Branch data Line data Source code
1 : : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : : // Copyright (c) 2009-present The Bitcoin Core developers
3 : : // Distributed under the MIT software license, see the accompanying
4 : : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
5 : :
6 : : #include <bitcoin-build-config.h> // IWYU pragma: keep
7 : :
8 : : #include <net.h>
9 : :
10 : : #include <addrdb.h>
11 : : #include <addrman.h>
12 : : #include <banman.h>
13 : : #include <clientversion.h>
14 : : #include <common/args.h>
15 : : #include <common/netif.h>
16 : : #include <compat/compat.h>
17 : : #include <consensus/consensus.h>
18 : : #include <crypto/sha256.h>
19 : : #include <i2p.h>
20 : : #include <key.h>
21 : : #include <logging.h>
22 : : #include <memusage.h>
23 : : #include <net_permissions.h>
24 : : #include <netaddress.h>
25 : : #include <netbase.h>
26 : : #include <node/eviction.h>
27 : : #include <node/interface_ui.h>
28 : : #include <protocol.h>
29 : : #include <random.h>
30 : : #include <scheduler.h>
31 : : #include <util/fs.h>
32 : : #include <util/sock.h>
33 : : #include <util/strencodings.h>
34 : : #include <util/thread.h>
35 : : #include <util/threadinterrupt.h>
36 : : #include <util/trace.h>
37 : : #include <util/translation.h>
38 : : #include <util/vector.h>
39 : :
40 : : #ifdef WIN32
41 : : #include <string.h>
42 : : #endif
43 : :
44 : : #if HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS
45 : : #include <ifaddrs.h>
46 : : #endif
47 : :
48 : : #include <algorithm>
49 : : #include <array>
50 : : #include <cmath>
51 : : #include <cstdint>
52 : : #include <functional>
53 : : #include <optional>
54 : : #include <unordered_map>
55 : :
56 : : TRACEPOINT_SEMAPHORE(net, closed_connection);
57 : : TRACEPOINT_SEMAPHORE(net, evicted_inbound_connection);
58 : : TRACEPOINT_SEMAPHORE(net, inbound_connection);
59 : : TRACEPOINT_SEMAPHORE(net, outbound_connection);
60 : : TRACEPOINT_SEMAPHORE(net, outbound_message);
61 : :
62 : : /** Maximum number of block-relay-only anchor connections */
63 : : static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
64 : : static_assert (MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
65 : : /** Anchor IP address database file name */
66 : : const char* const ANCHORS_DATABASE_FILENAME = "anchors.dat";
67 : :
68 : : // How often to dump addresses to peers.dat
69 : : static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
70 : :
71 : : /** Number of DNS seeds to query when the number of connections is low. */
72 : : static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
73 : :
74 : : /** Minimum number of outbound connections under which we will keep fetching our address seeds. */
75 : : static constexpr int SEED_OUTBOUND_CONNECTION_THRESHOLD = 2;
76 : :
77 : : /** How long to delay before querying DNS seeds
78 : : *
79 : : * If we have more than THRESHOLD entries in addrman, then it's likely
80 : : * that we got those addresses from having previously connected to the P2P
81 : : * network, and that we'll be able to successfully reconnect to the P2P
82 : : * network via contacting one of them. So if that's the case, spend a
83 : : * little longer trying to connect to known peers before querying the
84 : : * DNS seeds.
85 : : */
86 : : static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
87 : : static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
88 : : static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; // "many" vs "few" peers
89 : :
90 : : /** The default timeframe for -maxuploadtarget. 1 day. */
91 : : static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
92 : :
93 : : // A random time period (0 to 1 seconds) is added to feeler connections to prevent synchronization.
94 : : static constexpr auto FEELER_SLEEP_WINDOW{1s};
95 : :
96 : : /** Frequency to attempt extra connections to reachable networks we're not connected to yet **/
97 : : static constexpr auto EXTRA_NETWORK_PEER_INTERVAL{5min};
98 : :
99 : : /** Used to pass flags to the Bind() function */
100 : : enum BindFlags {
101 : : BF_NONE = 0,
102 : : BF_REPORT_ERROR = (1U << 0),
103 : : /**
104 : : * Do not call AddLocal() for our special addresses, e.g., for incoming
105 : : * Tor connections, to prevent gossiping them over the network.
106 : : */
107 : : BF_DONT_ADVERTISE = (1U << 1),
108 : : };
109 : :
110 : : // The set of sockets cannot be modified while waiting
111 : : // The sleep time needs to be small to avoid new sockets stalling
112 : : static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
113 : :
114 : : const std::string NET_MESSAGE_TYPE_OTHER = "*other*";
115 : :
116 : : static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
117 : : static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
118 : : static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // SHA256("addrcache")[0:8]
119 : : //
120 : : // Global state variables
121 : : //
122 : : bool fDiscover = true;
123 : : bool fListen = true;
124 : : GlobalMutex g_maplocalhost_mutex;
125 : : std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(g_maplocalhost_mutex);
126 : : std::string strSubVersion;
127 : :
128 : 511212 : size_t CSerializedNetMsg::GetMemoryUsage() const noexcept
129 : : {
130 [ + + ]: 511212 : return sizeof(*this) + memusage::DynamicUsage(m_type) + memusage::DynamicUsage(data);
131 : : }
132 : :
133 : 156887 : size_t CNetMessage::GetMemoryUsage() const noexcept
134 : : {
135 : 156887 : return sizeof(*this) + memusage::DynamicUsage(m_type) + m_recv.GetMemoryUsage();
136 : : }
137 : :
138 : 0 : void CConnman::AddAddrFetch(const std::string& strDest)
139 : : {
140 : 0 : LOCK(m_addr_fetches_mutex);
141 [ # # ]: 0 : m_addr_fetches.push_back(strDest);
142 : 0 : }
143 : :
144 : 75198 : uint16_t GetListenPort()
145 : : {
146 : : // If -bind= is provided with ":port" part, use that (first one if multiple are provided).
147 [ + - - + ]: 75198 : for (const std::string& bind_arg : gArgs.GetArgs("-bind")) {
148 : 0 : constexpr uint16_t dummy_port = 0;
149 : :
150 [ # # # # ]: 0 : const std::optional<CService> bind_addr{Lookup(bind_arg, dummy_port, /*fAllowLookup=*/false)};
151 [ # # # # : 0 : if (bind_addr.has_value() && bind_addr->GetPort() != dummy_port) return bind_addr->GetPort();
# # # # ]
152 : 75198 : }
153 : :
154 : : // Otherwise, if -whitebind= without NetPermissionFlags::NoBan is provided, use that
155 : : // (-whitebind= is required to have ":port").
156 [ + - - + ]: 75198 : for (const std::string& whitebind_arg : gArgs.GetArgs("-whitebind")) {
157 [ # # ]: 0 : NetWhitebindPermissions whitebind;
158 [ # # ]: 0 : bilingual_str error;
159 [ # # # # ]: 0 : if (NetWhitebindPermissions::TryParse(whitebind_arg, whitebind, error)) {
160 [ # # ]: 0 : if (!NetPermissions::HasFlag(whitebind.m_flags, NetPermissionFlags::NoBan)) {
161 [ # # ]: 0 : return whitebind.m_service.GetPort();
162 : : }
163 : : }
164 : 75198 : }
165 : :
166 : : // Otherwise, if -port= is provided, use that. Otherwise use the default port.
167 [ + - ]: 75198 : return static_cast<uint16_t>(gArgs.GetIntArg("-port", Params().GetDefaultPort()));
168 : : }
169 : :
170 : : // Determine the "best" local address for a particular peer.
171 : 75198 : [[nodiscard]] static std::optional<CService> GetLocal(const CNode& peer)
172 : : {
173 [ - + ]: 75198 : if (!fListen) return std::nullopt;
174 : :
175 : 75198 : std::optional<CService> addr;
176 : 75198 : int nBestScore = -1;
177 : 75198 : int nBestReachability = -1;
178 : 75198 : {
179 [ + - ]: 75198 : LOCK(g_maplocalhost_mutex);
180 [ + - + + ]: 12697297 : for (const auto& [local_addr, local_service_info] : mapLocalHost) {
181 : : // For privacy reasons, don't advertise our privacy-network address
182 : : // to other networks and don't advertise our other-network address
183 : : // to privacy networks.
184 [ + - + - ]: 12622099 : if (local_addr.GetNetwork() != peer.ConnectedThroughNetwork()
185 [ + + + - : 20776229 : && (local_addr.IsPrivacyNet() || peer.IsConnectedThroughPrivacyNet())) {
+ + ]
186 : 4420424 : continue;
187 : : }
188 : 8201675 : const int nScore{local_service_info.nScore};
189 [ + - ]: 8201675 : const int nReachability{local_addr.GetReachabilityFrom(peer.addr)};
190 [ + + + + ]: 8201675 : if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) {
191 [ + - ]: 223653 : addr.emplace(CService{local_addr, local_service_info.nPort});
192 : 223653 : nBestReachability = nReachability;
193 : 223653 : nBestScore = nScore;
194 : : }
195 : : }
196 : 0 : }
197 [ + + ]: 131715 : return addr;
198 : 75198 : }
199 : :
200 : : //! Convert the serialized seeds into usable address objects.
