Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-present The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <bitcoin-build-config.h> // IWYU pragma: keep
7 : :
8 : : #include <net.h>
9 : :
10 : : #include <addrdb.h>
11 : : #include <addrman.h>
12 : : #include <banman.h>
13 : : #include <clientversion.h>
14 : : #include <common/args.h>
15 : : #include <common/netif.h>
16 : : #include <compat/compat.h>
17 : : #include <consensus/consensus.h>
18 : : #include <crypto/sha256.h>
19 : : #include <i2p.h>
20 : : #include <key.h>
21 : : #include <logging.h>
22 : : #include <memusage.h>
23 : : #include <net_permissions.h>
24 : : #include <netaddress.h>
25 : : #include <netbase.h>
26 : : #include <node/eviction.h>
27 : : #include <node/interface_ui.h>
28 : : #include <protocol.h>
29 : : #include <random.h>
30 : : #include <scheduler.h>
31 : : #include <util/fs.h>
32 : : #include <util/sock.h>
33 : : #include <util/strencodings.h>
34 : : #include <util/thread.h>
35 : : #include <util/threadinterrupt.h>
36 : : #include <util/trace.h>
37 : : #include <util/translation.h>
38 : : #include <util/vector.h>
39 : :
40 : : #include <algorithm>
41 : : #include <array>
42 : : #include <cstring>
43 : : #include <cmath>
44 : : #include <cstdint>
45 : : #include <functional>
46 : : #include <optional>
47 : : #include <unordered_map>
48 : :
49 : : TRACEPOINT_SEMAPHORE(net, closed_connection);
50 : : TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
51 : : TRACEPOINT_SEMAPHORE(net, inbound_connection);
52 : : TRACEPOINT_SEMAPHORE(net, outbound_connection);
53 : : TRACEPOINT_SEMAPHORE(net, outbound_message);
54 : :
55 : : /** Maximum number of block-relay-only anchor connections */
56 : : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
57 : : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
58 : : /** Anchor IP address database file name */
59 : : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
60 : :
61 : : // How often to dump addresses to peers.dat
62 : : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
63 : :
64 : : /** Number of DNS seeds to query when the number of connections is low. */
65 : : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
66 : :
67 : : /** Minimum number of outbound connections under which we will keep fetching our address seeds. */
68 : : static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
69 : :
70 : : /** How long to delay before querying DNS seeds
71 : : *
72 : : * If we have more than THRESHOLD entries in addrman, then it's likely
73 : : * that we got those addresses from having previously connected to the P2P
74 : : * network, and that we'll be able to successfully reconnect to the P2P
75 : : * network via contacting one of them. So if that's the case, spend a
76 : : * little longer trying to connect to known peers before querying the
77 : : * DNS seeds.
78 : : */
79 : : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
80 : : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
81 : : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
82 : :
83 : : /** The default timeframe for -maxuploadtarget. 1 day. */
84 : : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
85 : :
86 : : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
87 : : static constexpr auto FEELER_SLEEP_WINDOW{1s};
88 : :
89 : : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
90 : : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
91 : :
92 : : /** Used to pass flags to the Bind() function */
93 : : enum BindFlags {
94 : : BF_NONE = 0,
95 : : BF_REPORT_ERROR = (1U << 0),
96 : : /**
97 : : * Do not call AddLocal() for our special addresses, e.g., for incoming
98 : : * Tor connections, to prevent gossiping them over the network.
99 : : */
100 : : BF_DONT_ADVERTISE = (1U << 1),
101 : : };
102 : :
103 : : // The set of sockets cannot be modified while waiting
104 : : // The sleep time needs to be small to avoid new sockets stalling
105 : : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
106 : :
107 : : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
108 : :
109 : : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
110 : : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
111 : : static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
112 : : //
113 : : // Global state variables
114 : : //
115 : : bool fDiscover = true;
116 : : bool fListen = true;
117 : : GlobalMutex g_maplocalhost_mutex;
118 : : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
119 : : std::string strSubVersion;
120 : :
121 : 873036 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
122 : : {
123 [ - + ]: 873036 : return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
124 : : }
125 : :
126 : 325333 : size_t CNetMessage::GetMemoryUsage() const noexcept
127 : : {
128 : 325333 : return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
129 : : }
130 : :
131 : 0 : void CConnman::AddAddrFetch(const std::string& strDest)
132 : : {
133 : 0 : LOCK(m_addr_fetches_mutex);
134 [ # # ]: 0 : m_addr_fetches.push_back(strDest);
135 : 0 : }
136 : :
137 : 148906 : uint16_t GetListenPort()
138 : : {
139 : : // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
140 [ + - - + ]: 148906 : for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
141 : 0 : constexpr uint16_t dummy_port = 0;
142 : :
143 [ # # # # ]: 0 : const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
144 [ # # # # : 0 : if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
# # # # ]
145 : 148906 : }
146 : :
147 : : // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
148 : : // (-whitebind= is required to have ":port").
149 [ + - - + ]: 148906 : for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
150 [ # # ]: 0 : NetWhitebindPermissions whitebind;
151 [ # # ]: 0 : bilingual_str error;
152 [ # # # # ]: 0 : if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
153 [ # # ]: 0 : if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
154 [ # # ]: 0 : return whitebind.m_service.GetPort();
155 : : }
156 : : }
157 : 0 : }
158 : :
159 : : // Otherwise, if -port= is provided, use that. Otherwise use the default port.
160 [ + - ]: 148906 : return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
161 : : }
162 : :
163 : : // Determine the "best" local address for a particular peer.
164 : 148906 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
165 : : {
166 [ - + ]: 148906 : if (!fListen) return std::nullopt;
167 : :
168 : 148906 : std::optional<CService> addr;
169 : 148906 : int nBestScore = -1;
170 : 148906 : int nBestReachability = -1;
171 : 148906 : {
172 [ + - ]: 148906 : LOCK(g_maplocalhost_mutex);
173 [ + - + + ]: 24319409 : for (const auto& [local_addr, local_service_info] : mapLocalHost) {
174 : : // For privacy reasons, don't advertise our privacy-network address
175 : : // to other networks and don't advertise our other-network address
176 : : // to privacy networks.
177 [ + - + - ]: 24170503 : if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
178 [ + + + - : 41320281 : && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
+ + ]
179 : 8487937 : continue;
180 : : }
181 : 15682566 : const int nScore{local_service_info.nScore};
182 [ + - ]: 15682566 : const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
183 [ + + + + ]: 15682566 : if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
184 [ + - ]: 374567 : addr.emplace(CService{local_addr, local_service_info.nPort});
185 : 374567 : nBestReachability = nReachability;
186 : 374567 : nBestScore = nScore;
187 : : }
188 : : }
189 : 0 : }
190 [ + + ]: 250632 : return addr;
191 : 148906 : }
192 : :
193 : : //! Convert the serialized seeds into usable address objects.
194 : 0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
195 : : {
196 : : // It'll only connect to one or two seed nodes because once it connects,
197 : : // it'll get a pile of addresses with newer timestamps.
198 : : // Seed nodes are given a random 'last seen time' of between one and two
199 : : // weeks ago.
200 : 0 : const auto one_week{7 * 24h};
201 : 0 : std::vector<CAddress> vSeedsOut;
202 : 0 : FastRandomContext rng;
203 [ # # # # ]: 0 : ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
204 [ # # # # ]: 0 : while (!s.eof()) {
205 [ # # ]: 0 : CService endpoint;
206 [ # # ]: 0 : s >> endpoint;
207 : 0 : CAddress addr{endpoint, SeedsServiceFlags()};
208 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
209 [ # # # # : 0 : LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
# # # # ]
210 [ # # ]: 0 : vSeedsOut.push_back(addr);
211 : 0 : }
212 : 0 : return vSeedsOut;
213 : 0 : }
214 : :
215 : : // Determine the "best" local address for a particular peer.
216 : : // If none, return the unroutable 0.0.0.0 but filled in with
217 : : // the normal parameters, since the IP may be changed to a useful
218 : : // one by discovery.
219 : 148906 : CService GetLocalAddress(const CNode& peer)
220 : : {
221 [ + - + - : 148906 : return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
+ - ]
222 : : }
223 : :
224 : 0 : static int GetnScore(const CService& addr)
225 : : {
226 : 0 : LOCK(g_maplocalhost_mutex);
227 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
228 [ # # ]: 0 : return (it != mapLocalHost.end()) ? it->second.nScore : 0;
229 : 0 : }
230 : :
231 : : // Is our peer's addrLocal potentially useful as an external IP source?
232 : 0 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
233 : : {
234 : 0 : CService addrLocal = pnode->GetAddrLocal();
235 [ # # # # : 0 : return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
# # # # #
# # # ]
236 [ # # ]: 0 : g_reachable_nets.Contains(addrLocal);
237 : 0 : }
238 : :
239 : 0 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
240 : : {
241 : 0 : CService addrLocal{GetLocalAddress(node)};
242 : : // If discovery is enabled, sometimes give our peer the address it
243 : : // tells us that it sees us as in case it has a better idea of our
244 : : // address than we do.
245 : 0 : FastRandomContext rng;
246 [ # # # # : 0 : if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
# # # # #
# ]
247 [ # # # # ]: 0 : rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
248 : : {
249 [ # # ]: 0 : if (node.IsInboundConn()) {
250 : : // For inbound connections, assume both the address and the port
251 : : // as seen from the peer.
252 [ # # ]: 0 : addrLocal = CService{node.GetAddrLocal()};
253 : : } else {
254 : : // For outbound connections, assume just the address as seen from
255 : : // the peer and leave the port in `addrLocal` as returned by
256 : : // `GetLocalAddress()` above. The peer has no way to observe our
257 : : // listening port when we have initiated the connection.
258 [ # # # # ]: 0 : addrLocal.SetIP(node.GetAddrLocal());
259 : : }
260 : : }
261 [ # # # # ]: 0 : if (addrLocal.IsRoutable()) {
262 [ # # # # : 0 : LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
# # # # ]
263 : 0 : return addrLocal;
264 : : }
265 : : // Address is unroutable. Don't advertise.
266 : 0 : return std::nullopt;
267 : 0 : }
268 : :
269 : 1572 : void ClearLocal()
270 : : {
271 : 1572 : LOCK(g_maplocalhost_mutex);
272 [ + - ]: 1572 : return mapLocalHost.clear();
273 : 1572 : }
274 : :
275 : : // learn a new local address
276 : 330310 : bool AddLocal(const CService& addr_, int nScore)
277 : : {
278 : 330310 : CService addr{MaybeFlipIPv6toCJDNS(addr_)};
279 : :
280 [ + - + + ]: 330310 : if (!addr.IsRoutable())
281 : : return false;
282 : :
283 [ - + - - ]: 206469 : if (!fDiscover && nScore < LOCAL_MANUAL)
284 : : return false;
285 : :
286 [ + - + - ]: 206469 : if (!g_reachable_nets.Contains(addr))
287 : : return false;
288 : :
289 [ + - + - ]: 206469 : LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
290 : :
291 : 206469 : {
292 [ + - ]: 206469 : LOCK(g_maplocalhost_mutex);
293 [ + - + + ]: 206469 : const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
294 [ + + ]: 206469 : LocalServiceInfo &info = it->second;
295 [ + + + + ]: 206469 : if (is_newly_added || nScore >= info.nScore) {
296 [ + + ]: 93475 : info.nScore = nScore + (is_newly_added ? 0 : 1);
297 [ + - ]: 93475 : info.nPort = addr.GetPort();
298 : : }
299 : 0 : }
300 : :
301 : 206469 : return true;
302 : 330310 : }
303 : :
304 : 0 : bool AddLocal(const CNetAddr &addr, int nScore)
305 : : {
306 [ # # ]: 0 : return AddLocal(CService(addr, GetListenPort()), nScore);
307 : : }
308 : :
309 : 83918 : void RemoveLocal(const CService& addr)
310 : : {
311 : 83918 : LOCK(g_maplocalhost_mutex);
312 [ + - + - ]: 83918 : LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
313 [ + - + - ]: 83918 : mapLocalHost.erase(addr);
314 : 83918 : }
315 : :
316 : : /** vote for a local address */
317 : 256543 : bool SeenLocal(const CService& addr)
318 : : {
319 : 256543 : LOCK(g_maplocalhost_mutex);
320 [ + - ]: 256543 : const auto it = mapLocalHost.find(addr);
321 [ + + ]: 256543 : if (it == mapLocalHost.end()) return false;
322 : 235114 : ++it->second.nScore;
323 : 235114 : return true;
324 : 256543 : }
325 : :
326 : :
327 : : /** check whether a given address is potentially local */
328 : 226855 : bool IsLocal(const CService& addr)
329 : : {
330 : 226855 : LOCK(g_maplocalhost_mutex);
331 [ + - + - ]: 226855 : return mapLocalHost.count(addr) > 0;
332 : 226855 : }
333 : :
334 : 0 : CNode* CConnman::FindNode(const CNetAddr& ip)
335 : : {
336 : 0 : LOCK(m_nodes_mutex);
337 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
338 [ # # # # ]: 0 : if (static_cast<CNetAddr>(pnode->addr) == ip) {
339 : : return pnode;
340 : : }
341 : : }
342 : : return nullptr;
343 : 0 : }
344 : :
345 : 42658 : CNode* CConnman::FindNode(const std::string& addrName)
346 : : {
347 : 42658 : LOCK(m_nodes_mutex);
348 [ + + ]: 2291869 : for (CNode* pnode : m_nodes) {
349 [ + + ]: 2249697 : if (pnode->m_addr_name == addrName) {
350 : : return pnode;
351 : : }
352 : : }
353 : : return nullptr;
354 : 42658 : }
355 : :
356 : 0 : CNode* CConnman::FindNode(const CService& addr)
357 : : {
358 : 0 : LOCK(m_nodes_mutex);
359 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
360 [ # # # # ]: 0 : if (static_cast<CService>(pnode->addr) == addr) {
361 : : return pnode;
362 : : }
363 : : }
364 : : return nullptr;
365 : 0 : }
366 : :
367 : 0 : bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
368 : : {
369 [ # # ]: 0 : return FindNode(static_cast<CNetAddr>(addr));
370 : : }
371 : :
372 : 10944 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
373 : : {
374 : 10944 : LOCK(m_nodes_mutex);
375 [ + + ]: 23407 : for (const CNode* pnode : m_nodes) {
376 [ + + + + : 13076 : if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
+ + ]
377 : : return false;
378 : : }
379 : : return true;
380 : 10944 : }
381 : :
382 : : /** Get the bind address for a socket as CService. */
383 : 0 : static CService GetBindAddress(const Sock& sock)
384 : : {
385 : 0 : CService addr_bind;
386 : 0 : struct sockaddr_storage sockaddr_bind;
387 : 0 : socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
388 [ # # # # ]: 0 : if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
389 [ # # ]: 0 : addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
390 : : } else {
391 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
# # ]
392 : : }
393 : 0 : return addr_bind;
394 : 0 : }
395 : :
396 : 0 : CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
397 : : {
398 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
399 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
400 : :
401 [ # # ]: 0 : if (pszDest == nullptr) {
402 [ # # ]: 0 : if (IsLocal(addrConnect))
403 : : return nullptr;
404 : :
405 : : // Look for an existing connection
406 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
407 [ # # ]: 0 : if (pnode)
408 : : {
409 : 0 : LogPrintf("Failed to open new connection, already connected\n");
410 : 0 : return nullptr;
411 : : }
412 : : }
413 : :
414 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
# # # # #
# ]
415 : : use_v2transport ? "v2" : "v1",
416 : : pszDest ? pszDest : addrConnect.ToStringAddrPort(),
417 : : Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
418 : :
419 : : // Resolve
420 [ # # # # ]: 0 : const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
421 : 0 : m_params.GetDefaultPort()};
422 : :
423 : : // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
424 : 0 : std::vector<CAddress> connect_to{};
425 [ # # ]: 0 : if (pszDest) {
426 [ # # # # : 0 : std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
# # # # #
# # # ]
427 [ # # ]: 0 : if (!resolved.empty()) {
428 : 0 : std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
429 : : // If the connection is made by name, it can be the case that the name resolves to more than one address.
430 : : // We don't want to connect any more of them if we are already connected to one
431 [ # # ]: 0 : for (const auto& r : resolved) {
432 [ # # ]: 0 : addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
433 [ # # # # ]: 0 : if (!addrConnect.IsValid()) {
434 [ # # # # : 0 : LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
# # # # ]
435 : 0 : return nullptr;
436 : : }
437 : : // It is possible that we already have a connection to the IP/port pszDest resolved to.
438 : : // In that case, drop the connection that was just created.
439 [ # # ]: 0 : LOCK(m_nodes_mutex);
440 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
441 [ # # ]: 0 : if (pnode) {
442 [ # # # # ]: 0 : LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
443 [ # # ]: 0 : return nullptr;
444 : : }
445 : : // Add the address to the resolved addresses vector so we can try to connect to it later on
446 [ # # ]: 0 : connect_to.push_back(addrConnect);
447 : 0 : }
448 : : } else {
449 : : // For resolution via proxy
450 [ # # ]: 0 : connect_to.push_back(addrConnect);
451 : : }
452 : 0 : } else {
453 : : // Connect via addrConnect directly
454 [ # # ]: 0 : connect_to.push_back(addrConnect);
455 : : }
456 : :
457 : : // Connect
458 : 0 : std::unique_ptr<Sock> sock;
459 [ # # ]: 0 : Proxy proxy;
460 [ # # ]: 0 : CService addr_bind;
461 [ # # # # ]: 0 : assert(!addr_bind.IsValid());
462 : 0 : std::unique_ptr<i2p::sam::Session> i2p_transient_session;
463 : :
464 [ # # ]: 0 : for (auto& target_addr: connect_to) {
465 [ # # # # ]: 0 : if (target_addr.IsValid()) {
466 [ # # # # ]: 0 : const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
467 : 0 : bool proxyConnectionFailed = false;
468 : :
469 [ # # # # ]: 0 : if (target_addr.IsI2P() && use_proxy) {
470 [ # # ]: 0 : i2p::Connection conn;
471 : 0 : bool connected{false};
472 : :
473 [ # # ]: 0 : if (m_i2p_sam_session) {
474 [ # # ]: 0 : connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
475 : : } else {
476 : 0 : {
477 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
478 [ # # ]: 0 : if (m_unused_i2p_sessions.empty()) {
479 : 0 : i2p_transient_session =
480 [ # # ]: 0 : std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
481 : : } else {
482 : 0 : i2p_transient_session.swap(m_unused_i2p_sessions.front());
483 : 0 : m_unused_i2p_sessions.pop();
484 : : }
485 : 0 : }
486 [ # # ]: 0 : connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
487 [ # # ]: 0 : if (!connected) {
488 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
489 [ # # # # ]: 0 : if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
490 [ # # # # ]: 0 : m_unused_i2p_sessions.emplace(i2p_transient_session.release());
491 : : }
492 : 0 : }
493 : : }
494 : :
495 [ # # ]: 0 : if (connected) {
496 : 0 : sock = std::move(conn.sock);
497 : 0 : addr_bind = conn.me;
498 : : }
499 [ # # ]: 0 : } else if (use_proxy) {
500 [ # # # # : 0 : LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
# # # # #
# ]
501 [ # # # # : 0 : sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
# # ]
502 : : } else {
503 : : // no proxy needed (none set for target network)
504 [ # # ]: 0 : sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
505 : : }
506 [ # # ]: 0 : if (!proxyConnectionFailed) {
507 : : // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
508 : : // the proxy, mark this as an attempt.
