Branch data Line data Source code
1 : : // Copyright (c) 2020 The Bitcoin Core developers
2 : : // Distributed under the MIT software license, see the accompanying
3 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
4 : :
5 : : #include <crypto/common.h>
6 : : #include <test/fuzz/FuzzedDataProvider.h>
7 : : #include <test/fuzz/fuzz.h>
8 : : #include <test/fuzz/util.h>
9 : :
10 : : #include <array>
11 : : #include <cassert>
12 : : #include <cstdint>
13 : : #include <cstring>
14 : : #include <vector>
15 : :
16 [ + - ]: 448 : FUZZ_TARGET(crypto_common)
17 : : {
18 : 34 : FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
19 : 34 : const uint16_t random_u16 = fuzzed_data_provider.ConsumeIntegral<uint16_t>();
20 : 34 : const uint32_t random_u32 = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
21 : 34 : const uint64_t random_u64 = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
22 : 34 : const std::vector<uint8_t> random_bytes_2 = ConsumeFixedLengthByteVector(fuzzed_data_provider, 2);
23 : 34 : const std::vector<uint8_t> random_bytes_4 = ConsumeFixedLengthByteVector(fuzzed_data_provider, 4);
24 : 34 : const std::vector<uint8_t> random_bytes_8 = ConsumeFixedLengthByteVector(fuzzed_data_provider, 8);
25 : :
26 : 34 : std::array<uint8_t, 2> writele16_arr;
27 : 34 : WriteLE16(writele16_arr.data(), random_u16);
28 [ - + ]: 34 : assert(ReadLE16(writele16_arr.data()) == random_u16);
29 : :
30 : 34 : std::array<uint8_t, 4> writele32_arr;
31 : 34 : WriteLE32(writele32_arr.data(), random_u32);
32 [ - + ]: 34 : assert(ReadLE32(writele32_arr.data()) == random_u32);
33 : :
34 : 34 : std::array<uint8_t, 8> writele64_arr;
35 : 34 : WriteLE64(writele64_arr.data(), random_u64);
36 [ - + ]: 34 : assert(ReadLE64(writele64_arr.data()) == random_u64);
37 : :
38 : 34 : std::array<uint8_t, 2> writebe16_arr;
39 : 34 : WriteBE16(writebe16_arr.data(), random_u16);
40 [ - + ]: 34 : assert(ReadBE16(writebe16_arr.data()) == random_u16);
41 : :
42 : 34 : std::array<uint8_t, 4> writebe32_arr;
43 : 34 : WriteBE32(writebe32_arr.data(), random_u32);
44 [ - + ]: 34 : assert(ReadBE32(writebe32_arr.data()) == random_u32);
45 : :
46 : 34 : std::array<uint8_t, 8> writebe64_arr;
47 : 34 : WriteBE64(writebe64_arr.data(), random_u64);
48 [ - + ]: 34 : assert(ReadBE64(writebe64_arr.data()) == random_u64);
49 : :
50 : 34 : const uint16_t readle16_result = ReadLE16(random_bytes_2.data());
51 : 34 : std::array<uint8_t, 2> readle16_arr;
52 : 34 : WriteLE16(readle16_arr.data(), readle16_result);
53 [ - + ]: 34 : assert(std::memcmp(random_bytes_2.data(), readle16_arr.data(), 2) == 0);
54 : :
55 : 34 : const uint32_t readle32_result = ReadLE32(random_bytes_4.data());
56 : 34 : std::array<uint8_t, 4> readle32_arr;
57 : 34 : WriteLE32(readle32_arr.data(), readle32_result);
58 [ - + ]: 34 : assert(std::memcmp(random_bytes_4.data(), readle32_arr.data(), 4) == 0);
59 : :
60 : 34 : const uint64_t readle64_result = ReadLE64(random_bytes_8.data());
61 : 34 : std::array<uint8_t, 8> readle64_arr;
62 : 34 : WriteLE64(readle64_arr.data(), readle64_result);
63 [ - + ]: 34 : assert(std::memcmp(random_bytes_8.data(), readle64_arr.data(), 8) == 0);
64 : :
65 : 34 : const uint32_t readbe32_result = ReadBE32(random_bytes_4.data());
66 : 34 : std::array<uint8_t, 4> readbe32_arr;
67 : 34 : WriteBE32(readbe32_arr.data(), readbe32_result);
68 [ - + ]: 34 : assert(std::memcmp(random_bytes_4.data(), readbe32_arr.data(), 4) == 0);
69 : :
70 : 34 : const uint64_t readbe64_result = ReadBE64(random_bytes_8.data());
71 : 34 : std::array<uint8_t, 8> readbe64_arr;
72 : 34 : WriteBE64(readbe64_arr.data(), readbe64_result);
73 [ - + ]: 34 : assert(std::memcmp(random_bytes_8.data(), readbe64_arr.data(), 8) == 0);
74 : 34 : }
|