201 : 0 : static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
202 : : {
203 : : // It'll only connect to one or two seed nodes because once it connects,
204 : : // it'll get a pile of addresses with newer timestamps.
205 : : // Seed nodes are given a random 'last seen time' of between one and two
206 : : // weeks ago.
207 : 0 : const auto one_week{7 * 24h};
208 : 0 : std::vector<CAddress> vSeedsOut;
209 : 0 : FastRandomContext rng;
210 [ # # ]: 0 : ParamsStream s{DataStream{vSeedsIn}, CAddress::V2_NETWORK};
211 [ # # ]: 0 : while (!s.eof()) {
212 [ # # ]: 0 : CService endpoint;
213 [ # # ]: 0 : s >> endpoint;
214 : 0 : CAddress addr{endpoint, SeedsServiceFlags()};
215 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - one_week, -one_week);
216 [ # # # # : 0 : LogDebug(BCLog::NET, "Added hardcoded seed: %s\n", addr.ToStringAddrPort());
# # # # ]
217 [ # # ]: 0 : vSeedsOut.push_back(addr);
218 : 0 : }
219 : 0 : return vSeedsOut;
220 : 0 : }
221 : :
222 : : // Determine the "best" local address for a particular peer.
223 : : // If none, return the unroutable 0.0.0.0 but filled in with
224 : : // the normal parameters, since the IP may be changed to a useful
225 : : // one by discovery.
226 : 75198 : CService GetLocalAddress(const CNode& peer)
227 : : {
228 [ + - + - : 75198 : return GetLocal(peer).value_or(CService{CNetAddr(), GetListenPort()});
+ - ]
229 : : }
230 : :
231 : 0 : static int GetnScore(const CService& addr)
232 : : {
233 : 0 : LOCK(g_maplocalhost_mutex);
234 [ # # ]: 0 : const auto it = mapLocalHost.find(addr);
235 [ # # # # ]: 0 : return (it != mapLocalHost.end()) ? it->second.nScore : 0;
236 : 0 : }
237 : :
238 : : // Is our peer's addrLocal potentially useful as an external IP source?
239 : 2543 : [[nodiscard]] static bool IsPeerAddrLocalGood(CNode *pnode)
240 : : {
241 : 2543 : CService addrLocal = pnode->GetAddrLocal();
242 [ + - + - : 2543 : return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
+ + + - -
+ - - ]
243 [ - - ]: 2543 : g_reachable_nets.Contains(addrLocal);
244 : 2543 : }
245 : :
246 : 2543 : std::optional<CService> GetLocalAddrForPeer(CNode& node)
247 : : {
248 : 2543 : CService addrLocal{GetLocalAddress(node)};
249 : : // If discovery is enabled, sometimes give our peer the address it
250 : : // tells us that it sees us as in case it has a better idea of our
251 : : // address than we do.
252 : 2543 : FastRandomContext rng;
253 [ + - - + : 2543 : if (IsPeerAddrLocalGood(&node) && (!addrLocal.IsRoutable() ||
- - - - -
- ]
254 [ # # # # ]: 0 : rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0))
255 : : {
256 [ # # ]: 0 : if (node.IsInboundConn()) {
257 : : // For inbound connections, assume both the address and the port
258 : : // as seen from the peer.
259 [ # # ]: 0 : addrLocal = CService{node.GetAddrLocal()};
260 : : } else {
261 : : // For outbound connections, assume just the address as seen from
262 : : // the peer and leave the port in `addrLocal` as returned by
263 : : // `GetLocalAddress()` above. The peer has no way to observe our
264 : : // listening port when we have initiated the connection.
265 [ # # # # ]: 0 : addrLocal.SetIP(node.GetAddrLocal());
266 : : }
267 : : }
268 [ + - - + ]: 2543 : if (addrLocal.IsRoutable()) {
269 [ # # # # : 0 : LogDebug(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToStringAddrPort(), node.GetId());
# # # # ]
270 : 0 : return addrLocal;
271 : : }
272 : : // Address is unroutable. Don't advertise.
273 : 2543 : return std::nullopt;
274 : 2543 : }
275 : :
276 : : // learn a new local address
277 : 116808 : bool AddLocal(const CService& addr_, int nScore)
278 : : {
279 : 116808 : CService addr{MaybeFlipIPv6toCJDNS(addr_)};
280 : :
281 [ + - + + ]: 116808 : if (!addr.IsRoutable())
282 : : return false;
283 : :
284 [ - + - - ]: 79279 : if (!fDiscover && nScore < LOCAL_MANUAL)
285 : : return false;
286 : :
287 [ + - + - ]: 79279 : if (!g_reachable_nets.Contains(addr))
288 : : return false;
289 : :
290 [ + - + - ]: 79279 : LogPrintf("AddLocal(%s,%i)\n", addr.ToStringAddrPort(), nScore);
291 : :
292 : 79279 : {
293 [ + - ]: 79279 : LOCK(g_maplocalhost_mutex);
294 [ + - + + ]: 79279 : const auto [it, is_newly_added] = mapLocalHost.emplace(addr, LocalServiceInfo());
295 [ + + ]: 79279 : LocalServiceInfo &info = it->second;
296 [ + + + + ]: 79279 : if (is_newly_added || nScore >= info.nScore) {
297 [ + + ]: 35083 : info.nScore = nScore + (is_newly_added ? 0 : 1);
298 [ + - ]: 35083 : info.nPort = addr.GetPort();
299 : : }
300 : 0 : }
301 : :
302 : 79279 : return true;
303 : 116808 : }
304 : :
305 : 0 : bool AddLocal(const CNetAddr &addr, int nScore)
306 : : {
307 [ # # ]: 0 : return AddLocal(CService(addr, GetListenPort()), nScore);
308 : : }
309 : :
310 : 28493 : void RemoveLocal(const CService& addr)
311 : : {
312 : 28493 : LOCK(g_maplocalhost_mutex);
313 [ + - + - ]: 28493 : LogPrintf("RemoveLocal(%s)\n", addr.ToStringAddrPort());
314 [ + - + - ]: 28493 : mapLocalHost.erase(addr);
315 : 28493 : }
316 : :
317 : : /** vote for a local address */
318 : 98384 : bool SeenLocal(const CService& addr)
319 : : {
320 : 98384 : LOCK(g_maplocalhost_mutex);
321 [ + - ]: 98384 : const auto it = mapLocalHost.find(addr);
322 [ + + ]: 98384 : if (it == mapLocalHost.end()) return false;
323 : 90261 : ++it->second.nScore;
324 : 90261 : return true;
325 : 98384 : }
326 : :
327 : :
328 : : /** check whether a given address is potentially local */
329 : 88523 : bool IsLocal(const CService& addr)
330 : : {
331 : 88523 : LOCK(g_maplocalhost_mutex);
332 [ + - + - ]: 88523 : return mapLocalHost.count(addr) > 0;
333 : 88523 : }
334 : :
335 : 0 : CNode* CConnman::FindNode(const CNetAddr& ip)
336 : : {
337 : 0 : LOCK(m_nodes_mutex);
338 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
339 [ # # # # ]: 0 : if (static_cast<CNetAddr>(pnode->addr) == ip) {
340 : : return pnode;
341 : : }
342 : : }
343 : : return nullptr;
344 : 0 : }
345 : :
346 : 27305 : CNode* CConnman::FindNode(const std::string& addrName)
347 : : {
348 : 27305 : LOCK(m_nodes_mutex);
349 [ + + ]: 1744929 : for (CNode* pnode : m_nodes) {
350 [ + + ]: 1717975 : if (pnode->m_addr_name == addrName) {
351 : : return pnode;
352 : : }
353 : : }
354 : : return nullptr;
355 : 27305 : }
356 : :
357 : 0 : CNode* CConnman::FindNode(const CService& addr)
358 : : {
359 : 0 : LOCK(m_nodes_mutex);
360 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
361 [ # # # # ]: 0 : if (static_cast<CService>(pnode->addr) == addr) {
362 : : return pnode;
363 : : }
364 : : }
365 : : return nullptr;
366 : 0 : }
367 : :
368 : 0 : bool CConnman::AlreadyConnectedToAddress(const CAddress& addr)
369 : : {
370 [ # # # # : 0 : return FindNode(static_cast<CNetAddr>(addr)) || FindNode(addr.ToStringAddrPort());
# # # # #
# ]
371 : : }
372 : :
373 : 5759 : bool CConnman::CheckIncomingNonce(uint64_t nonce)
374 : : {
375 : 5759 : LOCK(m_nodes_mutex);
376 [ + + ]: 12616 : for (const CNode* pnode : m_nodes) {
377 [ + + + + : 7182 : if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce)
+ + ]
378 : : return false;
379 : : }
380 : : return true;
381 : 5759 : }
382 : :
383 : : /** Get the bind address for a socket as CService. */
384 : 0 : static CService GetBindAddress(const Sock& sock)
385 : : {
386 : 0 : CService addr_bind;
387 : 0 : struct sockaddr_storage sockaddr_bind;
388 : 0 : socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
389 [ # # # # ]: 0 : if (!sock.GetSockName((struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
390 [ # # ]: 0 : addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind, sockaddr_bind_len);
391 : : } else {
392 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "getsockname failed\n");
# # ]
393 : : }
394 : 0 : return addr_bind;
395 : 0 : }
396 : :
397 : 0 : CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type, bool use_v2transport)
398 : : {
399 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
400 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
401 : :
402 [ # # ]: 0 : if (pszDest == nullptr) {
403 [ # # ]: 0 : if (IsLocal(addrConnect))
404 : : return nullptr;
405 : :
406 : : // Look for an existing connection
407 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
408 [ # # ]: 0 : if (pnode)
409 : : {
410 : 0 : LogPrintf("Failed to open new connection, already connected\n");
411 : 0 : return nullptr;
412 : : }
413 : : }
414 : :
415 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "trying %s connection %s lastseen=%.1fhrs\n",
# # # # #
# ]
416 : : use_v2transport ? "v2" : "v1",
417 : : pszDest ? pszDest : addrConnect.ToStringAddrPort(),
418 : : Ticks<HoursDouble>(pszDest ? 0h : Now<NodeSeconds>() - addrConnect.nTime));
419 : :
420 : : // Resolve
421 [ # # # # ]: 0 : const uint16_t default_port{pszDest != nullptr ? GetDefaultPort(pszDest) :
422 : 0 : m_params.GetDefaultPort()};
423 : :
424 : : // Collection of addresses to try to connect to: either all dns resolved addresses if a domain name (pszDest) is provided, or addrConnect otherwise.