509 [ # # ]: 0 : addrman.Attempt(target_addr, fCountFailure);
510 : : }
511 [ # # # # : 0 : } else if (pszDest && GetNameProxy(proxy)) {
# # ]
512 [ # # ]: 0 : std::string host;
513 : 0 : uint16_t port{default_port};
514 [ # # # # ]: 0 : SplitHostPort(std::string(pszDest), port, host);
515 : 0 : bool proxyConnectionFailed;
516 [ # # ]: 0 : sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
517 : 0 : }
518 : : // Check any other resolved address (if any) if we fail to connect
519 [ # # ]: 0 : if (!sock) {
520 : 0 : continue;
521 : : }
522 : :
523 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
524 [ # # # # ]: 0 : std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
525 [ # # ]: 0 : AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
526 : :
527 : : // Add node
528 [ # # ]: 0 : NodeId id = GetNewNodeId();
529 [ # # # # : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
# # ]
530 [ # # # # ]: 0 : if (!addr_bind.IsValid()) {
531 [ # # ]: 0 : addr_bind = GetBindAddress(*sock);
532 : : }
533 : 0 : CNode* pnode = new CNode(id,
534 : 0 : std::move(sock),
535 : : target_addr,
536 : : CalculateKeyedNetGroup(target_addr),
537 : : nonce,
538 : : addr_bind,
539 [ # # ]: 0 : pszDest ? pszDest : "",
540 : : conn_type,
541 : : /*inbound_onion=*/false,
542 [ # # ]: 0 : CNodeOptions{
543 : : .permission_flags = permission_flags,
544 : : .i2p_sam_session = std::move(i2p_transient_session),
545 [ # # ]: 0 : .recv_flood_size = nReceiveFloodSize,
546 : : .use_v2transport = use_v2transport,
547 [ # # # # : 0 : });
# # # # #
# ]
548 : 0 : pnode->AddRef();
549 : :
550 : : // We're making a new connection, harvest entropy from the time (and our peer count)
551 : 0 : RandAddEvent((uint32_t)id);
552 : :
553 : 0 : return pnode;
554 : 0 : }
555 : :
556 : : return nullptr;
557 : 0 : }
558 : :
559 : 42517 : void CNode::CloseSocketDisconnect()
560 : : {
561 : 42517 : fDisconnect = true;
562 : 42517 : LOCK(m_sock_mutex);
563 [ + + ]: 42517 : if (m_sock) {
564 [ + - - + : 19312 : LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
- - - - ]
565 : 19312 : m_sock.reset();
566 : :
567 : : TRACEPOINT(net, closed_connection,
568 : : GetId(),
569 : : m_addr_name.c_str(),
570 : : ConnectionTypeAsString().c_str(),
571 : : ConnectedThroughNetwork(),
572 : 19312 : Ticks<std::chrono::seconds>(m_connected));
573 : : }
574 [ - + + - ]: 42517 : m_i2p_sam_session.reset();
575 : 42517 : }
576 : :
577 : 0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
578 [ # # ]: 0 : for (const auto& subnet : ranges) {
579 [ # # ]: 0 : if (subnet.m_subnet.Match(addr)) {
580 : 0 : NetPermissions::AddFlag(flags, subnet.m_flags);
581 : : }
582 : : }
583 [ # # ]: 0 : if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
584 [ # # ]: 0 : NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
585 [ # # ]: 0 : if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
586 [ # # ]: 0 : if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
587 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
588 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
589 : : }
590 : 0 : }
591 : :
592 : 178578 : CService CNode::GetAddrLocal() const
593 : : {
594 : 178578 : AssertLockNotHeld(m_addr_local_mutex);
595 : 178578 : LOCK(m_addr_local_mutex);
596 [ + - ]: 178578 : return m_addr_local;
597 : 178578 : }
598 : :
599 : 18927 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
600 : 18927 : AssertLockNotHeld(m_addr_local_mutex);
601 : 18927 : LOCK(m_addr_local_mutex);
602 [ + - + - : 18927 : if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
+ - ]
603 : 18927 : m_addr_local = addrLocalIn;
604 : : }
605 : 18927 : }
606 : :
607 : 24358380 : Network CNode::ConnectedThroughNetwork() const
608 : : {
609 [ + + ]: 24358380 : return m_inbound_onion ? NET_ONION : addr.GetNetClass();
610 : : }
611 : :
612 : 17149778 : bool CNode::IsConnectedThroughPrivacyNet() const
613 : : {
614 [ + + + + ]: 17149778 : return m_inbound_onion || addr.IsPrivacyNet();
615 : : }
616 : :
617 : : #undef X
618 : : #define X(name) stats.name = name
619 : 176835 : void CNode::CopyStats(CNodeStats& stats)
620 : : {
621 : 176835 : stats.nodeid = this->GetId();
622 : 176835 : X(addr);
623 : 176835 : X(addrBind);
624 : 176835 : stats.m_network = ConnectedThroughNetwork();
625 : 176835 : X(m_last_send);
626 : 176835 : X(m_last_recv);
627 : 176835 : X(m_last_tx_time);
628 : 176835 : X(m_last_block_time);
629 : 176835 : X(m_connected);
630 : 176835 : X(m_addr_name);
631 : 176835 : X(nVersion);
632 : 176835 : {
633 : 176835 : LOCK(m_subver_mutex);
634 [ + - + - ]: 353670 : X(cleanSubVer);
635 : 0 : }
636 : 176835 : stats.fInbound = IsInboundConn();
637 : 176835 : X(m_bip152_highbandwidth_to);
638 : 176835 : X(m_bip152_highbandwidth_from);
639 : 176835 : {
640 : 176835 : LOCK(cs_vSend);
641 [ + - ]: 176835 : X(mapSendBytesPerMsgType);
642 [ + - ]: 176835 : X(nSendBytes);
643 : 0 : }
644 : 176835 : {
645 : 176835 : LOCK(cs_vRecv);
646 [ + - ]: 176835 : X(mapRecvBytesPerMsgType);
647 : 176835 : X(nRecvBytes);
648 : 176835 : Transport::Info info = m_transport->GetInfo();
649 : 176835 : stats.m_transport_type = info.transport_type;
650 [ - + - - ]: 176835 : if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
651 : 0 : }
652 : 176835 : X(m_permission_flags);
653 : :
654 : 176835 : X(m_last_ping_time);
655 : 176835 : X(m_min_ping_time);
656 : :
657 : : // Leave string empty if addrLocal invalid (not filled in yet)
658 : 176835 : CService addrLocalUnlocked = GetAddrLocal();
659 [ + - + + : 176835 : stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
+ - + - ]
660 : :
661 : 176835 : X(m_conn_type);
662 : 176835 : }
663 : : #undef X
664 : :
665 : 418527 : bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
666 : : {
667 : 418527 : complete = false;
668 : 418527 : const auto time = GetTime<std::chrono::microseconds>();
669 : 418527 : LOCK(cs_vRecv);
670 : 418527 : m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
671 : 418527 : nRecvBytes += msg_bytes.size();
672 [ + + ]: 1270735 : while (msg_bytes.size() > 0) {
673 : : // absorb network data
674 [ + - + + ]: 475845 : if (!m_transport->ReceivedBytes(msg_bytes)) {
675 : : // Serious transport problem, disconnect from the peer.
676 : : return false;
677 : : }
678 : :
679 [ + - + + ]: 433681 : if (m_transport->ReceivedMessageComplete()) {
680 : : // decompose a transport agnostic CNetMessage from the deserializer
681 : 237352 : bool reject_message{false};
682 [ + - ]: 237352 : CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
683 [ + + ]: 237352 : if (reject_message) {
684 : : // Message deserialization failed. Drop the message but don't disconnect the peer.
685 : : // store the size of the corrupt message
686 [ + - ]: 47779 : mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
687 : 47779 : continue;
688 : : }
689 : :
690 : : // Store received bytes per message type.
691 : : // To prevent a memory DOS, only allow known message types.
692 : 189573 : auto i = mapRecvBytesPerMsgType.find(msg.m_type);
693 [ + + ]: 189573 : if (i == mapRecvBytesPerMsgType.end()) {
694 : 28055 : i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
695 : : }
696 [ - + ]: 189573 : assert(i != mapRecvBytesPerMsgType.end());
697 [ + - ]: 189573 : i->second += msg.m_raw_message_size;
698 : :
699 : : // push the message to the process queue,
700 [ + - ]: 189573 : vRecvMsg.push_back(std::move(msg));
701 : :
702 : 189573 : complete = true;
703 : 237352 : }
704 : : }
705 : :
706 : : return true;
707 : 418527 : }
708 : :
709 : 7678 : std::string CNode::LogIP(bool log_ip) const
710 : : {
711 [ - + - - : 7678 : return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
- - + - -
- ]
712 : : }
713 : :
714 : 0 : std::string CNode::DisconnectMsg(bool log_ip) const
715 : : {
716 : 0 : return strprintf("disconnecting peer=%d%s",
717 [ # # ]: 0 : GetId(),
718 [ # # ]: 0 : LogIP(log_ip));
719 : : }
720 : :
721 : 57016 : V1Transport::V1Transport(const NodeId node_id) noexcept
722 : 57016 : : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
723 : : {
724 : 57016 : LOCK(m_recv_mutex);
725 [ + - ]: 57016 : Reset();
726 : 57016 : }
727 : :
728 : 186931 : Transport::Info V1Transport::GetInfo() const noexcept
729 : : {
730 : 186931 : return {.transport_type = TransportProtocolType::V1, .session_id = {}};
731 : : }
732 : :
733 : 455661 : int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
734 : : {
735 : 455661 : AssertLockHeld(m_recv_mutex);
736 : : // copy data to temporary parsing buffer
737 : 455661 : unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
738 [ + + ]: 455661 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
739 : :
740 [ + + ]: 455661 : memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
741 : 455661 : nHdrPos += nCopy;
742 : :
743 : : // if header incomplete, exit
744 [ + + ]: 455661 : if (nHdrPos < CMessageHeader::HEADER_SIZE)
745 : 33715 : return nCopy;
746 : :
747 : : // deserialize to CMessageHeader
748 : 421946 : try {
749 [ + - ]: 421946 : hdrbuf >> hdr;
750 : : }
751 [ - - ]: 0 : catch (const std::exception&) {
752 [ - - - - : 0 : LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
- - ]
753 : 0 : return -1;
754 : 0 : }
755 : :
756 : : // Check start string, network magic
757 [ + + ]: 421946 : if (hdr.pchMessageStart != m_magic_bytes) {
758 [ - + - - ]: 33690 : LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
759 : 33690 : return -1;
760 : : }
761 : :
762 : : // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
763 : : // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
764 : : // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
765 [ + + ]: 388256 : if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
766 [ - + - - : 8622 : LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
- - - - ]
767 : 8622 : return -1;
768 : : }
769 : :
770 : : // switch state to reading message data
771 : 379634 : in_data = true;
772 : :
773 : 379634 : return nCopy;
774 : : }
775 : :
776 : 258101 : int V1Transport::readData(std::span<const uint8_t> msg_bytes)
777 : : {
778 : 258101 : AssertLockHeld(m_recv_mutex);
779 : 258101 : unsigned int nRemaining = hdr.nMessageSize - nDataPos;
780 [ + + ]: 258101 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
781 : :
782 [ - + + + ]: 258101 : if (vRecv.size() < nDataPos + nCopy) {
783 : : // Allocate up to 256 KiB ahead, but never more than the total message size.
784 [ + + ]: 443967 : vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
785 : : }
786 : :
787 : 258101 : hasher.Write(msg_bytes.first(nCopy));
788 : 258101 : memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
789 : 258101 : nDataPos += nCopy;
790 : :
791 : 258101 : return nCopy;
792 : : }
793 : :
794 : 379495 : const uint256& V1Transport::GetMessageHash() const
795 : : {
796 : 379495 : AssertLockHeld(m_recv_mutex);
797 [ + - - + ]: 379495 : assert(CompleteInternal());
798 [ + - ]: 758990 : if (data_hash.IsNull())
799 : 379495 : hasher.Finalize(data_hash);
800 : 379495 : return data_hash;
801 : : }
802 : :
803 : 379495 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
804 : : {
805 : 379495 : AssertLockNotHeld(m_recv_mutex);
806 : : // Initialize out parameter
807 : 379495 : reject_message = false;
808 : : // decompose a single CNetMessage from the TransportDeserializer
809 : 379495 : LOCK(m_recv_mutex);
810 [ + - ]: 379495 : CNetMessage msg(std::move(vRecv));
811 : :
812 : : // store message type string, time, and sizes
813 [ + - ]: 379495 : msg.m_type = hdr.GetMessageType();
814 : 379495 : msg.m_time = time;
815 : 379495 : msg.m_message_size = hdr.nMessageSize;
816 : 379495 : msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
817 : :
818 [ + - ]: 379495 : uint256 hash = GetMessageHash();
819 : :
820 : : // We just received a message off the wire, harvest entropy from the time (and the message checksum)
821 : 379495 : RandAddEvent(ReadLE32(hash.begin()));
822 : :
823 : : // Check checksum and header message type string
824 [ + + ]: 379495 : if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
825 [ + - - + : 29986 : LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
- - - - -
- - - -
- ]
826 : : SanitizeString(msg.m_type), msg.m_message_size,
827 : : HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
828 : : HexStr(hdr.pchChecksum),
829 : : m_node_id);
830 : 29986 : reject_message = true;
831 [ + - + + ]: 349509 : } else if (!hdr.IsMessageTypeValid()) {
832 [ + - - + : 88028 : LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
- - - - -
- ]
833 : : SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
834 : 88028 : reject_message = true;
835 : : }
836 : :
837 : : // Always reset the network deserializer (prepare for the next message)
838 [ + - ]: 379495 : Reset();
839 [ + - ]: 379495 : return msg;
840 : 379495 : }
841 : :
842 : 621139 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
843 : : {
844 : 621139 : AssertLockNotHeld(m_send_mutex);
845 : : // Determine whether a new message can be set.
846 : 621139 : LOCK(m_send_mutex);
847 [ + + - + : 621139 : if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
+ + ]
848 : :
849 : : // create dbl-sha256 checksum
850 : 489941 : uint256 hash = Hash(msg.data);
851 : :
852 : : // create header
853 [ - + ]: 489941 : CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
854 [ + + ]: 489941 : memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
855 : :
856 : : // serialize header
857 [ + + ]: 489941 : m_header_to_send.clear();
858 : 489941 : VectorWriter{m_header_to_send, 0, hdr};
859 : :
860 : : // update state
861 : 489941 : m_message_to_send = std::move(msg);
862 : 489941 : m_sending_header = true;
863 : 489941 : m_bytes_sent = 0;
864 : 489941 : return true;
865 : 621139 : }
866 : :
867 : 3007396 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
868 : : {
869 : 3007396 : AssertLockNotHeld(m_send_mutex);
870 : 3007396 : LOCK(m_send_mutex);
871 [ + + ]: 3007396 : if (m_sending_header) {
872 [ - + + + ]: 1044743 : return {std::span{m_header_to_send}.subspan(m_bytes_sent),
873 : : // We have more to send after the header if the message has payload, or if there
874 : : // is a next message after that.
875 [ + + + + ]: 1044743 : have_next_message || !m_message_to_send.data.empty(),
876 : 1044743 : m_message_to_send.m_type
877 : 1044743 : };
878 : : } else {
879 [ - + ]: 1962653 : return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
880 : : // We only have more to send after this message's payload if there is another
881 : : // message.
882 : : have_next_message,
883 : 1962653 : m_message_to_send.m_type
884 : 1962653 : };
885 : : }
886 : 3007396 : }
887 : :
888 : 955772 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
889 : : {
890 : 955772 : AssertLockNotHeld(m_send_mutex);
891 : 955772 : LOCK(m_send_mutex);
892 : 955772 : m_bytes_sent += bytes_sent;
893 [ + + - + : 955772 : if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
+ + ]
894 : : // We're done sending a message's header. Switch to sending its data bytes.
895 : 487153 : m_sending_header = false;
896 : 487153 : m_bytes_sent = 0;
897 [ + + - + : 468619 : } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
+ + ]
898 : : // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
899 : 351577 : ClearShrink(m_message_to_send.data);
900 : 351577 : m_bytes_sent = 0;
901 : : }
902 : 955772 : }
903 : :
904 : 436518 : size_t V1Transport::GetSendMemoryUsage() const noexcept
905 : : {
906 : 436518 : AssertLockNotHeld(m_send_mutex);
907 : 436518 : LOCK(m_send_mutex);
908 : : // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
909 [ + - ]: 436518 : return m_message_to_send.GetMemoryUsage();
910 : 436518 : }
911 : :
912 : : namespace {
913 : :
914 : : /** List of short messages as defined in BIP324, in order.
915 : : *
916 : : * Only message types that are actually implemented in this codebase need to be listed, as other
917 : : * messages get ignored anyway - whether we know how to decode them or not.
918 : : */
919 : : const std::array<std::string, 33> V2_MESSAGE_IDS = {
920 : : "", // 12 bytes follow encoding the message type like in V1
921 : : NetMsgType::ADDR,
922 : : NetMsgType::BLOCK,
923 : : NetMsgType::BLOCKTXN,
924 : : NetMsgType::CMPCTBLOCK,
925 : : NetMsgType::FEEFILTER,
926 : : NetMsgType::FILTERADD,
927 : : NetMsgType::FILTERCLEAR,
928 : : NetMsgType::FILTERLOAD,
929 : : NetMsgType::GETBLOCKS,
930 : : NetMsgType::GETBLOCKTXN,
931 : : NetMsgType::GETDATA,
932 : : NetMsgType::GETHEADERS,
933 : : NetMsgType::HEADERS,
934 : : NetMsgType::INV,
935 : : NetMsgType::MEMPOOL,
936 : : NetMsgType::MERKLEBLOCK,
937 : : NetMsgType::NOTFOUND,
938 : : NetMsgType::PING,
939 : : NetMsgType::PONG,
940 : : NetMsgType::SENDCMPCT,
941 : : NetMsgType::TX,
942 : : NetMsgType::GETCFILTERS,
943 : : NetMsgType::CFILTER,
944 : : NetMsgType::GETCFHEADERS,
945 : : NetMsgType::CFHEADERS,
946 : : NetMsgType::GETCFCHECKPT,
947 : : NetMsgType::CFCHECKPT,
948 : : NetMsgType::ADDRV2,
949 : : // Unimplemented message types that are assigned in BIP324:
950 : : "",
951 : : "",
952 : : "",
953 : : ""
954 : : };
955 : :
956 : : class V2MessageMap
957 : : {
958 : : std::unordered_map<std::string, uint8_t> m_map;
959 : :
960 : : public:
961 : 228 : V2MessageMap() noexcept
962 : 228 : {
963 [ + + ]: 7524 : for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
964 : 7296 : m_map.emplace(V2_MESSAGE_IDS[i], i);
965 : : }
966 : 228 : }
967 : :
968 : 36434 : std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
969 : : {
970 : 36434 : auto it = m_map.find(message_name);
971 [ + + ]: 36434 : if (it == m_map.end()) return std::nullopt;
972 : 28152 : return it->second;
973 : : }
974 : : };
975 : :
976 : : const V2MessageMap V2_MESSAGE_MAP;
977 : :
978 : 0 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
979 : : {
980 : 0 : std::vector<uint8_t> ret;
981 : 0 : FastRandomContext rng;
982 : 0 : ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
983 : 0 : rng.fillrand(MakeWritableByteSpan(ret));
984 : 0 : return ret;
985 : 0 : }
986 : :
987 : : } // namespace
988 : :
989 : 2893 : void V2Transport::StartSendingHandshake() noexcept
990 : : {
991 : 2893 : AssertLockHeld(m_send_mutex);
992 : 2893 : Assume(m_send_state == SendState::AWAITING_KEY);
993 : 2893 : Assume(m_send_buffer.empty());
994 : : // Initialize the send buffer with ellswift pubkey + provided garbage.
995 [ - + ]: 2893 : m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
996 : 2893 : std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
997 : 2893 : std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
998 : : // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
999 : 2893 : }
1000 : :
1001 : 3825 : V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1002 : 3825 : : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1003 : 3825 : m_v1_fallback{nodeid},
1004 [ + + ]: 3825 : m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1005 [ - + ]: 3825 : m_send_garbage{std::move(garbage)},
1006 [ + + - + ]: 9913 : m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1007 : : {
1008 [ - + ]: 3825 : Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1009 : : // Start sending immediately if we're the initiator of the connection.
1010 [ + + ]: 3825 : if (initiating) {
1011 : 1562 : LOCK(m_send_mutex);
1012 [ + - ]: 1562 : StartSendingHandshake();
1013 : 1562 : }
1014 : 3825 : }
1015 : :
1016 : 0 : V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1017 : 0 : : V2Transport{nodeid, initiating, GenerateRandomKey(),
1018 : 0 : MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1019 : :
1020 : 82861 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1021 : : {
1022 : 82861 : AssertLockHeld(m_recv_mutex);
1023 : : // Enforce allowed state transitions.
1024 [ + + + + : 82861 : switch (m_recv_state) {
+ + - - ]
1025 : 2007 : case RecvState::KEY_MAYBE_V1:
1026 : 2007 : Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1027 : 2007 : break;
1028 : 2662 : case RecvState::KEY:
1029 : 2662 : Assume(recv_state == RecvState::GARB_GARBTERM);
1030 : 2662 : break;
1031 : 2662 : case RecvState::GARB_GARBTERM:
1032 : 2662 : Assume(recv_state == RecvState::VERSION);
1033 : 2662 : break;
1034 : 2662 : case RecvState::VERSION:
1035 : 2662 : Assume(recv_state == RecvState::APP);
1036 : 2662 : break;
1037 : 36434 : case RecvState::APP:
1038 : 36434 : Assume(recv_state == RecvState::APP_READY);
1039 : 36434 : break;
1040 : 36434 : case RecvState::APP_READY:
1041 : 36434 : Assume(recv_state == RecvState::APP);
1042 : 36434 : break;
1043 : 0 : case RecvState::V1:
1044 : 0 : Assume(false); // V1 state cannot be left
1045 : 0 : break;
1046 : : }
1047 : : // Change state.
