<size_t>(vec1.size() - 1 - pos);
635 : 0 : auto after_feerate = real->GetMainChunkFeerate(*sims[0].GetRef(vec1[after]));
636 [ # # ]: 0 : assert(FeeRateCompare(after_feerate, pos_feerate) <= 0);
637 : : }
638 : : }
639 : 0 : }
640 : :
641 [ # # ]: 0 : assert(real->HaveStaging() == (sims.size() > 1));
642 : :
643 : : // Try to run a full comparison, for both main_only=false and main_only=true in TxGraph
644 : : // inspector functions that support both.
645 [ # # ]: 0 : for (int main_only = 0; main_only < 2; ++main_only) {
646 [ # # ]: 0 : auto& sim = main_only ? sims[0] : sims.back();
647 : : // Compare simple properties of the graph with the simulation.
648 [ # # ]: 0 : assert(real->IsOversized(main_only) == sim.IsOversized());
649 [ # # ]: 0 : assert(real->GetTransactionCount(main_only) == sim.GetTransactionCount());
650 : : // If the graph (and the simulation) are not oversized, perform a full comparison.
651 [ # # ]: 0 : if (!sim.IsOversized()) {
652 : 0 : auto todo = sim.graph.Positions();
653 : : // Iterate over all connected components of the resulting (simulated) graph, each of which
654 : : // should correspond to a cluster in the real one.
655 [ # # ]: 0 : while (todo.Any()) {
656 : 0 : auto component = sim.graph.FindConnectedComponent(todo);
657 : 0 : todo -= component;
658 : : // Iterate over the transactions in that component.
659 [ # # ]: 0 : for (auto i : component) {
660 : : // Check its individual feerate against simulation.
661 [ # # ]: 0 : assert(sim.graph.FeeRate(i) == real->GetIndividualFeerate(*sim.GetRef(i)));
662 : : // Check its ancestors against simulation.
663 : 0 : auto expect_anc = sim.graph.Ancestors(i);
664 : 0 : auto anc = sim.MakeSet(real->GetAncestors(*sim.GetRef(i), main_only));
665 [ # # ]: 0 : assert(anc.Count() <= max_count);
666 [ # # ]: 0 : assert(anc == expect_anc);
667 : : // Check its descendants against simulation.
668 : 0 : auto expect_desc = sim.graph.Descendants(i);
669 : 0 : auto desc = sim.MakeSet(real->GetDescendants(*sim.GetRef(i), main_only));
670 [ # # ]: 0 : assert(desc.Count() <= max_count);
671 [ # # ]: 0 : assert(desc == expect_desc);
672 : : // Check the cluster the transaction is part of.
673 : 0 : auto cluster = real->GetCluster(*sim.GetRef(i), main_only);
674 [ # # ]: 0 : assert(cluster.size() <= max_count);
675 [ # # ]: 0 : assert(sim.MakeSet(cluster) == component);
676 : : // Check that the cluster is reported in a valid topological order (its
677 : : // linearization).
678 : 0 : std::vector<DepGraphIndex> simlin;
679 : 0 : SimTxGraph::SetType done;
680 [ # # ]: 0 : for (TxGraph::Ref* ptr : cluster) {
681 : 0 : auto simpos = sim.Find(ptr);
682 [ # # ]: 0 : assert(sim.graph.Descendants(simpos).IsSubsetOf(component - done));
683 : 0 : done.Set(simpos);
684 [ # # ]: 0 : assert(sim.graph.Ancestors(simpos).IsSubsetOf(done));
685 [ # # ]: 0 : simlin.push_back(simpos);
686 : : }
687 : : // Construct a chunking object for the simulated graph, using the reported cluster
688 : : // linearization as ordering, and compare it against the reported chunk feerates.
689 [ # # # # ]: 0 : if (sims.size() == 1 || main_only) {
690 : 0 : cluster_linearize::LinearizationChunking simlinchunk(sim.graph, simlin);
691 : 0 : DepGraphIndex idx{0};
692 [ # # ]: 0 : for (unsigned chunknum = 0; chunknum < simlinchunk.NumChunksLeft(); ++chunknum) {
693 : 0 : auto chunk = simlinchunk.GetChunk(chunknum);
694 : : // Require that the chunks of cluster linearizations are connected (this must
695 : : // be the case as all linearizations inside are PostLinearized).
696 [ # # ]: 0 : assert(sim.graph.IsConnected(chunk.transactions));
697 : : // Check the chunk feerates of all transactions in the cluster.
698 [ # # ]: 0 : while (chunk.transactions.Any()) {
699 [ # # ]: 0 : assert(chunk.transactions[simlin[idx]]);
700 : 0 : chunk.transactions.Reset(simlin[idx]);
701 [ # # ]: 0 : assert(chunk.feerate == real->GetMainChunkFeerate(*cluster[idx]));
702 : 0 : ++idx;
703 : : }
704 : : }
705 : 0 : }
706 : 0 : }
707 : : }
708 : : }
709 : : }
710 : :
711 : : // Sanity check again (because invoking inspectors may modify internal unobservable state).
712 [ # # ]: 0 : real->SanityCheck();
713 : :
714 : : // Kill the TxGraph object.
715 [ # # ]: 0 : real.reset();
716 : : // Kill the simulated graphs, with all remaining Refs in it. If any, this verifies that Refs
717 : : // can outlive the TxGraph that created them.
718 : 0 : sims.clear();
719 : 0 : }
|