425 : 0 : std::vector<CAddress> connect_to{};
426 [ # # ]: 0 : if (pszDest) {
427 [ # # # # : 0 : std::vector<CService> resolved{Lookup(pszDest, default_port, fNameLookup && !HaveNameProxy(), 256)};
# # # # #
# # # ]
428 [ # # ]: 0 : if (!resolved.empty()) {
429 : 0 : std::shuffle(resolved.begin(), resolved.end(), FastRandomContext());
430 : : // If the connection is made by name, it can be the case that the name resolves to more than one address.
431 : : // We don't want to connect any more of them if we are already connected to one
432 [ # # ]: 0 : for (const auto& r : resolved) {
433 [ # # ]: 0 : addrConnect = CAddress{MaybeFlipIPv6toCJDNS(r), NODE_NONE};
434 [ # # # # ]: 0 : if (!addrConnect.IsValid()) {
435 [ # # # # : 0 : LogDebug(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToStringAddrPort(), pszDest);
# # # # ]
436 : 0 : return nullptr;
437 : : }
438 : : // It is possible that we already have a connection to the IP/port pszDest resolved to.
439 : : // In that case, drop the connection that was just created.
440 [ # # ]: 0 : LOCK(m_nodes_mutex);
441 [ # # ]: 0 : CNode* pnode = FindNode(static_cast<CService>(addrConnect));
442 [ # # ]: 0 : if (pnode) {
443 [ # # # # ]: 0 : LogPrintf("Not opening a connection to %s, already connected to %s\n", pszDest, addrConnect.ToStringAddrPort());
444 [ # # ]: 0 : return nullptr;
445 : : }
446 : : // Add the address to the resolved addresses vector so we can try to connect to it later on
447 [ # # ]: 0 : connect_to.push_back(addrConnect);
448 : 0 : }
449 : : } else {
450 : : // For resolution via proxy
451 [ # # ]: 0 : connect_to.push_back(addrConnect);
452 : : }
453 : 0 : } else {
454 : : // Connect via addrConnect directly
455 [ # # ]: 0 : connect_to.push_back(addrConnect);
456 : : }
457 : :
458 : : // Connect
459 : 0 : std::unique_ptr<Sock> sock;
460 [ # # ]: 0 : Proxy proxy;
461 [ # # ]: 0 : CService addr_bind;
462 [ # # # # ]: 0 : assert(!addr_bind.IsValid());
463 : 0 : std::unique_ptr<i2p::sam::Session> i2p_transient_session;
464 : :
465 [ # # ]: 0 : for (auto& target_addr: connect_to) {
466 [ # # # # ]: 0 : if (target_addr.IsValid()) {
467 [ # # # # ]: 0 : const bool use_proxy{GetProxy(target_addr.GetNetwork(), proxy)};
468 : 0 : bool proxyConnectionFailed = false;
469 : :
470 [ # # # # ]: 0 : if (target_addr.IsI2P() && use_proxy) {
471 [ # # ]: 0 : i2p::Connection conn;
472 : 0 : bool connected{false};
473 : :
474 [ # # ]: 0 : if (m_i2p_sam_session) {
475 [ # # ]: 0 : connected = m_i2p_sam_session->Connect(target_addr, conn, proxyConnectionFailed);
476 : : } else {
477 : 0 : {
478 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
479 [ # # ]: 0 : if (m_unused_i2p_sessions.empty()) {
480 : 0 : i2p_transient_session =
481 [ # # ]: 0 : std::make_unique<i2p::sam::Session>(proxy, &interruptNet);
482 : : } else {
483 : 0 : i2p_transient_session.swap(m_unused_i2p_sessions.front());
484 : 0 : m_unused_i2p_sessions.pop();
485 : : }
486 : 0 : }
487 [ # # ]: 0 : connected = i2p_transient_session->Connect(target_addr, conn, proxyConnectionFailed);
488 [ # # ]: 0 : if (!connected) {
489 [ # # ]: 0 : LOCK(m_unused_i2p_sessions_mutex);
490 [ # # ]: 0 : if (m_unused_i2p_sessions.size() < MAX_UNUSED_I2P_SESSIONS_SIZE) {
491 [ # # # # ]: 0 : m_unused_i2p_sessions.emplace(i2p_transient_session.release());
492 : : }
493 : 0 : }
494 : : }
495 : :
496 [ # # ]: 0 : if (connected) {
497 : 0 : sock = std::move(conn.sock);
498 : 0 : addr_bind = conn.me;
499 : : }
500 [ # # ]: 0 : } else if (use_proxy) {
501 [ # # # # : 0 : LogPrintLevel(BCLog::PROXY, BCLog::Level::Debug, "Using proxy: %s to connect to %s\n", proxy.ToString(), target_addr.ToStringAddrPort());
# # # # #
# ]
502 [ # # # # : 0 : sock = ConnectThroughProxy(proxy, target_addr.ToStringAddr(), target_addr.GetPort(), proxyConnectionFailed);
# # ]
503 : : } else {
504 : : // no proxy needed (none set for target network)
505 [ # # ]: 0 : sock = ConnectDirectly(target_addr, conn_type == ConnectionType::MANUAL);
506 : : }
507 [ # # ]: 0 : if (!proxyConnectionFailed) {
508 : : // If a connection to the node was attempted, and failure (if any) is not caused by a problem connecting to
509 : : // the proxy, mark this as an attempt.