1048 : 82861 : m_recv_state = recv_state;
1049 : 82861 : }
1050 : :
1051 : 4669 : void V2Transport::SetSendState(SendState send_state) noexcept
1052 : : {
1053 : 4669 : AssertLockHeld(m_send_mutex);
1054 : : // Enforce allowed state transitions.
1055 [ + + - - ]: 4669 : switch (m_send_state) {
1056 : 2007 : case SendState::MAYBE_V1:
1057 : 2007 : Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1058 : 2007 : break;
1059 : 2662 : case SendState::AWAITING_KEY:
1060 : 2662 : Assume(send_state == SendState::READY);
1061 : 2662 : break;
1062 : 0 : case SendState::READY:
1063 : 0 : case SendState::V1:
1064 : 0 : Assume(false); // Final states
1065 : 0 : break;
1066 : : }
1067 : : // Change state.
1068 : 4669 : m_send_state = send_state;
1069 : 4669 : }
1070 : :
1071 : 113643 : bool V2Transport::ReceivedMessageComplete() const noexcept
1072 : : {
1073 : 113643 : AssertLockNotHeld(m_recv_mutex);
1074 : 113643 : LOCK(m_recv_mutex);
1075 [ + + ]: 113643 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1076 : :
1077 : 81401 : return m_recv_state == RecvState::APP_READY;
1078 : 113643 : }
1079 : :
1080 : 2398 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1081 : : {
1082 : 2398 : AssertLockHeld(m_recv_mutex);
1083 : 2398 : AssertLockNotHeld(m_send_mutex);
1084 : 2398 : Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1085 : : // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1086 : : // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1087 : : // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1088 : : // sending of the key.
1089 : 2398 : std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1090 : 2398 : std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1091 [ - + ]: 2398 : Assume(m_recv_buffer.size() <= v1_prefix.size());
1092 [ + + ]: 2398 : if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1093 : : // Mismatch with v1 prefix, so we can assume a v2 connection.
1094 : 1331 : SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1095 : : // Transition the sender to AWAITING_KEY state and start sending.
1096 : 1331 : LOCK(m_send_mutex);
1097 : 1331 : SetSendState(SendState::AWAITING_KEY);
1098 [ + - ]: 1331 : StartSendingHandshake();
1099 [ - + + + ]: 2398 : } else if (m_recv_buffer.size() == v1_prefix.size()) {
1100 : : // Full match with the v1 prefix, so fall back to v1 behavior.
1101 : 676 : LOCK(m_send_mutex);
1102 [ - + ]: 676 : std::span<const uint8_t> feedback{m_recv_buffer};
1103 : : // Feed already received bytes to v1 transport. It should always accept these, because it's
1104 : : // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1105 : 676 : bool ret = m_v1_fallback.ReceivedBytes(feedback);
1106 : 676 : Assume(feedback.empty());
1107 : 676 : Assume(ret);
1108 : 676 : SetReceiveState(RecvState::V1);
1109 : 676 : SetSendState(SendState::V1);
1110 : : // Reset v2 transport buffers to save memory.
1111 : 676 : ClearShrink(m_recv_buffer);
1112 [ + - ]: 676 : ClearShrink(m_send_buffer);
1113 : 676 : } else {
1114 : : // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1115 : : }
1116 : 2398 : }
1117 : :
1118 : 3940 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
1119 : : {
1120 : 3940 : AssertLockHeld(m_recv_mutex);
1121 : 3940 : AssertLockNotHeld(m_send_mutex);
1122 : 3940 : Assume(m_recv_state == RecvState::KEY);
1123 [ - + ]: 3940 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1124 : :
1125 : : // As a special exception, if bytes 4-16 of the key on a responder connection match the
1126 : : // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1127 : : // (if they did, we'd have switched to V1 state already), assume this is a peer from
1128 : : // another network, and disconnect them. They will almost certainly disconnect us too when
1129 : : // they receive our uniformly random key and garbage, but detecting this case specially
1130 : : // means we can log it.
1131 : 3940 : static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1132 : 3940 : static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1133 [ + + - + : 3940 : if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
+ + ]
1134 [ - + ]: 1961 : if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1135 [ # # # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1136 : : HexStr(std::span(m_recv_buffer).first(OFFSET)));
1137 : 0 : return false;
1138 : : }
1139 : : }
1140 : :
1141 [ - + + + ]: 3940 : if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1142 : : // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1143 : : // our key to initialize the encryption ciphers.
1144 : :
1145 : : // Initialize the ciphers.
1146 : 2662 : EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1147 : 2662 : LOCK(m_send_mutex);
1148 : 2662 : m_cipher.Initialize(ellswift, m_initiating);
1149 : :
1150 : : // Switch receiver state to GARB_GARBTERM.
1151 : 2662 : SetReceiveState(RecvState::GARB_GARBTERM);
1152 [ + - ]: 2662 : m_recv_buffer.clear();
1153 : :
1154 : : // Switch sender state to READY.
1155 : 2662 : SetSendState(SendState::READY);
1156 : :
1157 : : // Append the garbage terminator to the send buffer.
1158 [ - + ]: 2662 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1159 : 2662 : std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1160 : 2662 : m_cipher.GetSendGarbageTerminator().end(),
1161 : 2662 : MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1162 : :
1163 : : // Construct version packet in the send buffer, with the sent garbage data as AAD.
1164 [ - + ]: 2662 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1165 : 2662 : m_cipher.Encrypt(
1166 : : /*contents=*/VERSION_CONTENTS,
1167 : 2662 : /*aad=*/MakeByteSpan(m_send_garbage),
1168 : : /*ignore=*/false,
1169 : 2662 : /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1170 : : // We no longer need the garbage.
1171 [ + - ]: 2662 : ClearShrink(m_send_garbage);
1172 : 2662 : } else {
1173 : : // We still have to receive more key bytes.
1174 : : }
1175 : : return true;
1176 : : }
1177 : :
1178 : 4557531 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1179 : : {
1180 : 4557531 : AssertLockHeld(m_recv_mutex);
1181 : 4557531 : Assume(m_recv_state == RecvState::GARB_GARBTERM);
1182 [ - + ]: 4557531 : Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1183 [ - + + + ]: 4557531 : if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1184 [ + + ]: 4517601 : if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1185 : : // Garbage terminator received. Store garbage to authenticate it as AAD later.
1186 : 2662 : m_recv_aad = std::move(m_recv_buffer);
1187 [ - + ]: 2662 : m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1188 [ - + ]: 2662 : m_recv_buffer.clear();
1189 : 2662 : SetReceiveState(RecvState::VERSION);
1190 [ - + ]: 4514939 : } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1191 : : // We've reached the maximum length for garbage + garbage terminator, and the
1192 : : // terminator still does not match. Abort.
1193 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1194 : 0 : return false;
1195 : : } else {
1196 : : // We still need to receive more garbage and/or garbage terminator bytes.
1197 : : }
1198 : : } else {
1199 : : // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1200 : : // more first.
1201 : : }
1202 : : return true;
1203 : : }
1204 : :
1205 : 111420 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
1206 : : {
1207 : 111420 : AssertLockHeld(m_recv_mutex);
1208 : 111420 : Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1209 : :
1210 : : // The maximum permitted contents length for a packet, consisting of:
1211 : : // - 0x00 byte: indicating long message type encoding
1212 : : // - 12 bytes of message type
1213 : : // - payload
1214 : 111420 : static constexpr size_t MAX_CONTENTS_LEN =
1215 : : 1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1216 : : std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1217 : :
1218 [ - + + + ]: 111420 : if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1219 : : // Length descriptor received.
1220 : 39096 : m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1221 [ - + ]: 39096 : if (m_recv_len > MAX_CONTENTS_LEN) {
1222 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1223 : 0 : return false;
1224 : : }
1225 [ + + + + ]: 72324 : } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1226 : : // Ciphertext received, decrypt it into m_recv_decode_buffer.
1227 : : // Note that it is impossible to reach this branch without hitting the branch above first,
1228 : : // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1229 : 39096 : m_recv_decode_buffer.resize(m_recv_len);
1230 : 39096 : bool ignore{false};
1231 : 78192 : bool ret = m_cipher.Decrypt(
1232 : 39096 : /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1233 : 39096 : /*aad=*/MakeByteSpan(m_recv_aad),
1234 : : /*ignore=*/ignore,
1235 : : /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1236 [ - + ]: 39096 : if (!ret) {
1237 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1238 : 0 : return false;
1239 : : }
1240 : : // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1241 : 39096 : ClearShrink(m_recv_aad);
1242 : : // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1243 [ - + ]: 39096 : RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1244 : :
1245 : : // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1246 : : // decoy, which we simply ignore, use the current state to decide what to do with it.
1247 [ + - ]: 39096 : if (!ignore) {
1248 [ + + - ]: 39096 : switch (m_recv_state) {
1249 : 2662 : case RecvState::VERSION:
1250 : : // Version message received; transition to application phase. The contents is
1251 : : // ignored, but can be used for future extensions.
1252 : 2662 : SetReceiveState(RecvState::APP);
1253 : 2662 : break;
1254 : 36434 : case RecvState::APP:
1255 : : // Application message decrypted correctly. It can be extracted using GetMessage().
1256 : 36434 : SetReceiveState(RecvState::APP_READY);
1257 : 36434 : break;
1258 : 0 : default:
1259 : : // Any other state is invalid (this function should not have been called).
1260 : 0 : Assume(false);
1261 : : }
1262 : : }
1263 : : // Wipe the receive buffer where the next packet will be received into.
1264 : 39096 : ClearShrink(m_recv_buffer);
1265 : : // In all but APP_READY state, we can wipe the decoded contents.
1266 [ + + ]: 39096 : if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1267 : : } else {
1268 : : // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1269 : : // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1270 : : }
1271 : : return true;
1272 : : }
1273 : :
1274 : 4709990 : size_t V2Transport::GetMaxBytesToProcess() noexcept
1275 : : {
1276 : 4709990 : AssertLockHeld(m_recv_mutex);
1277 [ + + + + : 4709990 : switch (m_recv_state) {
- - + ]
1278 : 2398 : case RecvState::KEY_MAYBE_V1:
1279 : : // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1280 : : // receive buffer.
1281 [ - + ]: 2398 : Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1282 : : // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1283 : : // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1284 : : // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1285 : : // back into the m_v1_fallback V1 transport.
1286 [ - + ]: 2398 : return V1_PREFIX_LEN - m_recv_buffer.size();
1287 : 3940 : case RecvState::KEY:
1288 : : // During the KEY state, we only allow the 64-byte key into the receive buffer.
1289 [ - + ]: 3940 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1290 : : // As long as we have not received the other side's public key, don't receive more than
1291 : : // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1292 : : // key exchange first.
1293 [ - + ]: 3940 : return EllSwiftPubKey::size() - m_recv_buffer.size();
1294 : : case RecvState::GARB_GARBTERM:
1295 : : // Process garbage bytes one by one (because terminator may appear anywhere).
1296 : : return 1;
1297 : 111420 : case RecvState::VERSION:
1298 : 111420 : case RecvState::APP:
1299 : : // These three states all involve decoding a packet. Process the length descriptor first,
1300 : : // so that we know where the current packet ends (and we don't process bytes from the next
1301 : : // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1302 [ - + + + ]: 111420 : if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1303 : 40239 : return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1304 : : } else {
1305 : : // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1306 : : // and encoded packet size, which includes the 3 bytes due to the packet length.
1307 : : // When transitioning from receiving the packet length to receiving its ciphertext,
1308 : : // the encrypted packet length is left in the receive buffer.
1309 : 71181 : return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1310 : : }
1311 : 34701 : case RecvState::APP_READY:
1312 : : // No bytes can be processed until GetMessage() is called.
1313 : 34701 : return 0;
1314 : 0 : case RecvState::V1:
1315 : : // Not allowed (must be dealt with by the caller).
1316 : 0 : Assume(false);
1317 : 0 : return 0;
1318 : : }
1319 : 0 : Assume(false); // unreachable
1320 : 0 : return 0;
1321 : : }
1322 : :
1323 : 113643 : bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1324 : : {
1325 : 113643 : AssertLockNotHeld(m_recv_mutex);
1326 : : /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1327 : 113643 : static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1328 : :
1329 : 113643 : LOCK(m_recv_mutex);
1330 [ + + ]: 113643 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1331 : :
1332 : : // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1333 : : // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1334 : : // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1335 : : // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1336 [ + + ]: 4756690 : while (!msg_bytes.empty()) {
1337 : : // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1338 : 4709990 : size_t max_read = GetMaxBytesToProcess();
1339 : :
1340 : : // Reserve space in the buffer if there is not enough.
1341 [ - + + + : 4756732 : if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
- + + + ]
1342 [ + + - - : 81530 : switch (m_recv_state) {
- ]
1343 : 3338 : case RecvState::KEY_MAYBE_V1:
1344 : 3338 : case RecvState::KEY:
1345 : 3338 : case RecvState::GARB_GARBTERM:
1346 : : // During the initial states (key/garbage), allocate once to fit the maximum (4111
1347 : : // bytes).
1348 : 3338 : m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1349 : 3338 : break;
1350 : 78192 : case RecvState::VERSION:
1351 : 78192 : case RecvState::APP: {
1352 : : // During states where a packet is being received, as much as is expected but never
1353 : : // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1354 : : // This means attackers that want to cause us to waste allocated memory are limited
1355 : : // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1356 : : // MAX_RESERVE_AHEAD more than they've actually sent us.
1357 [ + - ]: 78192 : size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1358 : 78192 : m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1359 : 78192 : break;
1360 : : }
1361 : 0 : case RecvState::APP_READY:
1362 : : // The buffer is empty in this state.
1363 : 0 : Assume(m_recv_buffer.empty());
1364 : 0 : break;
1365 : 0 : case RecvState::V1:
1366 : : // Should have bailed out above.
1367 : 0 : Assume(false);
1368 : 0 : break;
1369 : : }
1370 : : }
1371 : :
1372 : : // Can't read more than provided input.
1373 [ + + ]: 4709990 : max_read = std::min(msg_bytes.size(), max_read);
1374 : : // Copy data to buffer.
1375 : 4709990 : m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1376 [ + + + + : 4709990 : msg_bytes = msg_bytes.subspan(max_read);
- - + ]
1377 : :
1378 : : // Process data in the buffer.
1379 [ + + + + : 4709990 : switch (m_recv_state) {
- - + ]
1380 : 2398 : case RecvState::KEY_MAYBE_V1:
1381 : 2398 : ProcessReceivedMaybeV1Bytes();
1382 [ + + ]: 2398 : if (m_recv_state == RecvState::V1) return true;
1383 : : break;
1384 : :
1385 : 3940 : case RecvState::KEY:
1386 [ + - ]: 3940 : if (!ProcessReceivedKeyBytes()) return false;
1387 : : break;
1388 : :
1389 : 4557531 : case RecvState::GARB_GARBTERM:
1390 [ + - ]: 4557531 : if (!ProcessReceivedGarbageBytes()) return false;
1391 : : break;
1392 : :
1393 : 111420 : case RecvState::VERSION:
1394 : 111420 : case RecvState::APP:
1395 [ + - ]: 111420 : if (!ProcessReceivedPacketBytes()) return false;
1396 : : break;
1397 : :
1398 : : case RecvState::APP_READY:
1399 : : return true;
1400 : :
1401 : 0 : case RecvState::V1:
1402 : : // We should have bailed out before.
1403 : 0 : Assume(false);
1404 : 0 : break;
1405 : : }
1406 : : // Make sure we have made progress before continuing.
1407 : 4674613 : Assume(max_read > 0);
1408 : : }
1409 : :
1410 : : return true;
1411 : 113643 : }
1412 : :
1413 : 36434 : std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1414 : : {
1415 [ - + ]: 36434 : if (contents.size() == 0) return std::nullopt; // Empty contents
1416 [ + + ]: 36434 : uint8_t first_byte = contents[0];
1417 [ + + ]: 36434 : contents = contents.subspan(1); // Strip first byte.
1418 : :
1419 [ + + ]: 36434 : if (first_byte != 0) {
1420 : : // Short (1 byte) encoding.
1421 [ + - ]: 28152 : if (first_byte < std::size(V2_MESSAGE_IDS)) {
1422 : : // Valid short message id.
1423 [ - + ]: 56304 : return V2_MESSAGE_IDS[first_byte];
1424 : : } else {
1425 : : // Unknown short message id.
1426 : 0 : return std::nullopt;
1427 : : }
1428 : : }
1429 : :
1430 [ - + ]: 8282 : if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1431 : 0 : return std::nullopt; // Long encoding needs 12 message type bytes.
1432 : : }
1433 : :
1434 : : size_t msg_type_len{0};
1435 [ + + + + ]: 62883 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1436 : : // Verify that message type bytes before the first 0x00 are in range.
1437 [ - + + - ]: 54601 : if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1438 : 0 : return {};
1439 : : }
1440 : 54601 : ++msg_type_len;
1441 : : }
1442 : 8282 : std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1443 [ + + ]: 53065 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1444 : : // Verify that message type bytes after the first 0x00 are also 0x00.
1445 [ - + ]: 44783 : if (contents[msg_type_len] != 0) return {};
1446 : 44783 : ++msg_type_len;
1447 : : }
1448 : : // Strip message type bytes of contents.
1449 : 8282 : contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1450 : 8282 : return ret;
1451 : 8282 : }
1452 : :
1453 : 51324 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1454 : : {
1455 : 51324 : AssertLockNotHeld(m_recv_mutex);
1456 : 51324 : LOCK(m_recv_mutex);
1457 [ + + ]: 51324 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1458 : :
1459 : 36434 : Assume(m_recv_state == RecvState::APP_READY);
1460 [ - + ]: 36434 : std::span<const uint8_t> contents{m_recv_decode_buffer};
1461 : 36434 : auto msg_type = GetMessageType(contents);
1462 : 36434 : CNetMessage msg{DataStream{}};
1463 : : // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1464 [ - + ]: 36434 : msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1465 [ + - ]: 36434 : if (msg_type) {
1466 : 36434 : reject_message = false;
1467 : 36434 : msg.m_type = std::move(*msg_type);
1468 : 36434 : msg.m_time = time;
1469 : 36434 : msg.m_message_size = contents.size();
1470 : 36434 : msg.m_recv.resize(contents.size());
1471 : 36434 : std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1472 : : } else {
1473 [ # # # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1474 : 0 : reject_message = true;
1475 : : }
1476 : 36434 : ClearShrink(m_recv_decode_buffer);
1477 : 36434 : SetReceiveState(RecvState::APP);
1478 : :
1479 : 36434 : return msg;
1480 : 36434 : }
1481 : :
1482 : 187812 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1483 : : {
1484 : 187812 : AssertLockNotHeld(m_send_mutex);
1485 : 187812 : LOCK(m_send_mutex);
1486 [ + + ]: 187812 : if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1487 : : // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1488 : : // is available) and the send buffer is empty. This limits the number of messages in the send
1489 : : // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1490 [ + + + + ]: 175817 : if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1491 : : // Construct contents (encoding message type + payload).
1492 : 36434 : std::vector<uint8_t> contents;
1493 : 36434 : auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1494 [ + + ]: 36434 : if (short_message_id) {
1495 [ - + ]: 28152 : contents.resize(1 + msg.data.size());
1496 : 28152 : contents[0] = *short_message_id;
1497 : 28152 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1498 : : } else {
1499 : : // Initialize with zeroes, and then write the message type string starting at offset 1.
1500 : : // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1501 [ - + ]: 8282 : contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1502 [ - + ]: 8282 : std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1503 : 8282 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1504 : : }
1505 : : // Construct ciphertext in send buffer.