510 [ # # ]: 0 : addrman.Attempt(target_addr, fCountFailure);
511 : : }
512 [ # # # # : 0 : } else if (pszDest && GetNameProxy(proxy)) {
# # ]
513 [ # # ]: 0 : std::string host;
514 : 0 : uint16_t port{default_port};
515 [ # # # # ]: 0 : SplitHostPort(std::string(pszDest), port, host);
516 : 0 : bool proxyConnectionFailed;
517 [ # # ]: 0 : sock = ConnectThroughProxy(proxy, host, port, proxyConnectionFailed);
518 : 0 : }
519 : : // Check any other resolved address (if any) if we fail to connect
520 [ # # ]: 0 : if (!sock) {
521 : 0 : continue;
522 : : }
523 : :
524 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
525 [ # # # # ]: 0 : std::vector<NetWhitelistPermissions> whitelist_permissions = conn_type == ConnectionType::MANUAL ? vWhitelistedRangeOutgoing : std::vector<NetWhitelistPermissions>{};
526 [ # # ]: 0 : AddWhitelistPermissionFlags(permission_flags, target_addr, whitelist_permissions);
527 : :
528 : : // Add node
529 [ # # ]: 0 : NodeId id = GetNewNodeId();
530 [ # # # # : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
# # ]
531 [ # # # # ]: 0 : if (!addr_bind.IsValid()) {
532 [ # # ]: 0 : addr_bind = GetBindAddress(*sock);
533 : : }
534 : 0 : CNode* pnode = new CNode(id,
535 : : std::move(sock),
536 : : target_addr,
537 : : CalculateKeyedNetGroup(target_addr),
538 : : nonce,
539 : : addr_bind,
540 : 0 : pszDest ? pszDest : "",
541 : : conn_type,
542 : : /*inbound_onion=*/false,
543 [ # # ]: 0 : CNodeOptions{
544 : : .permission_flags = permission_flags,
545 : : .i2p_sam_session = std::move(i2p_transient_session),
546 [ # # ]: 0 : .recv_flood_size = nReceiveFloodSize,
547 : : .use_v2transport = use_v2transport,
548 [ # # # # : 0 : });
# # # # #
# # # #
# ]
549 : 0 : pnode->AddRef();
550 : :
551 : : // We're making a new connection, harvest entropy from the time (and our peer count)
552 : 0 : RandAddEvent((uint32_t)id);
553 : :
554 : 0 : return pnode;
555 : 0 : }
556 : :
557 : : return nullptr;
558 : 0 : }
559 : :
560 : 20147 : void CNode::CloseSocketDisconnect()
561 : : {
562 : 20147 : fDisconnect = true;
563 : 20147 : LOCK(m_sock_mutex);
564 [ + + ]: 20147 : if (m_sock) {
565 [ + - - + : 9617 : LogDebug(BCLog::NET, "Resetting socket for peer=%d%s", GetId(), LogIP(fLogIPs));
- - - - ]
566 : 9617 : m_sock.reset();
567 : :
568 : : TRACEPOINT(net, closed_connection,
569 : : GetId(),
570 : : m_addr_name.c_str(),
571 : : ConnectionTypeAsString().c_str(),
572 : : ConnectedThroughNetwork(),
573 : 9617 : Ticks<std::chrono::seconds>(m_connected));
574 : : }
575 [ - + + - ]: 20147 : m_i2p_sam_session.reset();
576 : 20147 : }
577 : :
578 : 0 : void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags& flags, const CNetAddr &addr, const std::vector<NetWhitelistPermissions>& ranges) const {
579 [ # # ]: 0 : for (const auto& subnet : ranges) {
580 [ # # ]: 0 : if (subnet.m_subnet.Match(addr)) {
581 : 0 : NetPermissions::AddFlag(flags, subnet.m_flags);
582 : : }
583 : : }
584 [ # # ]: 0 : if (NetPermissions::HasFlag(flags, NetPermissionFlags::Implicit)) {
585 [ # # ]: 0 : NetPermissions::ClearFlag(flags, NetPermissionFlags::Implicit);
586 [ # # ]: 0 : if (whitelist_forcerelay) NetPermissions::AddFlag(flags, NetPermissionFlags::ForceRelay);
587 [ # # ]: 0 : if (whitelist_relay) NetPermissions::AddFlag(flags, NetPermissionFlags::Relay);
588 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::Mempool);
589 : 0 : NetPermissions::AddFlag(flags, NetPermissionFlags::NoBan);
590 : : }
591 : 0 : }
592 : :
593 : 115165 : CService CNode::GetAddrLocal() const
594 : : {
595 : 115165 : AssertLockNotHeld(m_addr_local_mutex);
596 : 115165 : LOCK(m_addr_local_mutex);
597 [ + - ]: 115165 : return m_addr_local;
598 : 115165 : }
599 : :
600 : 9415 : void CNode::SetAddrLocal(const CService& addrLocalIn) {
601 : 9415 : AssertLockNotHeld(m_addr_local_mutex);
602 : 9415 : LOCK(m_addr_local_mutex);
603 [ + - + - : 9415 : if (Assume(!m_addr_local.IsValid())) { // Addr local can only be set once during version msg processing
+ - ]
604 : 9415 : m_addr_local = addrLocalIn;
605 : : }
606 : 9415 : }
607 : :
608 : 12739826 : Network CNode::ConnectedThroughNetwork() const
609 : : {
610 [ + + ]: 12739826 : return m_inbound_onion ? NET_ONION : addr.GetNetClass();
611 : : }
612 : :
613 : 8154130 : bool CNode::IsConnectedThroughPrivacyNet() const
614 : : {
615 [ + + + + ]: 8154130 : return m_inbound_onion || addr.IsPrivacyNet();
616 : : }
617 : :
618 : : #undef X
619 : : #define X(name) stats.name = name
620 : 111611 : void CNode::CopyStats(CNodeStats& stats)
621 : : {
622 : 111611 : stats.nodeid = this->GetId();
623 : 111611 : X(addr);
624 : 111611 : X(addrBind);
625 : 111611 : stats.m_network = ConnectedThroughNetwork();
626 : 111611 : X(m_last_send);
627 : 111611 : X(m_last_recv);
628 : 111611 : X(m_last_tx_time);
629 : 111611 : X(m_last_block_time);
630 : 111611 : X(m_connected);
631 : 111611 : X(m_addr_name);
632 : 111611 : X(nVersion);
633 : 111611 : {
634 : 111611 : LOCK(m_subver_mutex);
635 [ + - + - ]: 223222 : X(cleanSubVer);
636 : 0 : }
637 : 111611 : stats.fInbound = IsInboundConn();
638 : 111611 : X(m_bip152_highbandwidth_to);
639 : 111611 : X(m_bip152_highbandwidth_from);
640 : 111611 : {
641 : 111611 : LOCK(cs_vSend);
642 [ + - ]: 111611 : X(mapSendBytesPerMsgType);
643 [ + - ]: 111611 : X(nSendBytes);
644 : 0 : }
645 : 111611 : {
646 : 111611 : LOCK(cs_vRecv);
647 [ + - ]: 111611 : X(mapRecvBytesPerMsgType);
648 : 111611 : X(nRecvBytes);
649 : 111611 : Transport::Info info = m_transport->GetInfo();
650 : 111611 : stats.m_transport_type = info.transport_type;
651 [ - + - - ]: 111611 : if (info.session_id) stats.m_session_id = HexStr(*info.session_id);
652 : 0 : }
653 : 111611 : X(m_permission_flags);
654 : :
655 : 111611 : X(m_last_ping_time);
656 : 111611 : X(m_min_ping_time);
657 : :
658 : : // Leave string empty if addrLocal invalid (not filled in yet)
659 : 111611 : CService addrLocalUnlocked = GetAddrLocal();
660 [ + - + + : 111611 : stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToStringAddrPort() : "";
+ - + - ]
661 : :
662 : 111611 : X(m_conn_type);
663 : 111611 : }
664 : : #undef X
665 : :
666 : 194860 : bool CNode::ReceiveMsgBytes(std::span<const uint8_t> msg_bytes, bool& complete)
667 : : {
668 : 194860 : complete = false;
669 : 194860 : const auto time = GetTime<std::chrono::microseconds>();
670 : 194860 : LOCK(cs_vRecv);
671 : 194860 : m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
672 : 194860 : nRecvBytes += msg_bytes.size();
673 [ + + ]: 591749 : while (msg_bytes.size() > 0) {
674 : : // absorb network data
675 [ + - + + ]: 215501 : if (!m_transport->ReceivedBytes(msg_bytes)) {
676 : : // Serious transport problem, disconnect from the peer.
677 : : return false;
678 : : }
679 : :
680 [ + - + + ]: 202029 : if (m_transport->ReceivedMessageComplete()) {
681 : : // decompose a transport agnostic CNetMessage from the deserializer
682 : 108199 : bool reject_message{false};
683 [ + - ]: 108199 : CNetMessage msg = m_transport->GetReceivedMessage(time, reject_message);
684 [ + + ]: 108199 : if (reject_message) {
685 : : // Message deserialization failed. Drop the message but don't disconnect the peer.
686 : : // store the size of the corrupt message
687 [ + - ]: 18765 : mapRecvBytesPerMsgType.at(NET_MESSAGE_TYPE_OTHER) += msg.m_raw_message_size;
688 : 18765 : continue;
689 : : }
690 : :
691 : : // Store received bytes per message type.
692 : : // To prevent a memory DOS, only allow known message types.
693 : 89434 : auto i = mapRecvBytesPerMsgType.find(msg.m_type);
694 [ + + ]: 89434 : if (i == mapRecvBytesPerMsgType.end()) {
695 : 11520 : i = mapRecvBytesPerMsgType.find(NET_MESSAGE_TYPE_OTHER);
696 : : }
697 [ - + ]: 89434 : assert(i != mapRecvBytesPerMsgType.end());
698 [ + - ]: 89434 : i->second += msg.m_raw_message_size;
699 : :
700 : : // push the message to the process queue,
701 [ + - ]: 89434 : vRecvMsg.push_back(std::move(msg));
702 : :
703 : 89434 : complete = true;
704 : 108199 : }
705 : : }
706 : :
707 : : return true;
708 : 194860 : }
709 : :
710 : 3870 : std::string CNode::LogIP(bool log_ip) const
711 : : {
712 [ - + - - : 3870 : return log_ip ? strprintf(" peeraddr=%s", addr.ToStringAddrPort()) : "";
- - + - -
- ]
713 : : }
714 : :
715 : 83 : std::string CNode::DisconnectMsg(bool log_ip) const
716 : : {
717 : 83 : return strprintf("disconnecting peer=%d%s",
718 [ + - ]: 83 : GetId(),
719 [ + - ]: 166 : LogIP(log_ip));
720 : : }
721 : :
722 : 35534 : V1Transport::V1Transport(const NodeId node_id) noexcept
723 : 35534 : : m_magic_bytes{Params().MessageStart()}, m_node_id{node_id}
724 : : {
725 : 35534 : LOCK(m_recv_mutex);
726 [ + - ]: 35534 : Reset();
727 : 35534 : }
728 : :
729 : 117313 : Transport::Info V1Transport::GetInfo() const noexcept
730 : : {
731 : 117313 : return {.transport_type = TransportProtocolType::V1, .session_id = {}};
732 : : }
733 : :
734 : 197392 : int V1Transport::readHeader(std::span<const uint8_t> msg_bytes)
735 : : {
736 : 197392 : AssertLockHeld(m_recv_mutex);
737 : : // copy data to temporary parsing buffer
738 : 197392 : unsigned int nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
739 [ + + ]: 197392 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
740 : :
741 [ + + ]: 197392 : memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
742 : 197392 : nHdrPos += nCopy;
743 : :
744 : : // if header incomplete, exit
745 [ + + ]: 197392 : if (nHdrPos < CMessageHeader::HEADER_SIZE)
746 : 15547 : return nCopy;
747 : :
748 : : // deserialize to CMessageHeader
749 : 181845 : try {
750 [ + - ]: 181845 : hdrbuf >> hdr;
751 : : }
752 [ - - ]: 0 : catch (const std::exception&) {
753 [ - - - - : 0 : LogDebug(BCLog::NET, "Header error: Unable to deserialize, peer=%d\n", m_node_id);
- - ]
754 : 0 : return -1;
755 : 0 : }
756 : :
757 : : // Check start string, network magic
758 [ + + ]: 181845 : if (hdr.pchMessageStart != m_magic_bytes) {
759 [ - + - - ]: 10946 : LogDebug(BCLog::NET, "Header error: Wrong MessageStart %s received, peer=%d\n", HexStr(hdr.pchMessageStart), m_node_id);
760 : 10946 : return -1;
761 : : }
762 : :
763 : : // reject messages larger than MAX_SIZE or MAX_PROTOCOL_MESSAGE_LENGTH
764 : : // NOTE: failing to perform this check previously allowed a malicious peer to make us allocate 32MiB of memory per
765 : : // connection. See https://bitcoincore.org/en/2024/07/03/disclose_receive_buffer_oom.
766 [ + + ]: 170899 : if (hdr.nMessageSize > MAX_SIZE || hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
767 [ - + - - : 2601 : LogDebug(BCLog::NET, "Header error: Size too large (%s, %u bytes), peer=%d\n", SanitizeString(hdr.GetMessageType()), hdr.nMessageSize, m_node_id);
- - ]
768 : 2601 : return -1;
769 : : }
770 : :
771 : : // switch state to reading message data
772 : 168298 : in_data = true;
773 : :
774 : 168298 : return nCopy;
775 : : }
776 : :
777 : 136100 : int V1Transport::readData(std::span<const uint8_t> msg_bytes)
778 : : {
779 : 136100 : AssertLockHeld(m_recv_mutex);
780 : 136100 : unsigned int nRemaining = hdr.nMessageSize - nDataPos;
781 [ + + ]: 136100 : unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
782 : :
783 [ + + ]: 136100 : if (vRecv.size() < nDataPos + nCopy) {
784 : : // Allocate up to 256 KiB ahead, but never more than the total message size.
785 [ + + ]: 224244 : vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
786 : : }
787 : :
788 : 136100 : hasher.Write(msg_bytes.first(nCopy));
789 : 136100 : memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
790 : 136100 : nDataPos += nCopy;
791 : :
792 : 136100 : return nCopy;
793 : : }
794 : :
795 : 168216 : const uint256& V1Transport::GetMessageHash() const
796 : : {
797 : 168216 : AssertLockHeld(m_recv_mutex);
798 [ + - - + ]: 168216 : assert(CompleteInternal());
799 [ + - ]: 168216 : if (data_hash.IsNull())
800 : 168216 : hasher.Finalize(data_hash);
801 : 168216 : return data_hash;
802 : : }
803 : :
804 : 168216 : CNetMessage V1Transport::GetReceivedMessage(const std::chrono::microseconds time, bool& reject_message)
805 : : {
806 : 168216 : AssertLockNotHeld(m_recv_mutex);
807 : : // Initialize out parameter
808 : 168216 : reject_message = false;
809 : : // decompose a single CNetMessage from the TransportDeserializer
810 : 168216 : LOCK(m_recv_mutex);
811 [ + - ]: 168216 : CNetMessage msg(std::move(vRecv));
812 : :
813 : : // store message type string, time, and sizes
814 [ + - ]: 168216 : msg.m_type = hdr.GetMessageType();
815 : 168216 : msg.m_time = time;
816 : 168216 : msg.m_message_size = hdr.nMessageSize;
817 : 168216 : msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
818 : :
819 [ + - ]: 168216 : uint256 hash = GetMessageHash();
820 : :
821 : : // We just received a message off the wire, harvest entropy from the time (and the message checksum)
822 : 168216 : RandAddEvent(ReadLE32(hash.begin()));
823 : :
824 : : // Check checksum and header message type string
825 [ + + ]: 168216 : if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) {
826 [ + - - + : 11001 : LogDebug(BCLog::NET, "Header error: Wrong checksum (%s, %u bytes), expected %s was %s, peer=%d\n",
- - - - -
- - - ]
827 : : SanitizeString(msg.m_type), msg.m_message_size,
828 : : HexStr(std::span{hash}.first(CMessageHeader::CHECKSUM_SIZE)),
829 : : HexStr(hdr.pchChecksum),
830 : : m_node_id);
831 : 11001 : reject_message = true;
832 [ + - + + ]: 157215 : } else if (!hdr.IsMessageTypeValid()) {
833 [ + - - + : 26609 : LogDebug(BCLog::NET, "Header error: Invalid message type (%s, %u bytes), peer=%d\n",
- - - - -
- ]
834 : : SanitizeString(hdr.GetMessageType()), msg.m_message_size, m_node_id);
835 : 26609 : reject_message = true;
836 : : }
837 : :
838 : : // Always reset the network deserializer (prepare for the next message)
839 [ + - ]: 168216 : Reset();
840 [ + - ]: 168216 : return msg;
841 : 168216 : }
842 : :
843 : 343205 : bool V1Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
844 : : {
845 : 343205 : AssertLockNotHeld(m_send_mutex);
846 : : // Determine whether a new message can be set.
847 : 343205 : LOCK(m_send_mutex);
848 [ + + + + ]: 343205 : if (m_sending_header || m_bytes_sent < m_message_to_send.data.size()) return false;
849 : :
850 : : // create dbl-sha256 checksum
851 : 251589 : uint256 hash = Hash(msg.data);
852 : :
853 : : // create header
854 : 251589 : CMessageHeader hdr(m_magic_bytes, msg.m_type.c_str(), msg.data.size());
855 [ + + ]: 251589 : memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
856 : :
857 : : // serialize header
858 [ + + ]: 251589 : m_header_to_send.clear();
859 : 251589 : VectorWriter{m_header_to_send, 0, hdr};
860 : :
861 : : // update state
862 : 251589 : m_message_to_send = std::move(msg);
863 : 251589 : m_sending_header = true;
864 : 251589 : m_bytes_sent = 0;
865 : 251589 : return true;
866 : 343205 : }
867 : :
868 : 1789506 : Transport::BytesToSend V1Transport::GetBytesToSend(bool have_next_message) const noexcept
869 : : {
870 : 1789506 : AssertLockNotHeld(m_send_mutex);
871 : 1789506 : LOCK(m_send_mutex);
872 [ + + ]: 1789506 : if (m_sending_header) {
873 [ + + ]: 606915 : return {std::span{m_header_to_send}.subspan(m_bytes_sent),
874 : : // We have more to send after the header if the message has payload, or if there
875 : : // is a next message after that.
876 [ + + + + ]: 606915 : have_next_message || !m_message_to_send.data.empty(),
877 : 606915 : m_message_to_send.m_type
878 : 606915 : };
879 : : } else {
880 : 1182591 : return {std::span{m_message_to_send.data}.subspan(m_bytes_sent),
881 : : // We only have more to send after this message's payload if there is another
882 : : // message.
883 : : have_next_message,
884 : 1182591 : m_message_to_send.m_type
885 : 1182591 : };
886 : : }
887 : 1789506 : }
888 : :
889 : 526725 : void V1Transport::MarkBytesSent(size_t bytes_sent) noexcept
890 : : {
891 : 526725 : AssertLockNotHeld(m_send_mutex);
892 : 526725 : LOCK(m_send_mutex);
893 : 526725 : m_bytes_sent += bytes_sent;
894 [ + + + + ]: 526725 : if (m_sending_header && m_bytes_sent == m_header_to_send.size()) {
895 : : // We're done sending a message's header. Switch to sending its data bytes.
896 : 249047 : m_sending_header = false;
897 : 249047 : m_bytes_sent = 0;
898 [ + + + + ]: 277678 : } else if (!m_sending_header && m_bytes_sent == m_message_to_send.data.size()) {
899 : : // We're done sending a message's data. Wipe the data vector to reduce memory consumption.