1506 [ - + ]: 36434 : m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1507 : 36434 : m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1508 : 36434 : m_send_type = msg.m_type;
1509 : : // Release memory
1510 : 36434 : ClearShrink(msg.data);
1511 : 36434 : return true;
1512 : 36434 : }
1513 : :
1514 : 1469868 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1515 : : {
1516 : 1469868 : AssertLockNotHeld(m_send_mutex);
1517 : 1469868 : LOCK(m_send_mutex);
1518 [ + + ]: 1469868 : if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1519 : :
1520 [ + + ]: 1250054 : if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1521 [ - + ]: 1250054 : Assume(m_send_pos <= m_send_buffer.size());
1522 : 1250054 : return {
1523 [ - + + + ]: 1250054 : std::span{m_send_buffer}.subspan(m_send_pos),
1524 : : // We only have more to send after the current m_send_buffer if there is a (next)
1525 : : // message to be sent, and we're capable of sending packets. */
1526 [ + + + + ]: 1250054 : have_next_message && m_send_state == SendState::READY,
1527 : 1250054 : m_send_type
1528 : 1250054 : };
1529 : 1469868 : }
1530 : :
1531 : 165703 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1532 : : {
1533 : 165703 : AssertLockNotHeld(m_send_mutex);
1534 : 165703 : LOCK(m_send_mutex);
1535 [ + + + - ]: 165703 : if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1536 : :
1537 [ + + + + : 142245 : if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
+ - ]
1538 [ - + ]: 1475 : LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1539 : : }
1540 : :
1541 : 142245 : m_send_pos += bytes_sent;
1542 [ - + ]: 142245 : Assume(m_send_pos <= m_send_buffer.size());
1543 [ + + ]: 142245 : if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1544 : 97253 : m_sent_v1_header_worth = true;
1545 : : }
1546 : : // Wipe the buffer when everything is sent.
1547 [ - + + + ]: 142245 : if (m_send_pos == m_send_buffer.size()) {
1548 : 39909 : m_send_pos = 0;
1549 : 39909 : ClearShrink(m_send_buffer);
1550 : : }
1551 : 165703 : }
1552 : :
1553 : 0 : bool V2Transport::ShouldReconnectV1() const noexcept
1554 : : {
1555 : 0 : AssertLockNotHeld(m_send_mutex);
1556 : 0 : AssertLockNotHeld(m_recv_mutex);
1557 : : // Only outgoing connections need reconnection.
1558 [ # # ]: 0 : if (!m_initiating) return false;
1559 : :
1560 : 0 : LOCK(m_recv_mutex);
1561 : : // We only reconnect in the very first state and when the receive buffer is empty. Together
1562 : : // these conditions imply nothing has been received so far.
1563 [ # # ]: 0 : if (m_recv_state != RecvState::KEY) return false;
1564 [ # # ]: 0 : if (!m_recv_buffer.empty()) return false;
1565 : : // Check if we've sent enough for the other side to disconnect us (if it was V1).
1566 : 0 : LOCK(m_send_mutex);
1567 [ # # ]: 0 : return m_sent_v1_header_worth;
1568 : 0 : }
1569 : :
1570 : 0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
1571 : : {
1572 : 0 : AssertLockNotHeld(m_send_mutex);
1573 : 0 : LOCK(m_send_mutex);
1574 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1575 : :
1576 [ # # ]: 0 : return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1577 : 0 : }
1578 : :
1579 : 3590 : Transport::Info V2Transport::GetInfo() const noexcept
1580 : : {
1581 : 3590 : AssertLockNotHeld(m_recv_mutex);
1582 : 3590 : LOCK(m_recv_mutex);
1583 [ + + ]: 3590 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1584 : :
1585 [ + + ]: 2914 : Transport::Info info;
1586 : :
1587 : : // Do not report v2 and session ID until the version packet has been received
1588 : : // and verified (confirming that the other side very likely has the same keys as us).
1589 [ + + ]: 2914 : if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1590 : : m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1591 : 2662 : info.transport_type = TransportProtocolType::V2;
1592 : 2662 : info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1593 : : } else {
1594 : 252 : info.transport_type = TransportProtocolType::DETECTING;
1595 : : }
1596 : :
1597 : 2914 : return info;
1598 : 3590 : }
1599 : :
1600 : 172357 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1601 : : {
1602 : 172357 : auto it = node.vSendMsg.begin();
1603 : 172357 : size_t nSentSize = 0;
1604 : 172357 : bool data_left{false}; //!< second return value (whether unsent data remains)
1605 : 172357 : std::optional<bool> expected_more;
1606 : :
1607 : 424264 : while (true) {
1608 [ + + ]: 424264 : if (it != node.vSendMsg.end()) {
1609 : : // If possible, move one message from the send queue to the transport. This fails when
1610 : : // there is an existing message still being sent, or (for v2 transports) when the
1611 : : // handshake has not yet completed.
1612 : 172357 : size_t memusage = it->GetMemoryUsage();
1613 [ + - ]: 172357 : if (node.m_transport->SetMessageToSend(*it)) {
1614 : : // Update memory usage of send buffer (as *it will be deleted).
1615 : 172357 : node.m_send_memusage -= memusage;
1616 : 172357 : ++it;
1617 : : }
1618 : : }
1619 [ + + ]: 424264 : const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1620 : : // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1621 : : // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1622 : : // verify that the previously returned 'more' was correct.
1623 [ + + ]: 424264 : if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1624 [ + + ]: 424264 : expected_more = more;
1625 [ + + ]: 424264 : data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1626 : 424264 : int nBytes = 0;
1627 [ + + ]: 424264 : if (!data.empty()) {
1628 : 286139 : LOCK(node.m_sock_mutex);
1629 : : // There is no socket in case we've already disconnected, or in test cases without
1630 : : // real connections. In these cases, we bail out immediately and just leave things
1631 : : // in the send queue and transport.
1632 [ + + ]: 286139 : if (!node.m_sock) {
1633 : : break;
1634 : : }
1635 : 270710 : int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1636 : : #ifdef MSG_MORE
1637 [ + + ]: 270710 : if (more) {
1638 : 124077 : flags |= MSG_MORE;
1639 : : }
1640 : : #endif
1641 [ + - + - ]: 270710 : nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1642 : 15429 : }
1643 [ + + ]: 270710 : if (nBytes > 0) {
1644 : 266331 : node.m_last_send = GetTime<std::chrono::seconds>();
1645 : 266331 : node.nSendBytes += nBytes;
1646 : : // Notify transport that bytes have been processed.
1647 : 266331 : node.m_transport->MarkBytesSent(nBytes);
1648 : : // Update statistics per message type.
1649 [ + + ]: 266331 : if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1650 : 259544 : node.AccountForSentBytes(msg_type, nBytes);
1651 : : }
1652 : 266331 : nSentSize += nBytes;
1653 [ + + ]: 266331 : if ((size_t)nBytes != data.size()) {
1654 : : // could not send full message; stop sending more
1655 : : break;
1656 : : }
1657 : : } else {
1658 [ + + ]: 142504 : if (nBytes < 0) {
1659 : : // error
1660 : 3192 : int nErr = WSAGetLastError();
1661 [ + + + + ]: 3192 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1662 [ - + - - : 2334 : LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
- - ]
1663 : 2334 : node.CloseSocketDisconnect();
1664 : : }
1665 : : }
1666 : : break;
1667 : : }
1668 : : }
1669 : :
1670 [ + - ]: 172357 : node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1671 : :
1672 [ + - ]: 172357 : if (it == node.vSendMsg.end()) {
1673 [ - + ]: 172357 : assert(node.m_send_memusage == 0);
1674 : : }
1675 : 172357 : node.vSendMsg.erase(node.vSendMsg.begin(), it);
1676 : 172357 : return {nSentSize, data_left};
1677 : : }
1678 : :
1679 : : /** Try to find a connection to evict when the node is full.
1680 : : * Extreme care must be taken to avoid opening the node to attacker
1681 : : * triggered network partitioning.
1682 : : * The strategy used here is to protect a small number of peers
1683 : : * for each of several distinct characteristics which are difficult
1684 : : * to forge. In order to partition a node the attacker must be
1685 : : * simultaneously better at all of them than honest peers.
1686 : : */
1687 : 0 : bool CConnman::AttemptToEvictConnection()
1688 : : {
1689 : 0 : std::vector<NodeEvictionCandidate> vEvictionCandidates;
1690 : 0 : {
1691 : :
1692 [ # # ]: 0 : LOCK(m_nodes_mutex);
1693 [ # # ]: 0 : for (const CNode* node : m_nodes) {
1694 [ # # ]: 0 : if (node->fDisconnect)
1695 : 0 : continue;
1696 : 0 : NodeEvictionCandidate candidate{
1697 : 0 : .id = node->GetId(),
1698 : : .m_connected = node->m_connected,
1699 : 0 : .m_min_ping_time = node->m_min_ping_time,
1700 : 0 : .m_last_block_time = node->m_last_block_time,
1701 : 0 : .m_last_tx_time = node->m_last_tx_time,
1702 [ # # ]: 0 : .fRelevantServices = node->m_has_all_wanted_services,
1703 : 0 : .m_relay_txs = node->m_relays_txs.load(),
1704 : 0 : .fBloomFilter = node->m_bloom_filter_loaded.load(),
1705 : 0 : .nKeyedNetGroup = node->nKeyedNetGroup,
1706 : 0 : .prefer_evict = node->m_prefer_evict,
1707 [ # # ]: 0 : .m_is_local = node->addr.IsLocal(),
1708 : 0 : .m_network = node->ConnectedThroughNetwork(),
1709 : 0 : .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1710 : 0 : .m_conn_type = node->m_conn_type,
1711 [ # # # # : 0 : };
# # ]
1712 [ # # ]: 0 : vEvictionCandidates.push_back(candidate);
1713 : : }
1714 : 0 : }
1715 [ # # ]: 0 : const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1716 [ # # ]: 0 : if (!node_id_to_evict) {
1717 : : return false;
1718 : : }
1719 [ # # ]: 0 : LOCK(m_nodes_mutex);
1720 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1721 [ # # ]: 0 : if (pnode->GetId() == *node_id_to_evict) {
1722 [ # # # # : 0 : LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
# # # # ]
1723 : : TRACEPOINT(net, evicted_inbound_connection,
1724 : : pnode->GetId(),
1725 : : pnode->m_addr_name.c_str(),
1726 : : pnode->ConnectionTypeAsString().c_str(),
1727 : : pnode->ConnectedThroughNetwork(),
1728 : 0 : Ticks<std::chrono::seconds>(pnode->m_connected));
1729 : 0 : pnode->fDisconnect = true;
1730 : 0 : return true;
1731 : : }
1732 : : }
1733 : : return false;
1734 : 0 : }
1735 : :
1736 : 0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1737 : 0 : struct sockaddr_storage sockaddr;
1738 : 0 : socklen_t len = sizeof(sockaddr);
1739 : 0 : auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1740 : :
1741 [ # # ]: 0 : if (!sock) {
1742 : 0 : const int nErr = WSAGetLastError();
1743 [ # # ]: 0 : if (nErr != WSAEWOULDBLOCK) {
1744 [ # # # # ]: 0 : LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1745 : : }
1746 : 0 : return;
1747 : : }
1748 : :
1749 [ # # ]: 0 : CService addr;
1750 [ # # # # ]: 0 : if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1751 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
# # ]
1752 : : } else {
1753 [ # # ]: 0 : addr = MaybeFlipIPv6toCJDNS(addr);
1754 : : }
1755 : :
1756 [ # # # # ]: 0 : const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1757 : :
1758 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
1759 [ # # ]: 0 : hListenSocket.AddSocketPermissionFlags(permission_flags);
1760 : :
1761 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1762 : 0 : }
1763 : :
1764 : 0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1765 : : NetPermissionFlags permission_flags,
1766 : : const CService& addr_bind,
1767 : : const CService& addr)
1768 : : {
1769 : 0 : int nInbound = 0;
1770 : :
1771 : 0 : AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1772 : :
1773 : 0 : {
1774 : 0 : LOCK(m_nodes_mutex);
1775 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
1776 [ # # ]: 0 : if (pnode->IsInboundConn()) nInbound++;
1777 : : }
1778 : 0 : }
1779 : :
1780 [ # # ]: 0 : if (!fNetworkActive) {
1781 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1782 : 0 : return;
1783 : : }
1784 : :
1785 [ # # ]: 0 : if (!sock->IsSelectable()) {
1786 [ # # ]: 0 : LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1787 : 0 : return;
1788 : : }
1789 : :
1790 : : // According to the internet TCP_NODELAY is not carried into accepted sockets
1791 : : // on all platforms. Set it again here just to be sure.
1792 : 0 : const int on{1};
1793 [ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1794 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1795 : : addr.ToStringAddrPort());
1796 : : }
1797 : :
1798 : : // Don't accept connections from banned peers.
1799 [ # # # # ]: 0 : bool banned = m_banman && m_banman->IsBanned(addr);
1800 [ # # # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1801 : : {
1802 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1803 : 0 : return;
1804 : : }
1805 : :
1806 : : // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1807 [ # # # # ]: 0 : bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1808 [ # # # # : 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
# # ]
1809 : : {
1810 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1811 : 0 : return;
1812 : : }
1813 : :
1814 [ # # ]: 0 : if (nInbound >= m_max_inbound)
1815 : : {
1816 [ # # ]: 0 : if (!AttemptToEvictConnection()) {
1817 : : // No connection to evict, disconnect the new connection
1818 [ # # ]: 0 : LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1819 : 0 : return;
1820 : : }
1821 : : }
1822 : :
1823 : 0 : NodeId id = GetNewNodeId();
1824 : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1825 : :
1826 : 0 : const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1827 : : // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1828 : : // detected, so use it whenever we signal NODE_P2P_V2.
1829 : 0 : ServiceFlags local_services = GetLocalServices();
1830 : 0 : const bool use_v2transport(local_services & NODE_P2P_V2);
1831 : :
1832 : 0 : CNode* pnode = new CNode(id,
1833 : 0 : std::move(sock),
1834 [ # # ]: 0 : CAddress{addr, NODE_NONE},
1835 : : CalculateKeyedNetGroup(addr),
1836 : : nonce,
1837 : : addr_bind,
1838 : 0 : /*addrNameIn=*/"",
1839 : : ConnectionType::INBOUND,
1840 : : inbound_onion,
1841 : 0 : CNodeOptions{
1842 : : .permission_flags = permission_flags,
1843 : : .prefer_evict = discouraged,
1844 : 0 : .recv_flood_size = nReceiveFloodSize,
1845 : : .use_v2transport = use_v2transport,
1846 [ # # # # : 0 : });
# # # # ]
1847 : 0 : pnode->AddRef();
1848 : 0 : m_msgproc->InitializeNode(*pnode, local_services);
1849 : 0 : {
1850 : 0 : LOCK(m_nodes_mutex);
1851 [ # # ]: 0 : m_nodes.push_back(pnode);
1852 : 0 : }
1853 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1854 : : TRACEPOINT(net, inbound_connection,
1855 : : pnode->GetId(),
1856 : : pnode->m_addr_name.c_str(),
1857 : : pnode->ConnectionTypeAsString().c_str(),
1858 : : pnode->ConnectedThroughNetwork(),
1859 : 0 : GetNodeCount(ConnectionDirection::In));
1860 : :
1861 : : // We received a new connection, harvest entropy from the time (and our peer count)
1862 : 0 : RandAddEvent((uint32_t)id);
1863 : : }
1864 : :
1865 : 0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1866 : : {
1867 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1868 : 0 : std::optional<int> max_connections;
1869 [ # # # # ]: 0 : switch (conn_type) {
1870 : : case ConnectionType::INBOUND:
1871 : : case ConnectionType::MANUAL:
1872 : : return false;
1873 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
1874 : 0 : max_connections = m_max_outbound_full_relay;
1875 : 0 : break;
1876 : 0 : case ConnectionType::BLOCK_RELAY:
1877 : 0 : max_connections = m_max_outbound_block_relay;
1878 : 0 : break;
1879 : : // no limit for ADDR_FETCH because -seednode has no limit either
1880 : : case ConnectionType::ADDR_FETCH:
1881 : : break;
1882 : : // no limit for FEELER connections since they're short-lived
1883 : : case ConnectionType::FEELER:
1884 : : break;
1885 : : } // no default case, so the compiler can warn about missing cases
1886 : :
1887 : : // Count existing connections
1888 [ # # # # ]: 0 : int existing_connections = WITH_LOCK(m_nodes_mutex,
1889 : : return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1890 : :
1891 : : // Max connections of specified type already exist
1892 [ # # ]: 0 : if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1893 : :
1894 : : // Max total outbound connections already exist
1895 : 0 : CountingSemaphoreGrant<> grant(*semOutbound, true);
1896 [ # # ]: 0 : if (!grant) return false;
1897 : :
1898 [ # # # # ]: 0 : OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1899 : 0 : return true;
1900 : : }
1901 : :
1902 : 0 : void CConnman::DisconnectNodes()
1903 : : {
1904 : 0 : AssertLockNotHeld(m_nodes_mutex);
1905 : 0 : AssertLockNotHeld(m_reconnections_mutex);
1906 : :
1907 : : // Use a temporary variable to accumulate desired reconnections, so we don't need
1908 : : // m_reconnections_mutex while holding m_nodes_mutex.
1909 [ # # ]: 0 : decltype(m_reconnections) reconnections_to_add;
1910 : :
1911 : 0 : {
1912 [ # # ]: 0 : LOCK(m_nodes_mutex);
1913 : :
1914 [ # # ]: 0 : const bool network_active{fNetworkActive};
1915 [ # # ]: 0 : if (!network_active) {
1916 : : // Disconnect any connected nodes
1917 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1918 [ # # ]: 0 : if (!pnode->fDisconnect) {
1919 [ # # # # : 0 : LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
# # # # ]
1920 : 0 : pnode->fDisconnect = true;
1921 : : }
1922 : : }
1923 : : }
1924 : :
1925 : : // Disconnect unused nodes
1926 [ # # ]: 0 : std::vector<CNode*> nodes_copy = m_nodes;
1927 [ # # ]: 0 : for (CNode* pnode : nodes_copy)
1928 : : {
1929 [ # # ]: 0 : if (pnode->fDisconnect)
1930 : : {
1931 : : // remove from m_nodes
1932 : 0 : m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1933 : :
1934 : : // Add to reconnection list if appropriate. We don't reconnect right here, because
1935 : : // the creation of a connection is a blocking operation (up to several seconds),
1936 : : // and we don't want to hold up the socket handler thread for that long.
1937 [ # # # # ]: 0 : if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1938 : 0 : reconnections_to_add.push_back({
1939 : 0 : .addr_connect = pnode->addr,
1940 [ # # ]: 0 : .grant = std::move(pnode->grantOutbound),
1941 : 0 : .destination = pnode->m_dest,
1942 : 0 : .conn_type = pnode->m_conn_type,
1943 : : .use_v2transport = false});
1944 [ # # # # : 0 : LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
# # ]
1945 : : }
1946 : :
1947 : : // release outbound grant (if any)
1948 : 0 : pnode->grantOutbound.Release();
1949 : :
1950 : : // close socket and cleanup
1951 [ # # ]: 0 : pnode->CloseSocketDisconnect();
1952 : :
1953 : : // update connection count by network
1954 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1955 : :
1956 : : // hold in disconnected pool until all refs are released
1957 [ # # ]: 0 : pnode->Release();
1958 [ # # ]: 0 : m_nodes_disconnected.push_back(pnode);
1959 : : }
1960 : : }
1961 [ # # ]: 0 : }
1962 : 0 : {
1963 : : // Delete disconnected nodes
1964 [ # # ]: 0 : std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1965 [ # # ]: 0 : for (CNode* pnode : nodes_disconnected_copy)
1966 : : {
1967 : : // Destroy the object only after other threads have stopped using it.
1968 [ # # ]: 0 : if (pnode->GetRefCount() <= 0) {
1969 : 0 : m_nodes_disconnected.remove(pnode);
1970 [ # # ]: 0 : DeleteNode(pnode);
1971 : : }
1972 : : }
1973 : 0 : }
1974 : 0 : {
1975 : : // Move entries from reconnections_to_add to m_reconnections.
1976 [ # # ]: 0 : LOCK(m_reconnections_mutex);
1977 [ # # ]: 0 : m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1978 : 0 : }
1979 [ # # # # : 0 : }
# # ]
1980 : :
1981 : 0 : void CConnman::NotifyNumConnectionsChanged()
1982 : : {
1983 : 0 : size_t nodes_size;
1984 : 0 : {
1985 : 0 : LOCK(m_nodes_mutex);
1986 [ # # # # ]: 0 : nodes_size = m_nodes.size();
1987 : 0 : }
1988 [ # # ]: 0 : if(nodes_size != nPrevNodeCount) {
1989 : 0 : nPrevNodeCount = nodes_size;
1990 [ # # ]: 0 : if (m_client_interface) {
1991 : 0 : m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1992 : : }
1993 : : }
1994 : 0 : }
1995 : :
1996 : 46866 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1997 : : {
1998 : 46866 : return node.m_connected + m_peer_connect_timeout < now;
1999 : : }
2000 : :
2001 : 0 : bool CConnman::InactivityCheck(const CNode& node) const
2002 : : {
2003 : : // Tests that see disconnects after using mocktime can start nodes with a
2004 : : // large timeout. For example, -peertimeout=999999999.