900 : 195148 : ClearShrink(m_message_to_send.data);
901 : 195148 : m_bytes_sent = 0;
902 : : }
903 : 526725 : }
904 : :
905 : 255606 : size_t V1Transport::GetSendMemoryUsage() const noexcept
906 : : {
907 : 255606 : AssertLockNotHeld(m_send_mutex);
908 : 255606 : LOCK(m_send_mutex);
909 : : // Don't count sending-side fields besides m_message_to_send, as they're all small and bounded.
910 [ + - ]: 255606 : return m_message_to_send.GetMemoryUsage();
911 : 255606 : }
912 : :
913 : : namespace {
914 : :
915 : : /** List of short messages as defined in BIP324, in order.
916 : : *
917 : : * Only message types that are actually implemented in this codebase need to be listed, as other
918 : : * messages get ignored anyway - whether we know how to decode them or not.
919 : : */
920 : : const std::array<std::string, 33> V2_MESSAGE_IDS = {
921 : : "", // 12 bytes follow encoding the message type like in V1
922 : : NetMsgType::ADDR,
923 : : NetMsgType::BLOCK,
924 : : NetMsgType::BLOCKTXN,
925 : : NetMsgType::CMPCTBLOCK,
926 : : NetMsgType::FEEFILTER,
927 : : NetMsgType::FILTERADD,
928 : : NetMsgType::FILTERCLEAR,
929 : : NetMsgType::FILTERLOAD,
930 : : NetMsgType::GETBLOCKS,
931 : : NetMsgType::GETBLOCKTXN,
932 : : NetMsgType::GETDATA,
933 : : NetMsgType::GETHEADERS,
934 : : NetMsgType::HEADERS,
935 : : NetMsgType::INV,
936 : : NetMsgType::MEMPOOL,
937 : : NetMsgType::MERKLEBLOCK,
938 : : NetMsgType::NOTFOUND,
939 : : NetMsgType::PING,
940 : : NetMsgType::PONG,
941 : : NetMsgType::SENDCMPCT,
942 : : NetMsgType::TX,
943 : : NetMsgType::GETCFILTERS,
944 : : NetMsgType::CFILTER,
945 : : NetMsgType::GETCFHEADERS,
946 : : NetMsgType::CFHEADERS,
947 : : NetMsgType::GETCFCHECKPT,
948 : : NetMsgType::CFCHECKPT,
949 : : NetMsgType::ADDRV2,
950 : : // Unimplemented message types that are assigned in BIP324:
951 : : "",
952 : : "",
953 : : "",
954 : : ""
955 : : };
956 : :
957 : : class V2MessageMap
958 : : {
959 : : std::unordered_map<std::string, uint8_t> m_map;
960 : :
961 : : public:
962 : 220 : V2MessageMap() noexcept
963 : 220 : {
964 [ + + ]: 7260 : for (size_t i = 1; i < std::size(V2_MESSAGE_IDS); ++i) {
965 : 7040 : m_map.emplace(V2_MESSAGE_IDS[i], i);
966 : : }
967 : 220 : }
968 : :
969 : 29801 : std::optional<uint8_t> operator()(const std::string& message_name) const noexcept
970 : : {
971 : 29801 : auto it = m_map.find(message_name);
972 [ + + ]: 29801 : if (it == m_map.end()) return std::nullopt;
973 : 23387 : return it->second;
974 : : }
975 : : };
976 : :
977 : : const V2MessageMap V2_MESSAGE_MAP;
978 : :
979 : 0 : std::vector<uint8_t> GenerateRandomGarbage() noexcept
980 : : {
981 : 0 : std::vector<uint8_t> ret;
982 : 0 : FastRandomContext rng;
983 : 0 : ret.resize(rng.randrange(V2Transport::MAX_GARBAGE_LEN + 1));
984 : 0 : rng.fillrand(MakeWritableByteSpan(ret));
985 : 0 : return ret;
986 : 0 : }
987 : :
988 : : } // namespace
989 : :
990 : 2486 : void V2Transport::StartSendingHandshake() noexcept
991 : : {
992 : 2486 : AssertLockHeld(m_send_mutex);
993 : 2486 : Assume(m_send_state == SendState::AWAITING_KEY);
994 : 2486 : Assume(m_send_buffer.empty());
995 : : // Initialize the send buffer with ellswift pubkey + provided garbage.
996 : 2486 : m_send_buffer.resize(EllSwiftPubKey::size() + m_send_garbage.size());
997 : 2486 : std::copy(std::begin(m_cipher.GetOurPubKey()), std::end(m_cipher.GetOurPubKey()), MakeWritableByteSpan(m_send_buffer).begin());
998 : 2486 : std::copy(m_send_garbage.begin(), m_send_garbage.end(), m_send_buffer.begin() + EllSwiftPubKey::size());
999 : : // We cannot wipe m_send_garbage as it will still be used as AAD later in the handshake.
1000 : 2486 : }
1001 : :
1002 : 3225 : V2Transport::V2Transport(NodeId nodeid, bool initiating, const CKey& key, std::span<const std::byte> ent32, std::vector<uint8_t> garbage) noexcept
1003 : 3225 : : m_cipher{key, ent32}, m_initiating{initiating}, m_nodeid{nodeid},
1004 : 3225 : m_v1_fallback{nodeid},
1005 [ + + ]: 3225 : m_recv_state{initiating ? RecvState::KEY : RecvState::KEY_MAYBE_V1},
1006 : 3225 : m_send_garbage{std::move(garbage)},
1007 [ + + ]: 8323 : m_send_state{initiating ? SendState::AWAITING_KEY : SendState::MAYBE_V1}
1008 : : {
1009 : 3225 : Assume(m_send_garbage.size() <= MAX_GARBAGE_LEN);
1010 : : // Start sending immediately if we're the initiator of the connection.
1011 [ + + ]: 3225 : if (initiating) {
1012 : 1352 : LOCK(m_send_mutex);
1013 [ + - ]: 1352 : StartSendingHandshake();
1014 : 1352 : }
1015 : 3225 : }
1016 : :
1017 : 0 : V2Transport::V2Transport(NodeId nodeid, bool initiating) noexcept
1018 : 0 : : V2Transport{nodeid, initiating, GenerateRandomKey(),
1019 : 0 : MakeByteSpan(GetRandHash()), GenerateRandomGarbage()} {}
1020 : :
1021 : 68045 : void V2Transport::SetReceiveState(RecvState recv_state) noexcept
1022 : : {
1023 : 68045 : AssertLockHeld(m_recv_mutex);
1024 : : // Enforce allowed state transitions.
1025 [ + + + + : 68045 : switch (m_recv_state) {
+ + - - ]
1026 : 1639 : case RecvState::KEY_MAYBE_V1:
1027 : 1639 : Assume(recv_state == RecvState::KEY || recv_state == RecvState::V1);
1028 : 1639 : break;
1029 : 2268 : case RecvState::KEY:
1030 : 2268 : Assume(recv_state == RecvState::GARB_GARBTERM);
1031 : 2268 : break;
1032 : 2268 : case RecvState::GARB_GARBTERM:
1033 : 2268 : Assume(recv_state == RecvState::VERSION);
1034 : 2268 : break;
1035 : 2268 : case RecvState::VERSION:
1036 : 2268 : Assume(recv_state == RecvState::APP);
1037 : 2268 : break;
1038 : 29801 : case RecvState::APP:
1039 : 29801 : Assume(recv_state == RecvState::APP_READY);
1040 : 29801 : break;
1041 : 29801 : case RecvState::APP_READY:
1042 : 29801 : Assume(recv_state == RecvState::APP);
1043 : 29801 : break;
1044 : 0 : case RecvState::V1:
1045 : 0 : Assume(false); // V1 state cannot be left
1046 : 0 : break;
1047 : : }
1048 : : // Change state.
1049 : 68045 : m_recv_state = recv_state;
1050 : 68045 : }
1051 : :
1052 : 3907 : void V2Transport::SetSendState(SendState send_state) noexcept
1053 : : {
1054 : 3907 : AssertLockHeld(m_send_mutex);
1055 : : // Enforce allowed state transitions.
1056 [ + + - - ]: 3907 : switch (m_send_state) {
1057 : 1639 : case SendState::MAYBE_V1:
1058 : 1639 : Assume(send_state == SendState::V1 || send_state == SendState::AWAITING_KEY);
1059 : 1639 : break;
1060 : 2268 : case SendState::AWAITING_KEY:
1061 : 2268 : Assume(send_state == SendState::READY);
1062 : 2268 : break;
1063 : 0 : case SendState::READY:
1064 : 0 : case SendState::V1:
1065 : 0 : Assume(false); // Final states
1066 : 0 : break;
1067 : : }
1068 : : // Change state.
1069 : 3907 : m_send_state = send_state;
1070 : 3907 : }
1071 : :
1072 : 85906 : bool V2Transport::ReceivedMessageComplete() const noexcept
1073 : : {
1074 : 85906 : AssertLockNotHeld(m_recv_mutex);
1075 : 85906 : LOCK(m_recv_mutex);
1076 [ + + ]: 85906 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedMessageComplete();
1077 : :
1078 : 65778 : return m_recv_state == RecvState::APP_READY;
1079 : 85906 : }
1080 : :
1081 : 1880 : void V2Transport::ProcessReceivedMaybeV1Bytes() noexcept
1082 : : {
1083 : 1880 : AssertLockHeld(m_recv_mutex);
1084 : 1880 : AssertLockNotHeld(m_send_mutex);
1085 : 1880 : Assume(m_recv_state == RecvState::KEY_MAYBE_V1);
1086 : : // We still have to determine if this is a v1 or v2 connection. The bytes being received could
1087 : : // be the beginning of either a v1 packet (network magic + "version\x00\x00\x00\x00\x00"), or
1088 : : // of a v2 public key. BIP324 specifies that a mismatch with this 16-byte string should trigger
1089 : : // sending of the key.
1090 : 1880 : std::array<uint8_t, V1_PREFIX_LEN> v1_prefix = {0, 0, 0, 0, 'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1091 : 1880 : std::copy(std::begin(Params().MessageStart()), std::end(Params().MessageStart()), v1_prefix.begin());
1092 : 1880 : Assume(m_recv_buffer.size() <= v1_prefix.size());
1093 [ + + ]: 1880 : if (!std::equal(m_recv_buffer.begin(), m_recv_buffer.end(), v1_prefix.begin())) {
1094 : : // Mismatch with v1 prefix, so we can assume a v2 connection.
1095 : 1134 : SetReceiveState(RecvState::KEY); // Convert to KEY state, leaving received bytes around.
1096 : : // Transition the sender to AWAITING_KEY state and start sending.
1097 : 1134 : LOCK(m_send_mutex);
1098 : 1134 : SetSendState(SendState::AWAITING_KEY);
1099 [ + - ]: 1134 : StartSendingHandshake();
1100 [ + + ]: 1880 : } else if (m_recv_buffer.size() == v1_prefix.size()) {
1101 : : // Full match with the v1 prefix, so fall back to v1 behavior.
1102 : 505 : LOCK(m_send_mutex);
1103 : 505 : std::span<const uint8_t> feedback{m_recv_buffer};
1104 : : // Feed already received bytes to v1 transport. It should always accept these, because it's
1105 : : // less than the size of a v1 header, and these are the first bytes fed to m_v1_fallback.
1106 : 505 : bool ret = m_v1_fallback.ReceivedBytes(feedback);
1107 : 505 : Assume(feedback.empty());
1108 : 505 : Assume(ret);
1109 : 505 : SetReceiveState(RecvState::V1);
1110 : 505 : SetSendState(SendState::V1);
1111 : : // Reset v2 transport buffers to save memory.
1112 : 505 : ClearShrink(m_recv_buffer);
1113 [ + - ]: 505 : ClearShrink(m_send_buffer);
1114 : 505 : } else {
1115 : : // We have not received enough to distinguish v1 from v2 yet. Wait until more bytes come.
1116 : : }
1117 : 1880 : }
1118 : :
1119 : 3198 : bool V2Transport::ProcessReceivedKeyBytes() noexcept
1120 : : {
1121 : 3198 : AssertLockHeld(m_recv_mutex);
1122 : 3198 : AssertLockNotHeld(m_send_mutex);
1123 : 3198 : Assume(m_recv_state == RecvState::KEY);
1124 : 3198 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1125 : :
1126 : : // As a special exception, if bytes 4-16 of the key on a responder connection match the
1127 : : // corresponding bytes of a V1 version message, but bytes 0-4 don't match the network magic
1128 : : // (if they did, we'd have switched to V1 state already), assume this is a peer from
1129 : : // another network, and disconnect them. They will almost certainly disconnect us too when
1130 : : // they receive our uniformly random key and garbage, but detecting this case specially
1131 : : // means we can log it.
1132 : 3198 : static constexpr std::array<uint8_t, 12> MATCH = {'v', 'e', 'r', 's', 'i', 'o', 'n', 0, 0, 0, 0, 0};
1133 : 3198 : static constexpr size_t OFFSET = std::tuple_size_v<MessageStartChars>;
1134 [ + + + + ]: 3198 : if (!m_initiating && m_recv_buffer.size() >= OFFSET + MATCH.size()) {
1135 [ - + ]: 1591 : if (std::equal(MATCH.begin(), MATCH.end(), m_recv_buffer.begin() + OFFSET)) {
1136 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: V1 peer with wrong MessageStart %s\n",
1137 : : HexStr(std::span(m_recv_buffer).first(OFFSET)));
1138 : 0 : return false;
1139 : : }
1140 : : }
1141 : :
1142 [ + + ]: 3198 : if (m_recv_buffer.size() == EllSwiftPubKey::size()) {
1143 : : // Other side's key has been fully received, and can now be Diffie-Hellman combined with
1144 : : // our key to initialize the encryption ciphers.
1145 : :
1146 : : // Initialize the ciphers.
1147 : 2268 : EllSwiftPubKey ellswift(MakeByteSpan(m_recv_buffer));
1148 : 2268 : LOCK(m_send_mutex);
1149 : 2268 : m_cipher.Initialize(ellswift, m_initiating);
1150 : :
1151 : : // Switch receiver state to GARB_GARBTERM.
1152 : 2268 : SetReceiveState(RecvState::GARB_GARBTERM);
1153 [ + - ]: 2268 : m_recv_buffer.clear();
1154 : :
1155 : : // Switch sender state to READY.
1156 : 2268 : SetSendState(SendState::READY);
1157 : :
1158 : : // Append the garbage terminator to the send buffer.
1159 : 2268 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1160 : 2268 : std::copy(m_cipher.GetSendGarbageTerminator().begin(),
1161 : 2268 : m_cipher.GetSendGarbageTerminator().end(),
1162 : 2268 : MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN).begin());
1163 : :
1164 : : // Construct version packet in the send buffer, with the sent garbage data as AAD.
1165 : 2268 : m_send_buffer.resize(m_send_buffer.size() + BIP324Cipher::EXPANSION + VERSION_CONTENTS.size());
1166 : 2268 : m_cipher.Encrypt(
1167 : : /*contents=*/VERSION_CONTENTS,
1168 : 2268 : /*aad=*/MakeByteSpan(m_send_garbage),
1169 : : /*ignore=*/false,
1170 : 2268 : /*output=*/MakeWritableByteSpan(m_send_buffer).last(BIP324Cipher::EXPANSION + VERSION_CONTENTS.size()));
1171 : : // We no longer need the garbage.
1172 [ + - ]: 2268 : ClearShrink(m_send_garbage);
1173 : 2268 : } else {
1174 : : // We still have to receive more key bytes.
1175 : : }
1176 : : return true;
1177 : : }
1178 : :
1179 : 4090349 : bool V2Transport::ProcessReceivedGarbageBytes() noexcept
1180 : : {
1181 : 4090349 : AssertLockHeld(m_recv_mutex);
1182 : 4090349 : Assume(m_recv_state == RecvState::GARB_GARBTERM);
1183 : 4090349 : Assume(m_recv_buffer.size() <= MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1184 [ + + ]: 4090349 : if (m_recv_buffer.size() >= BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1185 [ + + ]: 4056329 : if (std::ranges::equal(MakeByteSpan(m_recv_buffer).last(BIP324Cipher::GARBAGE_TERMINATOR_LEN), m_cipher.GetReceiveGarbageTerminator())) {
1186 : : // Garbage terminator received. Store garbage to authenticate it as AAD later.
1187 : 2268 : m_recv_aad = std::move(m_recv_buffer);
1188 : 2268 : m_recv_aad.resize(m_recv_aad.size() - BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1189 [ - + ]: 2268 : m_recv_buffer.clear();
1190 : 2268 : SetReceiveState(RecvState::VERSION);
1191 [ - + ]: 4054061 : } else if (m_recv_buffer.size() == MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN) {
1192 : : // We've reached the maximum length for garbage + garbage terminator, and the
1193 : : // terminator still does not match. Abort.
1194 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: missing garbage terminator, peer=%d\n", m_nodeid);
1195 : 0 : return false;
1196 : : } else {
1197 : : // We still need to receive more garbage and/or garbage terminator bytes.
1198 : : }
1199 : : } else {
1200 : : // We have less than GARBAGE_TERMINATOR_LEN (16) bytes, so we certainly need to receive
1201 : : // more first.
1202 : : }
1203 : : return true;
1204 : : }
1205 : :
1206 : 90513 : bool V2Transport::ProcessReceivedPacketBytes() noexcept
1207 : : {
1208 : 90513 : AssertLockHeld(m_recv_mutex);
1209 : 90513 : Assume(m_recv_state == RecvState::VERSION || m_recv_state == RecvState::APP);
1210 : :
1211 : : // The maximum permitted contents length for a packet, consisting of:
1212 : : // - 0x00 byte: indicating long message type encoding
1213 : : // - 12 bytes of message type
1214 : : // - payload
1215 : 90513 : static constexpr size_t MAX_CONTENTS_LEN =
1216 : : 1 + CMessageHeader::MESSAGE_TYPE_SIZE +
1217 : : std::min<size_t>(MAX_SIZE, MAX_PROTOCOL_MESSAGE_LENGTH);
1218 : :
1219 [ + + ]: 90513 : if (m_recv_buffer.size() == BIP324Cipher::LENGTH_LEN) {
1220 : : // Length descriptor received.