2005 : 0 : const auto now{GetTime<std::chrono::seconds>()};
2006 : 0 : const auto last_send{node.m_last_send.load()};
2007 : 0 : const auto last_recv{node.m_last_recv.load()};
2008 : :
2009 [ # # ]: 0 : if (!ShouldRunInactivityChecks(node, now)) return false;
2010 : :
2011 [ # # ]: 0 : bool has_received{last_recv.count() != 0};
2012 : 0 : bool has_sent{last_send.count() != 0};
2013 : :
2014 [ # # ]: 0 : if (!has_received || !has_sent) {
2015 [ # # ]: 0 : std::string has_never;
2016 [ # # # # ]: 0 : if (!has_received) has_never += ", never received from peer";
2017 [ # # # # ]: 0 : if (!has_sent) has_never += ", never sent to peer";
2018 [ # # # # : 0 : LogDebug(BCLog::NET,
# # # # ]
2019 : : "socket no message in first %i seconds%s, %s\n",
2020 : : count_seconds(m_peer_connect_timeout),
2021 : : has_never,
2022 : : node.DisconnectMsg(fLogIPs)
2023 : : );
2024 : 0 : return true;
2025 : 0 : }
2026 : :
2027 [ # # ]: 0 : if (now > last_send + TIMEOUT_INTERVAL) {
2028 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2029 : : "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2030 : : node.DisconnectMsg(fLogIPs)
2031 : : );
2032 : 0 : return true;
2033 : : }
2034 : :
2035 [ # # ]: 0 : if (now > last_recv + TIMEOUT_INTERVAL) {
2036 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2037 : : "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2038 : : node.DisconnectMsg(fLogIPs)
2039 : : );
2040 : 0 : return true;
2041 : : }
2042 : :
2043 [ # # ]: 0 : if (!node.fSuccessfullyConnected) {
2044 [ # # ]: 0 : if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2045 [ # # # # ]: 0 : LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2046 : : } else {
2047 [ # # # # ]: 0 : LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2048 : : }
2049 : 0 : return true;
2050 : : }
2051 : :
2052 : : return false;
2053 : : }
2054 : :
2055 : 0 : Sock::EventsPerSock CConnman::GenerateWaitSockets(std::span<CNode* const> nodes)
2056 : : {
2057 : 0 : Sock::EventsPerSock events_per_sock;
2058 : :
2059 [ # # ]: 0 : for (const ListenSocket& hListenSocket : vhListenSocket) {
2060 [ # # ]: 0 : events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2061 : : }
2062 : :
2063 [ # # ]: 0 : for (CNode* pnode : nodes) {
2064 [ # # ]: 0 : bool select_recv = !pnode->fPauseRecv;
2065 : 0 : bool select_send;
2066 : 0 : {
2067 [ # # ]: 0 : LOCK(pnode->cs_vSend);
2068 : : // Sending is possible if either there are bytes to send right now, or if there will be
2069 : : // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2070 : : // determines both of these in a single call.
2071 [ # # ]: 0 : const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2072 [ # # # # : 0 : select_send = !to_send.empty() || more;
# # ]
2073 : 0 : }
2074 [ # # ]: 0 : if (!select_recv && !select_send) continue;
2075 : :
2076 [ # # ]: 0 : LOCK(pnode->m_sock_mutex);
2077 [ # # ]: 0 : if (pnode->m_sock) {
2078 [ # # # # ]: 0 : Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2079 [ # # ]: 0 : events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2080 : : }
2081 : 0 : }
2082 : :
2083 : 0 : return events_per_sock;
2084 : 0 : }
2085 : :
2086 : 0 : void CConnman::SocketHandler()
2087 : : {
2088 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2089 : :
2090 [ # # ]: 0 : Sock::EventsPerSock events_per_sock;
2091 : :
2092 : 0 : {
2093 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/false};
2094 : :
2095 : 0 : const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2096 : :
2097 : : // Check for the readiness of the already connected sockets and the
2098 : : // listening sockets in one call ("readiness" as in poll(2) or
2099 : : // select(2)). If none are ready, wait for a short while and return
2100 : : // empty sets.
2101 [ # # # # ]: 0 : events_per_sock = GenerateWaitSockets(snap.Nodes());
2102 [ # # # # : 0 : if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
# # ]
2103 [ # # ]: 0 : interruptNet.sleep_for(timeout);
2104 : : }
2105 : :
2106 : : // Service (send/receive) each of the already connected nodes.
2107 [ # # ]: 0 : SocketHandlerConnected(snap.Nodes(), events_per_sock);
2108 : 0 : }
2109 : :
2110 : : // Accept new connections from listening sockets.
2111 [ # # ]: 0 : SocketHandlerListening(events_per_sock);
2112 : 0 : }
2113 : :
2114 : 0 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2115 : : const Sock::EventsPerSock& events_per_sock)
2116 : : {
2117 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2118 : :
2119 [ # # ]: 0 : for (CNode* pnode : nodes) {
2120 [ # # ]: 0 : if (interruptNet)
2121 : : return;
2122 : :
2123 : : //
2124 : : // Receive
2125 : : //
2126 : 0 : bool recvSet = false;
2127 : 0 : bool sendSet = false;
2128 : 0 : bool errorSet = false;
2129 : 0 : {
2130 : 0 : LOCK(pnode->m_sock_mutex);
2131 [ # # ]: 0 : if (!pnode->m_sock) {
2132 [ # # ]: 0 : continue;
2133 : : }
2134 [ # # # # ]: 0 : const auto it = events_per_sock.find(pnode->m_sock);
2135 [ # # # # ]: 0 : if (it != events_per_sock.end()) {
2136 : 0 : recvSet = it->second.occurred & Sock::RECV;
2137 : 0 : sendSet = it->second.occurred & Sock::SEND;
2138 : 0 : errorSet = it->second.occurred & Sock::ERR;
2139 : : }
2140 : 0 : }
2141 : :
2142 [ # # ]: 0 : if (sendSet) {
2143 : : // Send data
2144 [ # # # # ]: 0 : auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2145 [ # # ]: 0 : if (bytes_sent) {
2146 : 0 : RecordBytesSent(bytes_sent);
2147 : :
2148 : : // If both receiving and (non-optimistic) sending were possible, we first attempt
2149 : : // sending. If that succeeds, but does not fully drain the send queue, do not
2150 : : // attempt to receive. This avoids needlessly queueing data if the remote peer
2151 : : // is slow at receiving data, by means of TCP flow control. We only do this when
2152 : : // sending actually succeeded to make sure progress is always made; otherwise a
2153 : : // deadlock would be possible when both sides have data to send, but neither is
2154 : : // receiving.
2155 [ # # ]: 0 : if (data_left) recvSet = false;
2156 : : }
2157 : : }
2158 : :
2159 [ # # ]: 0 : if (recvSet || errorSet)
2160 : : {
2161 : : // typical socket buffer is 8K-64K
2162 : 0 : uint8_t pchBuf[0x10000];
2163 : 0 : int nBytes = 0;
2164 : 0 : {
2165 : 0 : LOCK(pnode->m_sock_mutex);
2166 [ # # ]: 0 : if (!pnode->m_sock) {
2167 [ # # ]: 0 : continue;
2168 : : }
2169 [ # # # # ]: 0 : nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2170 : 0 : }
2171 [ # # ]: 0 : if (nBytes > 0)
2172 : : {
2173 : 0 : bool notify = false;
2174 [ # # ]: 0 : if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2175 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2176 : : "receiving message bytes failed, %s\n",
2177 : : pnode->DisconnectMsg(fLogIPs)
2178 : : );
2179 : 0 : pnode->CloseSocketDisconnect();
2180 : : }
2181 : 0 : RecordBytesRecv(nBytes);
2182 [ # # ]: 0 : if (notify) {
2183 : 0 : pnode->MarkReceivedMsgsForProcessing();
2184 : 0 : WakeMessageHandler();
2185 : : }
2186 : : }
2187 [ # # ]: 0 : else if (nBytes == 0)
2188 : : {
2189 : : // socket closed gracefully
2190 [ # # ]: 0 : if (!pnode->fDisconnect) {
2191 [ # # # # ]: 0 : LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2192 : : }
2193 : 0 : pnode->CloseSocketDisconnect();
2194 : : }
2195 [ # # ]: 0 : else if (nBytes < 0)
2196 : : {
2197 : : // error
2198 : 0 : int nErr = WSAGetLastError();
2199 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2200 : : {
2201 [ # # ]: 0 : if (!pnode->fDisconnect) {
2202 [ # # # # : 0 : LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
# # ]
2203 : : }
2204 : 0 : pnode->CloseSocketDisconnect();
2205 : : }
2206 : : }
2207 : : }
2208 : :
2209 [ # # ]: 0 : if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2210 : : }
2211 : : }
2212 : :
2213 : 0 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2214 : : {
2215 [ # # ]: 0 : for (const ListenSocket& listen_socket : vhListenSocket) {
2216 [ # # ]: 0 : if (interruptNet) {
2217 : : return;
2218 : : }
2219 [ # # # # ]: 0 : const auto it = events_per_sock.find(listen_socket.sock);
2220 [ # # # # ]: 0 : if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2221 : 0 : AcceptConnection(listen_socket);
2222 : : }
2223 : : }
2224 : : }
2225 : :
2226 : 0 : void CConnman::ThreadSocketHandler()
2227 : : {
2228 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2229 : :
2230 [ # # ]: 0 : while (!interruptNet)
2231 : : {
2232 : 0 : DisconnectNodes();
2233 : 0 : NotifyNumConnectionsChanged();
2234 : 0 : SocketHandler();
2235 : : }
2236 : 0 : }
2237 : :
2238 : 0 : void CConnman::WakeMessageHandler()
2239 : : {
2240 : 0 : {
2241 : 0 : LOCK(mutexMsgProc);
2242 [ # # ]: 0 : fMsgProcWake = true;
2243 : 0 : }
2244 : 0 : condMsgProc.notify_one();
2245 : 0 : }
2246 : :
2247 : 0 : void CConnman::ThreadDNSAddressSeed()
2248 : : {
2249 : 0 : int outbound_connection_count = 0;
2250 : :
2251 [ # # # # ]: 0 : if (!gArgs.GetArgs("-seednode").empty()) {
2252 : 0 : auto start = NodeClock::now();
2253 : 0 : constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2254 : 0 : LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2255 [ # # ]: 0 : while (!interruptNet) {
2256 [ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2257 : : return;
2258 : :
2259 : : // Abort if we have spent enough time without reaching our target.
2260 : : // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2261 [ # # ]: 0 : if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2262 : 0 : LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2263 : 0 : break;
2264 : : }
2265 : :
2266 : 0 : outbound_connection_count = GetFullOutboundConnCount();
2267 [ # # ]: 0 : if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2268 : 0 : LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2269 : 0 : break;
2270 : : }
2271 : : }
2272 : : }
2273 : :
2274 : 0 : FastRandomContext rng;
2275 [ # # ]: 0 : std::vector<std::string> seeds = m_params.DNSSeeds();
2276 : 0 : std::shuffle(seeds.begin(), seeds.end(), rng);
2277 : 0 : int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2278 : :
2279 [ # # # # : 0 : if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
# # ]
2280 : : // When -forcednsseed is provided, query all.
2281 [ # # ]: 0 : seeds_right_now = seeds.size();
2282 [ # # # # ]: 0 : } else if (addrman.Size() == 0) {
2283 : : // If we have no known peers, query all.
2284 : : // This will occur on the first run, or if peers.dat has been
2285 : : // deleted.
2286 [ # # ]: 0 : seeds_right_now = seeds.size();
2287 : : }
2288 : :
2289 : : // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2290 [ # # ]: 0 : if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2291 : : // goal: only query DNS seed if address need is acute
2292 : : // * If we have a reasonable number of peers in addrman, spend
2293 : : // some time trying them first. This improves user privacy by
2294 : : // creating fewer identifying DNS requests, reduces trust by
2295 : : // giving seeds less influence on the network topology, and
2296 : : // reduces traffic to the seeds.
2297 : : // * When querying DNS seeds query a few at once, this ensures
2298 : : // that we don't give DNS seeds the ability to eclipse nodes
2299 : : // that query them.
2300 : : // * If we continue having problems, eventually query all the
2301 : : // DNS seeds, and if that fails too, also try the fixed seeds.
2302 : : // (done in ThreadOpenConnections)
2303 : 0 : int found = 0;
2304 [ # # # # ]: 0 : const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2305 : :
2306 [ # # ]: 0 : for (const std::string& seed : seeds) {
2307 [ # # ]: 0 : if (seeds_right_now == 0) {
2308 : 0 : seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2309 : :
2310 [ # # # # ]: 0 : if (addrman.Size() > 0) {
2311 [ # # ]: 0 : LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2312 : 0 : std::chrono::seconds to_wait = seeds_wait_time;
2313 [ # # ]: 0 : while (to_wait.count() > 0) {
2314 : : // if sleeping for the MANY_PEERS interval, wake up
2315 : : // early to see if we have enough peers and can stop
2316 : : // this thread entirely freeing up its resources
2317 : 0 : std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2318 [ # # # # ]: 0 : if (!interruptNet.sleep_for(w)) return;
2319 [ # # ]: 0 : to_wait -= w;
2320 : :
2321 [ # # # # ]: 0 : if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2322 [ # # ]: 0 : if (found > 0) {
2323 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2324 [ # # ]: 0 : LogPrintf("P2P peers available. Finished DNS seeding.\n");
2325 : : } else {
2326 [ # # ]: 0 : LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2327 : : }
2328 : 0 : return;
2329 : : }
2330 : : }
2331 : : }
2332 : : }
2333 : :
2334 [ # # # # ]: 0 : if (interruptNet) return;
2335 : :
2336 : : // hold off on querying seeds if P2P network deactivated
2337 [ # # ]: 0 : if (!fNetworkActive) {
2338 [ # # ]: 0 : LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2339 : 0 : do {
2340 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2341 [ # # ]: 0 : } while (!fNetworkActive);
2342 : : }
2343 : :
2344 [ # # ]: 0 : LogPrintf("Loading addresses from DNS seed %s\n", seed);
2345 : : // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2346 : : // for the base dns seed domain in chainparams
2347 [ # # # # ]: 0 : if (HaveNameProxy()) {
2348 [ # # ]: 0 : AddAddrFetch(seed);
2349 : : } else {
2350 : 0 : std::vector<CAddress> vAdd;
2351 : 0 : constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2352 [ # # ]: 0 : std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2353 [ # # ]: 0 : CNetAddr resolveSource;
2354 [ # # # # ]: 0 : if (!resolveSource.SetInternal(host)) {
2355 : 0 : continue;
2356 : : }
2357 : : // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2358 : : // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2359 : : // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2360 : : // returned.
2361 : 0 : unsigned int nMaxIPs = 32;
2362 [ # # # # ]: 0 : const auto addresses{LookupHost(host, nMaxIPs, true)};
2363 [ # # ]: 0 : if (!addresses.empty()) {
2364 [ # # ]: 0 : for (const CNetAddr& ip : addresses) {
2365 [ # # ]: 0 : CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2366 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2367 [ # # ]: 0 : vAdd.push_back(addr);
2368 : 0 : found++;
2369 : 0 : }
2370 [ # # ]: 0 : addrman.Add(vAdd, resolveSource);
2371 : : } else {
2372 : : // If the seed does not support a subdomain with our desired service bits,
2373 : : // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2374 : : // base dns seed domain in chainparams
2375 [ # # ]: 0 : AddAddrFetch(seed);
2376 : : }
2377 : 0 : }
2378 : 0 : --seeds_right_now;
2379 : : }
2380 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2381 : : } else {
2382 [ # # ]: 0 : LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2383 : : }
2384 : 0 : }
2385 : :
2386 : 0 : void CConnman::DumpAddresses()
2387 : : {
2388 : 0 : const auto start{SteadyClock::now()};
2389 : :
2390 : 0 : DumpPeerAddresses(::gArgs, addrman);
2391 : :
2392 [ # # ]: 0 : LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2393 : : addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2394 : 0 : }
2395 : :
2396 : 0 : void CConnman::ProcessAddrFetch()
2397 : : {
2398 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2399 [ # # ]: 0 : std::string strDest;
2400 : 0 : {
2401 [ # # ]: 0 : LOCK(m_addr_fetches_mutex);
2402 [ # # ]: 0 : if (m_addr_fetches.empty())
2403 [ # # ]: 0 : return;
2404 [ # # ]: 0 : strDest = m_addr_fetches.front();
2405 [ # # ]: 0 : m_addr_fetches.pop_front();
2406 : 0 : }
2407 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2408 : : // peer doesn't support it or immediately disconnects us for another reason.
2409 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2410 [ # # ]: 0 : CAddress addr;
2411 : 0 : CountingSemaphoreGrant<> grant(*semOutbound, /*fTry=*/true);
2412 [ # # ]: 0 : if (grant) {
2413 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2414 : : }
2415 : 0 : }
2416 : :
2417 : 2749 : bool CConnman::GetTryNewOutboundPeer() const
2418 : : {
2419 : 2749 : return m_try_another_outbound_peer;
2420 : : }
2421 : :
2422 : 28364 : void CConnman::SetTryNewOutboundPeer(bool flag)
2423 : : {
2424 : 28364 : m_try_another_outbound_peer = flag;
2425 [ - + - - ]: 28364 : LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2426 : 28364 : }
2427 : :
2428 : 0 : void CConnman::StartExtraBlockRelayPeers()
2429 : : {
2430 [ # # ]: 0 : LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2431 : 0 : m_start_extra_block_relay_peers = true;
2432 : 0 : }
2433 : :
2434 : : // Return the number of outbound connections that are full relay (not blocks only)
2435 : 0 : int CConnman::GetFullOutboundConnCount() const
2436 : : {
2437 : 0 : int nRelevant = 0;
2438 : 0 : {
2439 : 0 : LOCK(m_nodes_mutex);
2440 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2441 [ # # # # ]: 0 : if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2442 : : }
2443 : 0 : }
2444 : 0 : return nRelevant;
2445 : : }
2446 : :
2447 : : // Return the number of peers we have over our outbound connection limit
2448 : : // Exclude peers that are marked for disconnect, or are going to be
2449 : : // disconnected soon (eg ADDR_FETCH and FEELER)
2450 : : // Also exclude peers that haven't finished initial connection handshake yet
2451 : : // (so that we don't decide we're over our desired connection limit, and then
2452 : : // evict some peer that has finished the handshake)
2453 : 2749 : int CConnman::GetExtraFullOutboundCount() const
2454 : : {
2455 : 2749 : int full_outbound_peers = 0;
2456 : 2749 : {
2457 : 2749 : LOCK(m_nodes_mutex);
2458 [ + + ]: 25445 : for (const CNode* pnode : m_nodes) {
2459 [ - + - - : 22696 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
- - ]
2460 : 0 : ++full_outbound_peers;
2461 : : }
2462 : : }
2463 : 2749 : }
2464 [ + - ]: 2749 : return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2465 : : }
2466 : :
2467 : 0 : int CConnman::GetExtraBlockRelayCount() const
2468 : : {
2469 : 0 : int block_relay_peers = 0;
2470 : 0 : {
2471 : 0 : LOCK(m_nodes_mutex);
2472 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2473 [ # # # # : 0 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
# # ]
2474 : 0 : ++block_relay_peers;
2475 : : }
2476 : : }
2477 : 0 : }
2478 [ # # ]: 0 : return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2479 : : }
2480 : :
2481 : 0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2482 : : {
2483 : 0 : std::unordered_set<Network> networks{};
2484 [ # # ]: 0 : for (int n = 0; n < NET_MAX; n++) {
2485 : 0 : enum Network net = (enum Network)n;
2486 [ # # ]: 0 : if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2487 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
# # # # ]
2488 [ # # ]: 0 : networks.insert(net);
2489 : : }
2490 : : }
2491 : 0 : return networks;
2492 : 0 : }
2493 : :
2494 : 0 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2495 : : {
2496 : 0 : AssertLockHeld(m_nodes_mutex);
2497 : 0 : return m_network_conn_counts[net] > 1;
2498 : : }
2499 : :
2500 : 0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2501 : : {
2502 : 0 : std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2503 : 0 : std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2504 : :
2505 : 0 : LOCK(m_nodes_mutex);
2506 [ # # ]: 0 : for (const auto net : nets) {
2507 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
# # # # #
# ]
2508 : 0 : network = net;
2509 : 0 : return true;
2510 : : }
2511 : : }
2512 : :
2513 : : return false;
2514 : 0 : }
2515 : :
2516 : 0 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2517 : : {
2518 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2519 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2520 : 0 : FastRandomContext rng;
2521 : : // Connect to specific addresses
2522 [ # # ]: 0 : if (!connect.empty())
2523 : : {
2524 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2525 : : // peer doesn't support it or immediately disconnects us for another reason.
2526 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2527 : 0 : for (int64_t nLoop = 0;; nLoop++)
2528 : : {
2529 [ # # ]: 0 : for (const std::string& strAddr : connect)
2530 : : {
2531 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2532 [ # # ]: 0 : OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2533 [ # # # # ]: 0 : for (int i = 0; i < 10 && i < nLoop; i++)
2534 : : {
2535 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2536 : 0 : return;
2537 : : }
2538 : 0 : }
2539 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2540 : : return;
2541 [ # # ]: 0 : PerformReconnections();
2542 : 0 : }
2543 : : }
2544 : :
2545 : : // Initiate network connections
2546 : 0 : auto start = GetTime<std::chrono::microseconds>();
2547 : :
2548 : : // Minimum time before next feeler connection (in microseconds).
2549 : 0 : auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2550 : 0 : auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2551 [ # # ]: 0 : auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2552 [ # # # # ]: 0 : const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2553 [ # # # # ]: 0 : bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2554 [ # # # # ]: 0 : const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2555 : :
2556 : 0 : auto seed_node_timer = NodeClock::now();
2557 [ # # # # : 0 : bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
# # ]
2558 : 0 : constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2559 : :
2560 [ # # ]: 0 : if (!add_fixed_seeds) {
2561 [ # # ]: 0 : LogPrintf("Fixed seeds are disabled\n");
2562 : : }
2563 : :
2564 [ # # # # ]: 0 : while (!interruptNet)
2565 : : {
2566 [ # # ]: 0 : if (add_addr_fetch) {
2567 : 0 : add_addr_fetch = false;
2568 : 0 : const auto& seed{SpanPopBack(seed_nodes)};
2569 [ # # ]: 0 : AddAddrFetch(seed);
2570 : :
2571 [ # # # # ]: 0 : if (addrman.Size() == 0) {
2572 [ # # ]: 0 : LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2573 : : } else {
2574 [ # # ]: 0 : LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2575 : : }
2576 : : }
2577 : :
2578 [ # # ]: 0 : ProcessAddrFetch();
2579 : :
2580 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2581 : : return;
2582 : :
2583 [ # # ]: 0 : PerformReconnections();
2584 : :
2585 : 0 : CountingSemaphoreGrant<> grant(*semOutbound);
2586 [ # # # # ]: 0 : if (interruptNet)
2587 : : return;
2588 : :
2589 [ # # ]: 0 : const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2590 [ # # # # ]: 0 : if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2591 : : // When the node starts with an empty peers.dat, there are a few other sources of peers before
2592 : : // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2593 : : // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2594 : : // 60 seconds for any of those sources to populate addrman.
2595 : 0 : bool add_fixed_seeds_now = false;
2596 : : // It is cheapest to check if enough time has passed first.
2597 [ # # ]: 0 : if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2598 : 0 : add_fixed_seeds_now = true;
2599 [ # # ]: 0 : LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2600 : : }
2601 : :
2602 : : // Perform cheap checks before locking a mutex.
2603 [ # # ]: 0 : else if (!dnsseed && !use_seednodes) {
2604 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
2605 [ # # ]: 0 : if (m_added_node_params.empty()) {
2606 : 0 : add_fixed_seeds_now = true;
2607 [ # # ]: 0 : LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2608 : : }
2609 : 0 : }
2610 : :
2611 [ # # ]: 0 : if (add_fixed_seeds_now) {
2612 [ # # ]: 0 : std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2613 : : // We will not make outgoing connections to peers that are unreachable
2614 : : // (e.g. because of -onlynet configuration).
2615 : : // Therefore, we do not add them to addrman in the first place.
2616 : : // In case previously unreachable networks become reachable
2617 : : // (e.g. in case of -onlynet changes by the user), fixed seeds will
2618 : : // be loaded only for networks for which we have no addresses.
2619 [ # # ]: 0 : seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2620 : 0 : [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2621 [ # # ]: 0 : seed_addrs.end());
2622 [ # # ]: 0 : CNetAddr local;
2623 [ # # # # ]: 0 : local.SetInternal("fixedseeds");
2624 [ # # ]: 0 : addrman.Add(seed_addrs, local);
2625 : 0 : add_fixed_seeds = false;
2626 [ # # # # ]: 0 : LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2627 : 0 : }
2628 : : }
2629 : :
2630 : : //
2631 : : // Choose an address to connect to based on most recently seen
2632 : : //
2633 [ # # ]: 0 : CAddress addrConnect;
2634 : :
2635 : : // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2636 : 0 : int nOutboundFullRelay = 0;
2637 : 0 : int nOutboundBlockRelay = 0;
2638 : 0 : int outbound_privacy_network_peers = 0;
2639 [ # # ]: 0 : std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2640 : :
2641 : 0 : {
2642 [ # # ]: 0 : LOCK(m_nodes_mutex);
2643 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2644 [ # # ]: 0 : if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2645 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2646 : :
2647 : : // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2648 [ # # ]: 0 : switch (pnode->m_conn_type) {
2649 : : // We currently don't take inbound connections into account. Since they are
2650 : : // free to make, an attacker could make them to prevent us from connecting to
2651 : : // certain peers.
2652 : : case ConnectionType::INBOUND:
2653 : : // Short-lived outbound connections should not affect how we select outbound
2654 : : // peers from addrman.
2655 : : case ConnectionType::ADDR_FETCH:
2656 : : case ConnectionType::FEELER:
2657 : : break;
2658 : 0 : case ConnectionType::MANUAL:
2659 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
2660 : 0 : case ConnectionType::BLOCK_RELAY:
2661 : 0 : const CAddress address{pnode->addr};
2662 [ # # # # : 0 : if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
# # ]
2663 : : // Since our addrman-groups for these networks are
2664 : : // random, without relation to the route we
2665 : : // take to connect to these peers or to the
2666 : : // difficulty in obtaining addresses with diverse
2667 : : // groups, we don't worry about diversity with
2668 : : // respect to our addrman groups when connecting to
2669 : : // these networks.
2670 : 0 : ++outbound_privacy_network_peers;
2671 : : } else {
2672 [ # # # # ]: 0 : outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2673 : : }
2674 : : } // no default case, so the compiler can warn about missing cases
2675 : : }
2676 : 0 : }
2677 : :
2678 [ # # # # ]: 0 : if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2679 [ # # ]: 0 : if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2680 : 0 : seed_node_timer = NodeClock::now();
2681 : 0 : add_addr_fetch = true;
2682 : : }
2683 : : }
2684 : :
2685 : 0 : ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2686 : 0 : auto now = GetTime<std::chrono::microseconds>();
2687 : 0 : bool anchor = false;
2688 : 0 : bool fFeeler = false;
2689 : 0 : std::optional<Network> preferred_net;
2690 : :
2691 : : // Determine what type of connection to open. Opening
2692 : : // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2693 : : // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2694 : : // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2695 : : // until we hit our block-relay-only peer limit.
2696 : : // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2697 : : // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2698 : : // these conditions are met, check to see if it's time to try an extra
2699 : : // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2700 : : // timer to decide if we should open a FEELER.
2701 : :
2702 [ # # # # ]: 0 : if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2703 : : conn_type = ConnectionType::BLOCK_RELAY;
2704 : : anchor = true;
2705 [ # # ]: 0 : } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2706 : : // OUTBOUND_FULL_RELAY
2707 [ # # ]: 0 : } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2708 : : conn_type = ConnectionType::BLOCK_RELAY;
2709 [ # # # # ]: 0 : } else if (GetTryNewOutboundPeer()) {
2710 : : // OUTBOUND_FULL_RELAY
2711 [ # # # # ]: 0 : } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2712 : : // Periodically connect to a peer (using regular outbound selection
2713 : : // methodology from addrman) and stay connected long enough to sync
2714 : : // headers, but not much else.
2715 : : //
2716 : : // Then disconnect the peer, if we haven't learned anything new.
2717 : : //
2718 : : // The idea is to make eclipse attacks very difficult to pull off,
2719 : : // because every few minutes we're finding a new peer to learn headers
2720 : : // from.
2721 : : //
2722 : : // This is similar to the logic for trying extra outbound (full-relay)
2723 : : // peers, except:
2724 : : // - we do this all the time on an exponential timer, rather than just when
2725 : : // our tip is stale
2726 : : // - we potentially disconnect our next-youngest block-relay-only peer, if our
2727 : : // newest block-relay-only peer delivers a block more recently.
2728 : : // See the eviction logic in net_processing.cpp.
2729 : : //
2730 : : // Because we can promote these connections to block-relay-only
2731 : : // connections, they do not get their own ConnectionType enum
2732 : : // (similar to how we deal with extra outbound peers).
2733 : 0 : next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2734 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2735 [ # # ]: 0 : } else if (now > next_feeler) {
2736 : 0 : next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2737 : 0 : conn_type = ConnectionType::FEELER;
2738 : 0 : fFeeler = true;
2739 [ # # ]: 0 : } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2740 [ # # ]: 0 : m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2741 [ # # # # : 0 : now > next_extra_network_peer &&
# # ]
2742 [ # # ]: 0 : MaybePickPreferredNetwork(preferred_net)) {
2743 : : // Full outbound connection management: Attempt to get at least one
2744 : : // outbound peer from each reachable network by making extra connections
2745 : : // and then protecting "only" peers from a network during outbound eviction.
2746 : : // This is not attempted if the user changed -maxconnections to a value
2747 : : // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2748 : : // to prevent interactions with otherwise protected outbound peers.
2749 : 0 : next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2750 : : } else {
2751 : : // skip to next iteration of while loop
2752 : 0 : continue;
2753 : : }
2754 : :
2755 [ # # ]: 0 : addrman.ResolveCollisions();
2756 : :
2757 : 0 : const auto current_time{NodeClock::now()};
2758 : 0 : int nTries = 0;
2759 [ # # ]: 0 : const auto reachable_nets{g_reachable_nets.All()};
2760 : :
2761 [ # # # # ]: 0 : while (!interruptNet)
2762 : : {
2763 [ # # # # ]: 0 : if (anchor && !m_anchors.empty()) {
2764 : 0 : const CAddress addr = m_anchors.back();
2765 : 0 : m_anchors.pop_back();
2766 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
# # # # #
# # # #
# ]
2767 [ # # # # : 0 : !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
# # ]
2768 [ # # ]: 0 : outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2769 : 0 : addrConnect = addr;
2770 [ # # # # : 0 : LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2771 : 0 : break;
2772 : 0 : }
2773 : :
2774 : : // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2775 : : // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2776 : : // already-connected network ranges, ...) before trying new addrman addresses.
2777 : 0 : nTries++;
2778 [ # # ]: 0 : if (nTries > 100)
2779 : : break;
2780 : :
2781 [ # # ]: 0 : CAddress addr;
2782 : 0 : NodeSeconds addr_last_try{0s};
2783 : :
2784 [ # # ]: 0 : if (fFeeler) {
2785 : : // First, try to get a tried table collision address. This returns
2786 : : // an empty (invalid) address if there are no collisions to try.
2787 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2788 : :
2789 [ # # # # ]: 0 : if (!addr.IsValid()) {
2790 : : // No tried table collisions. Select a new table address
2791 : : // for our feeler.
2792 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2793 [ # # # # ]: 0 : } else if (AlreadyConnectedToAddress(addr)) {
2794 : : // If test-before-evict logic would have us connect to a
2795 : : // peer that we're already connected to, just mark that
2796 : : // address as Good(). We won't be able to initiate the
2797 : : // connection anyway, so this avoids inadvertently evicting
2798 : : // a currently-connected peer.
2799 [ # # ]: 0 : addrman.Good(addr);
2800 : : // Select a new table address for our feeler instead.
2801 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2802 : : }
2803 : : } else {
2804 : : // Not a feeler
2805 : : // If preferred_net has a value set, pick an extra outbound
2806 : : // peer from that network. The eviction logic in net_processing
2807 : : // ensures that a peer from another network will be evicted.
2808 [ # # ]: 0 : std::tie(addr, addr_last_try) = preferred_net.has_value()
2809 [ # # # # : 0 : ? addrman.Select(false, {*preferred_net})
# # # # #
# ]
2810 [ # # ]: 0 : : addrman.Select(false, reachable_nets);
2811 : : }
2812 : :
2813 : : // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2814 [ # # # # : 0 : if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
# # # # ]
2815 : 0 : continue;
2816 : : }
2817 : :
2818 : : // if we selected an invalid or local address, restart
2819 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr)) {
# # # # ]
2820 : : break;
2821 : : }
2822 : :
2823 [ # # # # ]: 0 : if (!g_reachable_nets.Contains(addr)) {
2824 : 0 : continue;
2825 : : }
2826 : :
2827 : : // only consider very recently tried nodes after 30 failed attempts
2828 [ # # # # ]: 0 : if (current_time - addr_last_try < 10min && nTries < 30) {
2829 : 0 : continue;
2830 : : }
2831 : :
2832 : : // for non-feelers, require all the services we'll want,
2833 : : // for feelers, only require they be a full node (only because most
2834 : : // SPV clients don't have a good address DB available)
2835 [ # # # # : 0 : if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
# # ]
2836 : 0 : continue;
2837 [ # # # # ]: 0 : } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2838 : 0 : continue;
2839 : : }
2840 : :
2841 : : // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2842 [ # # # # : 0 : if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
# # # # #
# # # ]
2843 : 0 : continue;
2844 : : }
2845 : :
2846 : : // Do not make automatic outbound connections to addnode peers, to
2847 : : // not use our limited outbound slots for them and to ensure
2848 : : // addnode connections benefit from their intended protections.
2849 [ # # # # ]: 0 : if (AddedNodesContain(addr)) {
2850 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
# # # # #
# # # # #
# # # # #
# # # # #
# # ]
2851 : : preferred_net.has_value() ? "network-specific " : "",
2852 : : ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2853 : : fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2854 : 0 : continue;
2855 : 0 : }
2856 : :
2857 : 0 : addrConnect = addr;
2858 : : break;
2859 : 0 : }
2860 : :
2861 [ # # # # ]: 0 : if (addrConnect.IsValid()) {
2862 [ # # ]: 0 : if (fFeeler) {
2863 : : // Add small amount of random noise before connection to avoid synchronization.
2864 [ # # # # ]: 0 : if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2865 : 0 : return;
2866 : : }
2867 [ # # # # : 0 : LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2868 : : }
2869 : :
2870 [ # # # # : 0 : if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
# # # # #
# # # #
# ]
2871 : :
2872 : : // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2873 : : // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2874 : : // Don't record addrman failure attempts when node is offline. This can be identified since all local
2875 : : // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2876 [ # # ]: 0 : const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2877 : : // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2878 [ # # ]: 0 : const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2879 [ # # ]: 0 : OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2880 : : }
2881 : 0 : }
2882 : 0 : }
2883 : :
2884 : 0 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2885 : : {
2886 : 0 : std::vector<CAddress> ret;
2887 [ # # ]: 0 : LOCK(m_nodes_mutex);
2888 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2889 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) {
2890 [ # # ]: 0 : ret.push_back(pnode->addr);
2891 : : }
2892 : : }
2893 : :
2894 [ # # ]: 0 : return ret;
2895 : 0 : }
2896 : :
2897 : 2757 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2898 : : {
2899 : 2757 : std::vector<AddedNodeInfo> ret;
2900 : :
2901 [ + - ]: 2757 : std::list<AddedNodeParams> lAddresses(0);
2902 : 2757 : {
2903 [ + - ]: 2757 : LOCK(m_added_nodes_mutex);
2904 [ - + + - ]: 2757 : ret.reserve(m_added_node_params.size());
2905 [ + - ]: 2757 : std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2906 : 0 : }
2907 : :
2908 : :
2909 : : // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2910 [ + - ]: 2757 : std::map<CService, bool> mapConnected;
2911 : 2757 : std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2912 : 2757 : {
2913 [ + - ]: 2757 : LOCK(m_nodes_mutex);
2914 [ + + ]: 25453 : for (const CNode* pnode : m_nodes) {
2915 [ + - + + ]: 22696 : if (pnode->addr.IsValid()) {
2916 [ + - ]: 19008 : mapConnected[pnode->addr] = pnode->IsInboundConn();
2917 : : }
2918 [ - + ]: 22696 : std::string addrName{pnode->m_addr_name};
2919 [ + - ]: 22696 : if (!addrName.empty()) {
2920 [ + - ]: 22696 : mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2921 : : }
2922 : 22696 : }
2923 : 0 : }
2924 : :
2925 [ + + ]: 22841 : for (const auto& addr : lAddresses) {
2926 [ + - + - : 40168 : CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
+ - + - ]
2927 [ + - + - ]: 20084 : AddedNodeInfo addedNode{addr, CService(), false, false};
2928 [ + - + + ]: 20084 : if (service.IsValid()) {
2929 : : // strAddNode is an IP:port
2930 [ + - ]: 1056 : auto it = mapConnected.find(service);
2931 [ + + ]: 1056 : if (it != mapConnected.end()) {
2932 [ + + ]: 43 : if (!include_connected) {
2933 : 23 : continue;
2934 : : }
2935 : 20 : addedNode.resolvedAddress = service;
2936 : 20 : addedNode.fConnected = true;
2937 : 20 : addedNode.fInbound = it->second;
2938 : : }
2939 : : } else {
2940 : : // strAddNode is a name
2941 : 19028 : auto it = mapConnectedByName.find(addr.m_added_node);
2942 [ + + ]: 19028 : if (it != mapConnectedByName.end()) {
2943 [ + + ]: 420 : if (!include_connected) {
2944 : 212 : continue;
2945 : : }
2946 : 208 : addedNode.resolvedAddress = it->second.second;
2947 : 208 : addedNode.fConnected = true;
2948 : 208 : addedNode.fInbound = it->second.first;
2949 : : }
2950 : : }
2951 [ + - ]: 19849 : ret.emplace_back(std::move(addedNode));
2952 : 20084 : }
2953 : :
2954 : 2757 : return ret;
2955 : 2757 : }
2956 : :
2957 : 0 : void CConnman::ThreadOpenAddedConnections()
2958 : : {
2959 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2960 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2961 : 0 : while (true)
2962 : : {
2963 : 0 : CountingSemaphoreGrant<> grant(*semAddnode);
2964 [ # # ]: 0 : std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2965 : 0 : bool tried = false;
2966 [ # # ]: 0 : for (const AddedNodeInfo& info : vInfo) {
2967 [ # # ]: 0 : if (!grant) {
2968 : : // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2969 : : // the addednodeinfo state might change.
2970 : : break;
2971 : : }
2972 : 0 : tried = true;
2973 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2974 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2975 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2976 : 0 : grant = CountingSemaphoreGrant<>(*semAddnode, /*fTry=*/true);
2977 : 0 : }
2978 : : // See if any reconnections are desired.
2979 [ # # ]: 0 : PerformReconnections();
2980 : : // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2981 [ # # # # : 0 : if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
# # ]
2982 : : return;
2983 : 0 : }
2984 : : }
2985 : :
2986 : : // if successful, this moves the passed grant to the constructed node
2987 : 0 : void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CountingSemaphoreGrant<>&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2988 : : {
2989 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2990 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
2991 : :
2992 : : //
2993 : : // Initiate outbound network connection
2994 : : //
2995 [ # # ]: 0 : if (interruptNet) {
2996 : : return;
2997 : : }
2998 [ # # ]: 0 : if (!fNetworkActive) {
2999 : : return;
3000 : : }
3001 [ # # ]: 0 : if (!pszDest) {
3002 [ # # # # : 0 : bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
# # ]
3003 [ # # # # : 0 : if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
# # ]
3004 : 0 : return;
3005 : : }
3006 [ # # # # ]: 0 : } else if (FindNode(std::string(pszDest)))
3007 : : return;
3008 : :
3009 [ # # ]: 0 : CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3010 : :
3011 [ # # ]: 0 : if (!pnode)
3012 : : return;
3013 : 0 : pnode->grantOutbound = std::move(grant_outbound);
3014 : :
3015 : 0 : m_msgproc->InitializeNode(*pnode, m_local_services);
3016 : 0 : {
3017 : 0 : LOCK(m_nodes_mutex);
3018 [ # # ]: 0 : m_nodes.push_back(pnode);
3019 : :
3020 : : // update connection count by network
3021 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3022 : 0 : }
3023 : :
3024 : : TRACEPOINT(net, outbound_connection,
3025 : : pnode->GetId(),
3026 : : pnode->m_addr_name.c_str(),
3027 : : pnode->ConnectionTypeAsString().c_str(),
3028 : : pnode->ConnectedThroughNetwork(),
3029 : 0 : GetNodeCount(ConnectionDirection::Out));
3030 : : }
3031 : :
3032 : : Mutex NetEventsInterface::g_msgproc_mutex;
3033 : :
3034 : 0 : void CConnman::ThreadMessageHandler()
3035 : : {
3036 : 0 : LOCK(NetEventsInterface::g_msgproc_mutex);
3037 : :
3038 [ # # ]: 0 : while (!flagInterruptMsgProc)
3039 : : {
3040 : 0 : bool fMoreWork = false;
3041 : :
3042 : 0 : {
3043 : : // Randomize the order in which we process messages from/to our peers.
3044 : : // This prevents attacks in which an attacker exploits having multiple
3045 : : // consecutive connections in the m_nodes list.
3046 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/true};
3047 : :
3048 [ # # ]: 0 : for (CNode* pnode : snap.Nodes()) {
3049 [ # # ]: 0 : if (pnode->fDisconnect)
3050 : 0 : continue;
3051 : :
3052 : : // Receive messages
3053 [ # # ]: 0 : bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3054 [ # # # # ]: 0 : fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3055 [ # # ]: 0 : if (flagInterruptMsgProc)
3056 : : return;
3057 : : // Send messages
3058 [ # # ]: 0 : m_msgproc->SendMessages(pnode);
3059 : :
3060 [ # # ]: 0 : if (flagInterruptMsgProc)
3061 : : return;
3062 : : }
3063 [ # # ]: 0 : }
3064 : :
3065 [ # # ]: 0 : WAIT_LOCK(mutexMsgProc, lock);
3066 [ # # ]: 0 : if (!fMoreWork) {
3067 [ # # # # ]: 0 : condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3068 : : }
3069 [ # # ]: 0 : fMsgProcWake = false;
3070 : 0 : }
3071 : 0 : }
3072 : :
3073 : 0 : void CConnman::ThreadI2PAcceptIncoming()
3074 : : {
3075 : 0 : static constexpr auto err_wait_begin = 1s;
3076 : 0 : static constexpr auto err_wait_cap = 5min;
3077 : 0 : auto err_wait = err_wait_begin;
3078 : :
3079 : 0 : bool advertising_listen_addr = false;
3080 : 0 : i2p::Connection conn;
3081 : :
3082 : 0 : auto SleepOnFailure = [&]() {
3083 : 0 : interruptNet.sleep_for(err_wait);
3084 [ # # ]: 0 : if (err_wait < err_wait_cap) {
3085 : 0 : err_wait += 1s;
3086 : : }
3087 : 0 : };
3088 : :
3089 [ # # # # ]: 0 : while (!interruptNet) {
3090 : :
3091 [ # # # # ]: 0 : if (!m_i2p_sam_session->Listen(conn)) {
3092 [ # # # # : 0 : if (advertising_listen_addr && conn.me.IsValid()) {
# # ]
3093 [ # # ]: 0 : RemoveLocal(conn.me);
3094 : : advertising_listen_addr = false;
3095 : : }
3096 [ # # ]: 0 : SleepOnFailure();
3097 : 0 : continue;
3098 : : }
3099 : :
3100 [ # # ]: 0 : if (!advertising_listen_addr) {
3101 [ # # ]: 0 : AddLocal(conn.me, LOCAL_MANUAL);
3102 : : advertising_listen_addr = true;
3103 : : }
3104 : :
3105 [ # # # # ]: 0 : if (!m_i2p_sam_session->Accept(conn)) {
3106 [ # # ]: 0 : SleepOnFailure();
3107 : 0 : continue;
3108 : : }
3109 : :
3110 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None, conn.me, conn.peer);
3111 : :
3112 : 0 : err_wait = err_wait_begin;
3113 : : }
3114 : 0 : }
3115 : :
3116 : 0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3117 : : {
3118 : 0 : int nOne = 1;
3119 : :
3120 : : // Create socket for listening for incoming connections
3121 : 0 : struct sockaddr_storage sockaddr;
3122 : 0 : socklen_t len = sizeof(sockaddr);
3123 [ # # ]: 0 : if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3124 : : {
3125 [ # # # # ]: 0 : strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3126 [ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3127 : 0 : return false;
3128 : : }
3129 : :
3130 : 0 : std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3131 [ # # ]: 0 : if (!sock) {
3132 [ # # # # : 0 : strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
# # ]
3133 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3134 : 0 : return false;
3135 : : }
3136 : :
3137 : : // Allow binding if the port is still in TIME_WAIT state after
3138 : : // the program was closed and restarted.
3139 [ # # # # ]: 0 : if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3140 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3141 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3142 : : }
3143 : :
3144 : : // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3145 : : // and enable it by default or not. Try to enable it, if possible.
3146 [ # # ]: 0 : if (addrBind.IsIPv6()) {
3147 : : #ifdef IPV6_V6ONLY
3148 [ # # # # ]: 0 : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3149 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3150 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3151 : : }
3152 : : #endif
3153 : : #ifdef WIN32
3154 : : int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3155 : : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3156 : : strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3157 : : LogPrintf("%s\n", strError.original);
3158 : : }
3159 : : #endif
3160 : : }
3161 : :
3162 [ # # # # ]: 0 : if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3163 : 0 : int nErr = WSAGetLastError();
3164 [ # # ]: 0 : if (nErr == WSAEADDRINUSE)
3165 [ # # # # ]: 0 : strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3166 : : else
3167 [ # # # # : 0 : strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
# # ]
3168 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3169 : 0 : return false;
3170 : : }
3171 [ # # # # ]: 0 : LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3172 : :
3173 : : // Listen for incoming connections
3174 [ # # # # ]: 0 : if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3175 : : {
3176 [ # # # # ]: 0 : strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3177 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3178 : 0 : return false;
3179 : : }
3180 : :
3181 [ # # ]: 0 : vhListenSocket.emplace_back(std::move(sock), permissions);
3182 : : return true;
3183 : 0 : }
3184 : :
3185 : 0 : void Discover()
3186 : : {
3187 [ # # ]: 0 : if (!fDiscover)
3188 : : return;
3189 : :
3190 [ # # ]: 0 : for (const CNetAddr &addr: GetLocalAddresses()) {
3191 [ # # # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3192 [ # # # # ]: 0 : LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3193 : 0 : }
3194 : : }
3195 : :
3196 : 7272 : void CConnman::SetNetworkActive(bool active)
3197 : : {
3198 : 7272 : LogPrintf("%s: %s\n", __func__, active);
3199 : :
3200 [ + + ]: 7272 : if (fNetworkActive == active) {
3201 : : return;
3202 : : }
3203 : :
3204 [ - + ]: 5150 : fNetworkActive = active;
3205 : :
3206 [ - + ]: 5150 : if (m_client_interface) {
3207 : 0 : m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3208 : : }
3209 : : }
3210 : :
3211 : 2772 : CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3212 : 2772 : const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3213 : 2772 : : addrman(addrman_in)
3214 [ + - ]: 2772 : , m_netgroupman{netgroupman}
3215 : 2772 : , nSeed0(nSeed0In)
3216 : 2772 : , nSeed1(nSeed1In)
3217 [ + - + - : 2772 : , m_params(params)
+ - + - ]
3218 : : {
3219 [ + - ]: 2772 : SetTryNewOutboundPeer(false);
3220 : :
3221 : 2772 : Options connOptions;
3222 [ + - ]: 2772 : Init(connOptions);
3223 [ + - ]: 2772 : SetNetworkActive(network_active);
3224 : 2772 : }
3225 : :
3226 : 0 : NodeId CConnman::GetNewNodeId()
3227 : : {
3228 : 0 : return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3229 : : }
3230 : :
3231 : 9745 : uint16_t CConnman::GetDefaultPort(Network net) const
3232 : : {
3233 [ + + ]: 9745 : return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3234 : : }
3235 : :
3236 : 624341 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3237 : : {
3238 : 624341 : CNetAddr a;
3239 [ + - + + : 624341 : return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
+ - + - ]
3240 : 624341 : }
3241 : :
3242 : 0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3243 : : {
3244 : 0 : const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3245 : :
3246 [ # # ]: 0 : bilingual_str strError;
3247 [ # # # # ]: 0 : if (!BindListenPort(addr, strError, permissions)) {
3248 [ # # # # ]: 0 : if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3249 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3250 : : }
3251 : 0 : return false;
3252 : : }
3253 : :
3254 [ # # # # : 0 : if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
# # # # #
# ]
3255 [ # # ]: 0 : AddLocal(addr, LOCAL_BIND);
3256 : : }
3257 : :
3258 : : return true;
3259 : 0 : }
3260 : :
3261 : 0 : bool CConnman::InitBinds(const Options& options)
3262 : : {
3263 [ # # ]: 0 : for (const auto& addrBind : options.vBinds) {
3264 [ # # ]: 0 : if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3265 : : return false;
3266 : : }
3267 : : }
3268 [ # # ]: 0 : for (const auto& addrBind : options.vWhiteBinds) {
3269 [ # # ]: 0 : if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3270 : : return false;
3271 : : }
3272 : : }
3273 [ # # ]: 0 : for (const auto& addr_bind : options.onion_binds) {
3274 [ # # ]: 0 : if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3275 : : return false;
3276 : : }
3277 : : }
3278 [ # # ]: 0 : if (options.bind_on_any) {
3279 : : // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3280 : : // may not have IPv6 support and the user did not explicitly ask us to
3281 : : // bind on that.
3282 : 0 : const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3283 [ # # ]: 0 : Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3284 : :
3285 : 0 : struct in_addr inaddr_any;
3286 : 0 : inaddr_any.s_addr = htonl(INADDR_ANY);
3287 [ # # # # ]: 0 : const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3288 [ # # # # ]: 0 : if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3289 : 0 : return false;
3290 : : }
3291 : 0 : }
3292 : : return true;
3293 : : }
3294 : :
3295 : 0 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3296 : : {
3297 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3298 : 0 : Init(connOptions);
3299 : :
3300 [ # # # # ]: 0 : if (fListen && !InitBinds(connOptions)) {
3301 [ # # ]: 0 : if (m_client_interface) {
3302 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3303 [ # # ]: 0 : _("Failed to listen on any port. Use -listen=0 if you want this."),
3304 : 0 : "", CClientUIInterface::MSG_ERROR);
3305 : : }
3306 : 0 : return false;
3307 : : }
3308 : :
3309 : 0 : Proxy i2p_sam;
3310 [ # # # # : 0 : if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
# # ]
3311 [ # # # # ]: 0 : m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3312 [ # # ]: 0 : i2p_sam, &interruptNet);
3313 : : }
3314 : :
3315 : : // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3316 [ # # ]: 0 : std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3317 [ # # ]: 0 : if (!seed_nodes.empty()) {
3318 : 0 : std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3319 : : }
3320 : :
3321 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3322 : : // Load addresses from anchors.dat
3323 [ # # # # : 0 : m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
# # ]
3324 [ # # # # ]: 0 : if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3325 [ # # ]: 0 : m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3326 : : }
3327 [ # # # # ]: 0 : LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3328 : : }
3329 : :
3330 [ # # ]: 0 : if (m_client_interface) {
3331 [ # # # # ]: 0 : m_client_interface->InitMessage(_("Starting network threads…"));
3332 : : }
3333 : :
3334 : 0 : fAddressesInitialized = true;
3335 : :
3336 [ # # ]: 0 : if (semOutbound == nullptr) {
3337 : : // initialize semaphore
3338 [ # # # # ]: 0 : semOutbound = std::make_unique<std::counting_semaphore<>>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3339 : : }
3340 [ # # ]: 0 : if (semAddnode == nullptr) {
3341 : : // initialize semaphore
3342 [ # # ]: 0 : semAddnode = std::make_unique<std::counting_semaphore<>>(m_max_addnode);
3343 : : }
3344 : :
3345 : : //
3346 : : // Start threads
3347 : : //
3348 [ # # ]: 0 : assert(m_msgproc);
3349 [ # # ]: 0 : interruptNet.reset();
3350 [ # # ]: 0 : flagInterruptMsgProc = false;
3351 : :
3352 : 0 : {
3353 [ # # ]: 0 : LOCK(mutexMsgProc);
3354 [ # # ]: 0 : fMsgProcWake = false;
3355 : 0 : }
3356 : :
3357 : : // Send and receive from sockets, accept connections
3358 [ # # ]: 0 : threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3359 : :
3360 [ # # # # : 0 : if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
# # ]
3361 [ # # ]: 0 : LogPrintf("DNS seeding disabled\n");
3362 : : else
3363 [ # # ]: 0 : threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3364 : :
3365 : : // Initiate manual connections
3366 [ # # ]: 0 : threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3367 : :
3368 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3369 [ # # ]: 0 : if (m_client_interface) {
3370 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3371 [ # # ]: 0 : _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3372 [ # # ]: 0 : "", CClientUIInterface::MSG_ERROR);
3373 : : }
3374 : 0 : return false;
3375 : : }
3376 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3377 : 0 : threadOpenConnections = std::thread(
3378 [ # # ]: 0 : &util::TraceThread, "opencon",
3379 [ # # # # : 0 : [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
# # # # ]
3380 : : }
3381 : :
3382 : : // Process messages
3383 [ # # ]: 0 : threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3384 : :
3385 [ # # ]: 0 : if (m_i2p_sam_session) {
3386 : 0 : threadI2PAcceptIncoming =
3387 [ # # ]: 0 : std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3388 : : }
3389 : :
3390 : : // Dump network addresses
3391 [ # # ]: 0 : scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3392 : :
3393 : : // Run the ASMap Health check once and then schedule it to run every 24h.
3394 [ # # # # ]: 0 : if (m_netgroupman.UsingASMap()) {
3395 [ # # ]: 0 : ASMapHealthCheck();
3396 [ # # ]: 0 : scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3397 : : }
3398 : :
3399 : : return true;
3400 : 0 : }
3401 : :
3402 : : class CNetCleanup
3403 : : {
3404 : : public:
3405 : : CNetCleanup() = default;
3406 : :
3407 : : ~CNetCleanup()
3408 : : {
3409 : : #ifdef WIN32
3410 : : // Shutdown Windows Sockets
3411 : : WSACleanup();
3412 : : #endif
3413 : : }
3414 : : };
3415 : : static CNetCleanup instance_of_cnetcleanup;
3416 : :
3417 : 2772 : void CConnman::Interrupt()
3418 : : {
3419 : 2772 : {
3420 : 2772 : LOCK(mutexMsgProc);
3421 [ + - ]: 2772 : flagInterruptMsgProc = true;
3422 : 2772 : }
3423 : 2772 : condMsgProc.notify_all();
3424 : :
3425 : 2772 : interruptNet();
3426 : 2772 : g_socks5_interrupt();
3427 : :
3428 [ - + ]: 2772 : if (semOutbound) {
3429 [ # # ]: 0 : for (int i=0; i<m_max_automatic_outbound; i++) {
3430 : 0 : semOutbound->release();
3431 : : }
3432 : : }
3433 : :
3434 [ - + ]: 2772 : if (semAddnode) {
3435 [ # # ]: 0 : for (int i=0; i<m_max_addnode; i++) {
3436 : 0 : semAddnode->release();
3437 : : }
3438 : : }
3439 : 2772 : }
3440 : :
3441 : 2772 : void CConnman::StopThreads()
3442 : : {
3443 [ - + ]: 2772 : if (threadI2PAcceptIncoming.joinable()) {
3444 : 0 : threadI2PAcceptIncoming.join();
3445 : : }
3446 [ - + ]: 2772 : if (threadMessageHandler.joinable())
3447 : 0 : threadMessageHandler.join();
3448 [ - + ]: 2772 : if (threadOpenConnections.joinable())
3449 : 0 : threadOpenConnections.join();
3450 [ - + ]: 2772 : if (threadOpenAddedConnections.joinable())
3451 : 0 : threadOpenAddedConnections.join();
3452 [ - + ]: 2772 : if (threadDNSAddressSeed.joinable())
3453 : 0 : threadDNSAddressSeed.join();
3454 [ - + ]: 2772 : if (threadSocketHandler.joinable())
3455 : 0 : threadSocketHandler.join();
3456 : 2772 : }
3457 : :
3458 : 15803 : void CConnman::StopNodes()
3459 : : {
3460 [ - + ]: 15803 : if (fAddressesInitialized) {
3461 : 0 : DumpAddresses();
3462 : 0 : fAddressesInitialized = false;
3463 : :
3464 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3465 : : // Anchor connections are only dumped during clean shutdown.
3466 : 0 : std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3467 [ # # # # ]: 0 : if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3468 [ # # ]: 0 : anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3469 : : }
3470 [ # # # # : 0 : DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
# # ]
3471 : 0 : }
3472 : : }
3473 : :
3474 : : // Delete peer connections.
3475 : 15803 : std::vector<CNode*> nodes;
3476 [ + - + - ]: 31606 : WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3477 [ + + ]: 37378 : for (CNode* pnode : nodes) {
3478 [ + - - + : 21575 : LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
- - - - ]
3479 [ + - ]: 21575 : pnode->CloseSocketDisconnect();
3480 [ + - ]: 21575 : DeleteNode(pnode);
3481 : : }
3482 : :
3483 [ - + ]: 15803 : for (CNode* pnode : m_nodes_disconnected) {
3484 [ # # ]: 0 : DeleteNode(pnode);
3485 : : }
3486 : 15803 : m_nodes_disconnected.clear();
3487 : 15803 : vhListenSocket.clear();
3488 [ - + ]: 15803 : semOutbound.reset();
3489 [ - + ]: 15803 : semAddnode.reset();
3490 : 15803 : }
3491 : :
3492 : 21575 : void CConnman::DeleteNode(CNode* pnode)
3493 : : {
3494 [ - + ]: 21575 : assert(pnode);
3495 : 21575 : m_msgproc->FinalizeNode(*pnode);
3496 : 21575 : delete pnode;
3497 : 21575 : }
3498 : :
3499 : 2772 : CConnman::~CConnman()
3500 : : {
3501 : 2772 : Interrupt();
3502 : 2772 : Stop();
3503 : 2772 : }
3504 : :
3505 : 135842 : std::vector<CAddress> CConnman::GetAddressesUnsafe(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3506 : : {
3507 : 135842 : std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3508 [ - + ]: 135842 : if (m_banman) {
3509 [ # # ]: 0 : addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3510 [ # # # # ]: 0 : [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3511 [ # # ]: 0 : addresses.end());
3512 : : }
3513 : 135842 : return addresses;
3514 : 0 : }
3515 : :
3516 : 9299 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3517 : : {
3518 : 9299 : auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3519 [ + - ]: 9299 : uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3520 [ + - + - : 9299 : .Write(requestor.ConnectedThroughNetwork())
- + ]
3521 [ + - + + ]: 9299 : .Write(local_socket_bytes)
3522 : : // For outbound connections, the port of the bound address is randomly
3523 : : // assigned by the OS and would therefore not be useful for seeding.
3524 [ + + + - : 9299 : .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
+ - ]
3525 [ + - ]: 9299 : .Finalize();
3526 : 9299 : const auto current_time = GetTime<std::chrono::microseconds>();
3527 [ + - ]: 9299 : auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3528 [ + + ]: 9299 : CachedAddrResponse& cache_entry = r.first->second;
3529 [ + + ]: 9299 : if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3530 [ + - ]: 1255 : cache_entry.m_addrs_response_cache = GetAddressesUnsafe(max_addresses, max_pct, /*network=*/std::nullopt);
3531 : : // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3532 : : // and the usefulness of ADDR responses to honest users.
3533 : : //
3534 : : // Longer cache lifetime makes it more difficult for an attacker to scrape
3535 : : // enough AddrMan data to maliciously infer something useful.
3536 : : // By the time an attacker scraped enough AddrMan records, most of
3537 : : // the records should be old enough to not leak topology info by
3538 : : // e.g. analyzing real-time changes in timestamps.
3539 : : //
3540 : : // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3541 : : // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3542 : : // most of it could be scraped (considering that timestamps are updated via
3543 : : // ADDR self-announcements and when nodes communicate).
3544 : : // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3545 : : // (because even several timestamps of the same handful of nodes may leak privacy).
3546 : : //
3547 : : // On the other hand, longer cache lifetime makes ADDR responses
3548 : : // outdated and less useful for an honest requestor, e.g. if most nodes
3549 : : // in the ADDR response are no longer active.
3550 : : //
3551 : : // However, the churn in the network is known to be rather low. Since we consider
3552 : : // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3553 : : // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3554 : : // in terms of the freshness of the response.
3555 : 1255 : cache_entry.m_cache_entry_expiration = current_time +
3556 : 1255 : 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3557 : : }
3558 [ + - ]: 9299 : return cache_entry.m_addrs_response_cache;
3559 : 9299 : }
3560 : :
3561 : 126497 : bool CConnman::AddNode(const AddedNodeParams& add)
3562 : : {
3563 [ + - + - ]: 126497 : const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3564 [ + - ]: 126497 : const bool resolved_is_valid{resolved.IsValid()};
3565 : :
3566 [ + - ]: 126497 : LOCK(m_added_nodes_mutex);
3567 [ + + ]: 10105487 : for (const auto& it : m_added_node_params) {
3568 [ + + + + : 11020194 : if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
+ - + - +
- + - + +
+ + + + -
- - - ]
3569 : : }
3570 : :
3571 [ + - ]: 40813 : m_added_node_params.push_back(add);
3572 : : return true;
3573 : 126497 : }
3574 : :
3575 : 87387 : bool CConnman::RemoveAddedNode(const std::string& strNode)
3576 : : {
3577 : 87387 : LOCK(m_added_nodes_mutex);
3578 [ + + ]: 2124435 : for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3579 [ + + ]: 2057777 : if (strNode == it->m_added_node) {
3580 : 20729 : m_added_node_params.erase(it);
3581 : 20729 : return true;
3582 : : }
3583 : : }
3584 : : return false;
3585 : 87387 : }
3586 : :
3587 : 0 : bool CConnman::AddedNodesContain(const CAddress& addr) const
3588 : : {
3589 : 0 : AssertLockNotHeld(m_added_nodes_mutex);
3590 : 0 : const std::string addr_str{addr.ToStringAddr()};
3591 [ # # ]: 0 : const std::string addr_port_str{addr.ToStringAddrPort()};
3592 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
3593 [ # # ]: 0 : return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3594 [ # # # # ]: 0 : && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3595 [ # # # # : 0 : [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
# # ]
3596 : 0 : }
3597 : :
3598 : 4194 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3599 : : {
3600 : 4194 : LOCK(m_nodes_mutex);
3601 [ + + ]: 4194 : if (flags == ConnectionDirection::Both) // Shortcut if we want total
3602 [ - + ]: 1107 : return m_nodes.size();
3603 : :
3604 : 3087 : int nNum = 0;
3605 [ + + ]: 97275 : for (const auto& pnode : m_nodes) {
3606 [ + + + + ]: 187420 : if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3607 : 1183 : nNum++;
3608 : : }
3609 : : }
3610 : :
3611 : 3087 : return nNum;
3612 : 4194 : }
3613 : :
3614 : :
3615 : 0 : std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3616 : : {
3617 : 0 : LOCK(g_maplocalhost_mutex);
3618 [ # # # # ]: 0 : return mapLocalHost;
3619 : 0 : }
3620 : :
3621 : 48551 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3622 : : {
3623 : 48551 : return m_netgroupman.GetMappedAS(addr);
3624 : : }
3625 : :
3626 : 2750 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3627 : : {
3628 : 2750 : vstats.clear();
3629 : 2750 : LOCK(m_nodes_mutex);
3630 [ - + + - ]: 2750 : vstats.reserve(m_nodes.size());
3631 [ + + ]: 25446 : for (CNode* pnode : m_nodes) {
3632 [ + - ]: 22696 : vstats.emplace_back();
3633 [ + - ]: 22696 : pnode->CopyStats(vstats.back());
3634 [ + - ]: 22696 : vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3635 : : }
3636 : 2750 : }
3637 : :
3638 : 42658 : bool CConnman::DisconnectNode(const std::string& strNode)
3639 : : {
3640 : 42658 : LOCK(m_nodes_mutex);
3641 [ + - + + ]: 42658 : if (CNode* pnode = FindNode(strNode)) {
3642 [ + - - + : 486 : LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
- - - - -
- - - -
- ]
3643 : 486 : pnode->fDisconnect = true;
3644 : 486 : return true;
3645 : : }
3646 : : return false;
3647 : 42658 : }
3648 : :
3649 : 48900 : bool CConnman::DisconnectNode(const CSubNet& subnet)
3650 : : {
3651 : 48900 : bool disconnected = false;
3652 : 48900 : LOCK(m_nodes_mutex);
3653 [ + + ]: 806185 : for (CNode* pnode : m_nodes) {
3654 [ + - + + ]: 757285 : if (subnet.Match(pnode->addr)) {
3655 [ + - - + : 1979 : LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
- - - - -
- - - - -
- - - - -
- ]
3656 : 1979 : pnode->fDisconnect = true;
3657 : 1979 : disconnected = true;
3658 : : }
3659 : : }
3660 [ + - ]: 48900 : return disconnected;
3661 : 48900 : }
3662 : :
3663 : 41191 : bool CConnman::DisconnectNode(const CNetAddr& addr)
3664 : : {
3665 [ + - ]: 41191 : return DisconnectNode(CSubNet(addr));
3666 : : }
3667 : :
3668 : 56514 : bool CConnman::DisconnectNode(NodeId id)
3669 : : {
3670 : 56514 : LOCK(m_nodes_mutex);
3671 [ + + ]: 2363660 : for(CNode* pnode : m_nodes) {
3672 [ + + ]: 2315291 : if (id == pnode->GetId()) {
3673 [ + - - + : 8145 : LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
- - - - ]
3674 : 8145 : pnode->fDisconnect = true;
3675 : 8145 : return true;
3676 : : }
3677 : : }
3678 : : return false;
3679 : 56514 : }
3680 : :
3681 : 0 : void CConnman::RecordBytesRecv(uint64_t bytes)
3682 : : {
3683 : 0 : nTotalBytesRecv += bytes;
3684 : 0 : }
3685 : :
3686 : 153066 : void CConnman::RecordBytesSent(uint64_t bytes)
3687 : : {
3688 : 153066 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3689 : 153066 : LOCK(m_total_bytes_sent_mutex);
3690 : :
3691 : 153066 : nTotalBytesSent += bytes;
3692 : :
3693 : 153066 : const auto now = GetTime<std::chrono::seconds>();
3694 [ + + ]: 153066 : if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3695 : : {
3696 : : // timeframe expired, reset cycle
3697 : 12731 : nMaxOutboundCycleStartTime = now;
3698 : 12731 : nMaxOutboundTotalBytesSentInCycle = 0;
3699 : : }
3700 : :
3701 [ + - ]: 153066 : nMaxOutboundTotalBytesSentInCycle += bytes;
3702 : 153066 : }
3703 : :
3704 : 2751 : uint64_t CConnman::GetMaxOutboundTarget() const
3705 : : {
3706 : 2751 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3707 : 2751 : LOCK(m_total_bytes_sent_mutex);
3708 [ + - ]: 2751 : return nMaxOutboundLimit;
3709 : 2751 : }
3710 : :
3711 : 2751 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3712 : : {
3713 : 2751 : return MAX_UPLOAD_TIMEFRAME;
3714 : : }
3715 : :
3716 : 2751 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3717 : : {
3718 : 2751 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3719 : 2751 : LOCK(m_total_bytes_sent_mutex);
3720 [ + - ]: 2751 : return GetMaxOutboundTimeLeftInCycle_();
3721 : 2751 : }
3722 : :
3723 : 62738 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3724 : : {
3725 : 62738 : AssertLockHeld(m_total_bytes_sent_mutex);
3726 : :
3727 [ + + ]: 62738 : if (nMaxOutboundLimit == 0)
3728 : 1116 : return 0s;
3729 : :
3730 [ + + ]: 61622 : if (nMaxOutboundCycleStartTime.count() == 0)
3731 : 42417 : return MAX_UPLOAD_TIMEFRAME;
3732 : :
3733 : 19205 : const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3734 : 19205 : const auto now = GetTime<std::chrono::seconds>();
3735 [ - + ]: 19205 : return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3736 : : }
3737 : :
3738 : 67220 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3739 : : {
3740 : 67220 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3741 : 67220 : LOCK(m_total_bytes_sent_mutex);
3742 [ + + ]: 67220 : if (nMaxOutboundLimit == 0)
3743 : : return false;
3744 : :
3745 [ + + ]: 61057 : if (historicalBlockServingLimit)
3746 : : {
3747 : : // keep a large enough buffer to at least relay each block once
3748 [ + - ]: 59987 : const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3749 : 59987 : const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3750 [ + + + + ]: 59987 : if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3751 : 1277 : return true;
3752 : : }
3753 [ + + ]: 1070 : else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3754 : 415 : return true;
3755 : :
3756 : : return false;
3757 : 67220 : }
3758 : :
3759 : 2751 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
3760 : : {
3761 : 2751 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3762 : 2751 : LOCK(m_total_bytes_sent_mutex);
3763 [ + + ]: 2751 : if (nMaxOutboundLimit == 0)
3764 : : return 0;
3765 : :
3766 [ + + ]: 1635 : return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3767 : 2751 : }
3768 : :
3769 : 2751 : uint64_t CConnman::GetTotalBytesRecv() const
3770 : : {
3771 : 2751 : return nTotalBytesRecv;
3772 : : }
3773 : :
3774 : 2751 : uint64_t CConnman::GetTotalBytesSent() const
3775 : : {
3776 : 2751 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3777 : 2751 : LOCK(m_total_bytes_sent_mutex);
3778 [ + - ]: 2751 : return nTotalBytesSent;
3779 : 2751 : }
3780 : :
3781 : 8298 : ServiceFlags CConnman::GetLocalServices() const
3782 : : {
3783 : 8298 : return m_local_services;
3784 : : }
3785 : :
3786 : 50361 : static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3787 : : {
3788 [ - + ]: 50361 : if (use_v2transport) {
3789 [ # # ]: 0 : return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3790 : : } else {
3791 [ - + ]: 50361 : return std::make_unique<V1Transport>(id);
3792 : : }
3793 : : }
3794 : :
3795 : 50361 : CNode::CNode(NodeId idIn,
3796 : : std::shared_ptr<Sock> sock,
3797 : : const CAddress& addrIn,
3798 : : uint64_t nKeyedNetGroupIn,
3799 : : uint64_t nLocalHostNonceIn,
3800 : : const CService& addrBindIn,
3801 : : const std::string& addrNameIn,
3802 : : ConnectionType conn_type_in,
3803 : : bool inbound_onion,
3804 : 50361 : CNodeOptions&& node_opts)
3805 : 50361 : : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3806 : 50361 : m_permission_flags{node_opts.permission_flags},
3807 [ + + ]: 50361 : m_sock{sock},
3808 : 50361 : m_connected{GetTime<std::chrono::seconds>()},
3809 : 50361 : addr{addrIn},
3810 : 50361 : addrBind{addrBindIn},
3811 [ + + + - ]: 50361 : m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
3812 [ - + ]: 50361 : m_dest(addrNameIn),
3813 : 50361 : m_inbound_onion{inbound_onion},
3814 [ + - ]: 50361 : m_prefer_evict{node_opts.prefer_evict},
3815 : 50361 : nKeyedNetGroup{nKeyedNetGroupIn},
3816 : 50361 : m_conn_type{conn_type_in},
3817 : 50361 : id{idIn},
3818 : 50361 : nLocalHostNonce{nLocalHostNonceIn},
3819 [ + - ]: 50361 : m_recv_flood_size{node_opts.recv_flood_size},
3820 [ + - + - : 100722 : m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
+ + ]
3821 : : {
3822 [ + + + - ]: 50361 : if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3823 : :
3824 [ + + ]: 1812996 : for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3825 [ + - ]: 1762635 : mapRecvBytesPerMsgType[msg] = 0;
3826 : : }
3827 [ + - ]: 50361 : mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3828 : :
3829 [ - + ]: 50361 : if (fLogIPs) {
3830 [ # # # # : 0 : LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
# # ]
3831 : : } else {
3832 [ + - - + : 50361 : LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
- - ]
3833 : : }
3834 [ - - ]: 50361 : }
3835 : :
3836 : 164176 : void CNode::MarkReceivedMsgsForProcessing()
3837 : : {
3838 : 164176 : AssertLockNotHeld(m_msg_process_queue_mutex);
3839 : :
3840 : 164176 : size_t nSizeAdded = 0;
3841 [ + + ]: 328352 : for (const auto& msg : vRecvMsg) {
3842 : : // vRecvMsg contains only completed CNetMessage
3843 : : // the single possible partially deserialized message are held by TransportDeserializer
3844 : 164176 : nSizeAdded += msg.GetMemoryUsage();
3845 : : }
3846 : :
3847 : 164176 : LOCK(m_msg_process_queue_mutex);
3848 : 164176 : m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3849 : 164176 : m_msg_process_queue_size += nSizeAdded;
3850 [ + - ]: 164176 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3851 : 164176 : }
3852 : :
3853 : 172741 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3854 : : {
3855 : 172741 : LOCK(m_msg_process_queue_mutex);
3856 [ + + ]: 172741 : if (m_msg_process_queue.empty()) return std::nullopt;
3857 : :
3858 : 161157 : std::list<CNetMessage> msgs;
3859 : : // Just take one message
3860 : 161157 : msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3861 : 161157 : m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3862 : 161157 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3863 : :
3864 : 322314 : return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3865 : 161157 : }
3866 : :
3867 : 590251 : bool CConnman::NodeFullyConnected(const CNode* pnode)
3868 : : {
3869 [ + - - + : 590251 : return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
- - ]
3870 : : }
3871 : :
3872 : 264161 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3873 : : {
3874 : 264161 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3875 [ - + ]: 264161 : size_t nMessageSize = msg.data.size();
3876 [ - + ]: 264161 : LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3877 [ + - - + ]: 264161 : if (gArgs.GetBoolArg("-capturemessages", false)) {
3878 [ # # ]: 0 : CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3879 : : }
3880 : :
3881 : : TRACEPOINT(net, outbound_message,
3882 : : pnode->GetId(),
3883 : : pnode->m_addr_name.c_str(),
3884 : : pnode->ConnectionTypeAsString().c_str(),
3885 : : msg.m_type.c_str(),
3886 : : msg.data.size(),
3887 : : msg.data.data()
3888 : 264161 : );
3889 : :
3890 : 264161 : size_t nBytesSent = 0;
3891 : 264161 : {
3892 : 264161 : LOCK(pnode->cs_vSend);
3893 : : // Check if the transport still has unsent bytes, and indicate to it that we're about to
3894 : : // give it a message to send.
3895 [ + + ]: 264161 : const auto& [to_send, more, _msg_type] =
3896 [ + + ]: 264161 : pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3897 [ + + - + ]: 264161 : const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3898 : :
3899 : : // Update memory usage of send buffer.
3900 : 264161 : pnode->m_send_memusage += msg.GetMemoryUsage();
3901 [ + - ]: 264161 : if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3902 : : // Move message to vSendMsg queue.
3903 [ + - ]: 264161 : pnode->vSendMsg.push_back(std::move(msg));
3904 : :
3905 : : // If there was nothing to send before, and there is now (predicted by the "more" value
3906 : : // returned by the GetBytesToSend call above), attempt "optimistic write":
3907 : : // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3908 : : // doing a send, try sending from the calling thread if the queue was empty before.
3909 : : // With a V1Transport, more will always be true here, because adding a message always
3910 : : // results in sendable bytes there, but with V2Transport this is not the case (it may
3911 : : // still be in the handshake).
3912 [ + + + - ]: 264161 : if (queue_was_empty && more) {
3913 [ + - ]: 172357 : std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3914 : : }
3915 : 264161 : }
3916 [ + + ]: 264161 : if (nBytesSent) RecordBytesSent(nBytesSent);
3917 : 264161 : }
3918 : :
3919 : 2932 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3920 : : {
3921 : 2932 : CNode* found = nullptr;
3922 : 2932 : LOCK(m_nodes_mutex);
3923 [ + + ]: 48671 : for (auto&& pnode : m_nodes) {
3924 [ + + ]: 46264 : if(pnode->GetId() == id) {
3925 : : found = pnode;
3926 : : break;
3927 : : }
3928 : : }
3929 [ + + + - : 2932 : return found != nullptr && NodeFullyConnected(found) && func(found);
- + - - -
- + - ]
3930 : 2932 : }
3931 : :
3932 : 12006 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3933 : : {
3934 : 12006 : return CSipHasher(nSeed0, nSeed1).Write(id);
3935 : : }
3936 : :
3937 : 0 : uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3938 : : {
3939 : 0 : std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3940 : :
3941 [ # # # # : 0 : return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
# # ]
3942 : 0 : }
3943 : :
3944 : 0 : void CConnman::PerformReconnections()
3945 : : {
3946 : 0 : AssertLockNotHeld(m_reconnections_mutex);
3947 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3948 : 0 : while (true) {
3949 : : // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3950 [ # # ]: 0 : decltype(m_reconnections) todo;
3951 : 0 : {
3952 [ # # ]: 0 : LOCK(m_reconnections_mutex);
3953 [ # # ]: 0 : if (m_reconnections.empty()) break;
3954 [ # # ]: 0 : todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3955 : 0 : }
3956 : :
3957 [ # # ]: 0 : auto& item = *todo.begin();
3958 : 0 : OpenNetworkConnection(item.addr_connect,
3959 : : // We only reconnect if the first attempt to connect succeeded at
3960 : : // connection time, but then failed after the CNode object was
3961 : : // created. Since we already know connecting is possible, do not
3962 : : // count failure to reconnect.
3963 : : /*fCountFailure=*/false,
3964 [ # # ]: 0 : std::move(item.grant),
3965 : 0 : item.destination.empty() ? nullptr : item.destination.c_str(),
3966 : : item.conn_type,
3967 [ # # ]: 0 : item.use_v2transport);
3968 : 0 : }
3969 : 0 : }
3970 : :
3971 : 2749 : void CConnman::ASMapHealthCheck()
3972 : : {
3973 : 2749 : const std::vector<CAddress> v4_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV4, /*filtered=*/false)};
3974 [ + - ]: 2749 : const std::vector<CAddress> v6_addrs{GetAddressesUnsafe(/*max_addresses=*/0, /*max_pct=*/0, Network::NET_IPV6, /*filtered=*/false)};
3975 : 2749 : std::vector<CNetAddr> clearnet_addrs;
3976 [ - + - + : 2749 : clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
+ - ]
3977 [ + - ]: 2749 : std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3978 [ + - ]: 110 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3979 [ + - ]: 2749 : std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3980 [ + - ]: 1336 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3981 [ + - ]: 2749 : m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3982 : 2749 : }
3983 : :
3984 : : // Dump binary message to file, with timestamp.
3985 : 0 : static void CaptureMessageToFile(const CAddress& addr,
3986 : : const std::string& msg_type,
3987 : : std::span<const unsigned char> data,
3988 : : bool is_incoming)
3989 : : {
3990 : : // Note: This function captures the message at the time of processing,
3991 : : // not at socket receive/send time.
3992 : : // This ensures that the messages are always in order from an application
3993 : : // layer (processing) perspective.
3994 : 0 : auto now = GetTime<std::chrono::microseconds>();
3995 : :
3996 : : // Windows folder names cannot include a colon
3997 : 0 : std::string clean_addr = addr.ToStringAddrPort();
3998 [ # # ]: 0 : std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
3999 : :
4000 [ # # # # : 0 : fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
# # ]
4001 [ # # ]: 0 : fs::create_directories(base_path);
4002 : :
4003 [ # # # # ]: 0 : fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4004 [ # # # # ]: 0 : AutoFile f{fsbridge::fopen(path, "ab")};
4005 : :
4006 [ # # ]: 0 : ser_writedata64(f, now.count());
4007 [ # # # # ]: 0 : f << std::span{msg_type};
4008 [ # # # # ]: 0 : for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4009 [ # # ]: 0 : f << uint8_t{'\0'};
4010 : : }
4011 [ # # ]: 0 : uint32_t size = data.size();
4012 [ # # ]: 0 : ser_writedata32(f, size);
4013 [ # # ]: 0 : f << data;
4014 : :
4015 [ # # # # ]: 0 : if (f.fclose() != 0) {
4016 : 0 : throw std::ios_base::failure(
4017 [ # # # # : 0 : strprintf("Error closing %s after write, file contents are likely incomplete", fs::PathToString(path)));
# # ]
4018 : : }
4019 : 0 : }
4020 : :
4021 : : std::function<void(const CAddress& addr,
4022 : : const std::string& msg_type,
4023 : : std::span<const unsigned char> data,
4024 : : bool is_incoming)>
4025 : : CaptureMessage = CaptureMessageToFile;
|