1221 : 32069 : m_recv_len = m_cipher.DecryptLength(MakeByteSpan(m_recv_buffer));
1222 [ - + ]: 32069 : if (m_recv_len > MAX_CONTENTS_LEN) {
1223 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet too large (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1224 : 0 : return false;
1225 : : }
1226 [ + + + + ]: 58444 : } else if (m_recv_buffer.size() > BIP324Cipher::LENGTH_LEN && m_recv_buffer.size() == m_recv_len + BIP324Cipher::EXPANSION) {
1227 : : // Ciphertext received, decrypt it into m_recv_decode_buffer.
1228 : : // Note that it is impossible to reach this branch without hitting the branch above first,
1229 : : // as GetMaxBytesToProcess only allows up to LENGTH_LEN into the buffer before that point.
1230 : 32069 : m_recv_decode_buffer.resize(m_recv_len);
1231 : 32069 : bool ignore{false};
1232 : 64138 : bool ret = m_cipher.Decrypt(
1233 : 32069 : /*input=*/MakeByteSpan(m_recv_buffer).subspan(BIP324Cipher::LENGTH_LEN),
1234 : 32069 : /*aad=*/MakeByteSpan(m_recv_aad),
1235 : : /*ignore=*/ignore,
1236 : : /*contents=*/MakeWritableByteSpan(m_recv_decode_buffer));
1237 [ - + ]: 32069 : if (!ret) {
1238 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: packet decryption failure (%u bytes), peer=%d\n", m_recv_len, m_nodeid);
1239 : 0 : return false;
1240 : : }
1241 : : // We have decrypted a valid packet with the AAD we expected, so clear the expected AAD.
1242 : 32069 : ClearShrink(m_recv_aad);
1243 : : // Feed the last 4 bytes of the Poly1305 authentication tag (and its timing) into our RNG.
1244 : 32069 : RandAddEvent(ReadLE32(m_recv_buffer.data() + m_recv_buffer.size() - 4));
1245 : :
1246 : : // At this point we have a valid packet decrypted into m_recv_decode_buffer. If it's not a
1247 : : // decoy, which we simply ignore, use the current state to decide what to do with it.
1248 [ + - ]: 32069 : if (!ignore) {
1249 [ + + - ]: 32069 : switch (m_recv_state) {
1250 : 2268 : case RecvState::VERSION:
1251 : : // Version message received; transition to application phase. The contents is
1252 : : // ignored, but can be used for future extensions.
1253 : 2268 : SetReceiveState(RecvState::APP);
1254 : 2268 : break;
1255 : 29801 : case RecvState::APP:
1256 : : // Application message decrypted correctly. It can be extracted using GetMessage().
1257 : 29801 : SetReceiveState(RecvState::APP_READY);
1258 : 29801 : break;
1259 : 0 : default:
1260 : : // Any other state is invalid (this function should not have been called).
1261 : 0 : Assume(false);
1262 : : }
1263 : : }
1264 : : // Wipe the receive buffer where the next packet will be received into.
1265 : 32069 : ClearShrink(m_recv_buffer);
1266 : : // In all but APP_READY state, we can wipe the decoded contents.
1267 [ + + ]: 32069 : if (m_recv_state != RecvState::APP_READY) ClearShrink(m_recv_decode_buffer);
1268 : : } else {
1269 : : // We either have less than 3 bytes, so we don't know the packet's length yet, or more
1270 : : // than 3 bytes but less than the packet's full ciphertext. Wait until those arrive.
1271 : : }
1272 : : return true;
1273 : : }
1274 : :
1275 : 4214356 : size_t V2Transport::GetMaxBytesToProcess() noexcept
1276 : : {
1277 : 4214356 : AssertLockHeld(m_recv_mutex);
1278 [ + + + + : 4214356 : switch (m_recv_state) {
- - + ]
1279 : 1880 : case RecvState::KEY_MAYBE_V1:
1280 : : // During the KEY_MAYBE_V1 state we do not allow more than the length of v1 prefix into the
1281 : : // receive buffer.
1282 : 1880 : Assume(m_recv_buffer.size() <= V1_PREFIX_LEN);
1283 : : // As long as we're not sure if this is a v1 or v2 connection, don't receive more than what
1284 : : // is strictly necessary to distinguish the two (16 bytes). If we permitted more than
1285 : : // the v1 header size (24 bytes), we may not be able to feed the already-received bytes
1286 : : // back into the m_v1_fallback V1 transport.
1287 : 1880 : return V1_PREFIX_LEN - m_recv_buffer.size();
1288 : 3198 : case RecvState::KEY:
1289 : : // During the KEY state, we only allow the 64-byte key into the receive buffer.
1290 : 3198 : Assume(m_recv_buffer.size() <= EllSwiftPubKey::size());
1291 : : // As long as we have not received the other side's public key, don't receive more than
1292 : : // that (64 bytes), as garbage follows, and locating the garbage terminator requires the
1293 : : // key exchange first.
1294 : 3198 : return EllSwiftPubKey::size() - m_recv_buffer.size();
1295 : : case RecvState::GARB_GARBTERM:
1296 : : // Process garbage bytes one by one (because terminator may appear anywhere).
1297 : : return 1;
1298 : 90513 : case RecvState::VERSION:
1299 : 90513 : case RecvState::APP:
1300 : : // These three states all involve decoding a packet. Process the length descriptor first,
1301 : : // so that we know where the current packet ends (and we don't process bytes from the next
1302 : : // packet or decoy yet). Then, process the ciphertext bytes of the current packet.
1303 [ + + ]: 90513 : if (m_recv_buffer.size() < BIP324Cipher::LENGTH_LEN) {
1304 : 32945 : return BIP324Cipher::LENGTH_LEN - m_recv_buffer.size();
1305 : : } else {
1306 : : // Note that BIP324Cipher::EXPANSION is the total difference between contents size
1307 : : // and encoded packet size, which includes the 3 bytes due to the packet length.
1308 : : // When transitioning from receiving the packet length to receiving its ciphertext,
1309 : : // the encrypted packet length is left in the receive buffer.
1310 : 57568 : return BIP324Cipher::EXPANSION + m_recv_len - m_recv_buffer.size();
1311 : : }
1312 : 28416 : case RecvState::APP_READY:
1313 : : // No bytes can be processed until GetMessage() is called.
1314 : 28416 : return 0;
1315 : 0 : case RecvState::V1:
1316 : : // Not allowed (must be dealt with by the caller).
1317 : 0 : Assume(false);
1318 : 0 : return 0;
1319 : : }
1320 : 0 : Assume(false); // unreachable
1321 : 0 : return 0;
1322 : : }
1323 : :
1324 : 85906 : bool V2Transport::ReceivedBytes(std::span<const uint8_t>& msg_bytes) noexcept
1325 : : {
1326 : 85906 : AssertLockNotHeld(m_recv_mutex);
1327 : : /** How many bytes to allocate in the receive buffer at most above what is received so far. */
1328 : 85906 : static constexpr size_t MAX_RESERVE_AHEAD = 256 * 1024;
1329 : :
1330 : 85906 : LOCK(m_recv_mutex);
1331 [ + + ]: 85906 : if (m_recv_state == RecvState::V1) return m_v1_fallback.ReceivedBytes(msg_bytes);
1332 : :
1333 : : // Process the provided bytes in msg_bytes in a loop. In each iteration a nonzero number of
1334 : : // bytes (decided by GetMaxBytesToProcess) are taken from the beginning om msg_bytes, and
1335 : : // appended to m_recv_buffer. Then, depending on the receiver state, one of the
1336 : : // ProcessReceived*Bytes functions is called to process the bytes in that buffer.
1337 [ + + ]: 4251718 : while (!msg_bytes.empty()) {
1338 : : // Decide how many bytes to copy from msg_bytes to m_recv_buffer.
1339 : 4214356 : size_t max_read = GetMaxBytesToProcess();
1340 : :
1341 : : // Reserve space in the buffer if there is not enough.
1342 [ + + + + ]: 4251746 : if (m_recv_buffer.size() + std::min(msg_bytes.size(), max_read) > m_recv_buffer.capacity()) {
1343 [ + + - - : 66911 : switch (m_recv_state) {
- ]
1344 : 2773 : case RecvState::KEY_MAYBE_V1:
1345 : 2773 : case RecvState::KEY:
1346 : 2773 : case RecvState::GARB_GARBTERM:
1347 : : // During the initial states (key/garbage), allocate once to fit the maximum (4111
1348 : : // bytes).
1349 : 2773 : m_recv_buffer.reserve(MAX_GARBAGE_LEN + BIP324Cipher::GARBAGE_TERMINATOR_LEN);
1350 : 2773 : break;
1351 : 64138 : case RecvState::VERSION:
1352 : 64138 : case RecvState::APP: {
1353 : : // During states where a packet is being received, as much as is expected but never
1354 : : // more than MAX_RESERVE_AHEAD bytes in addition to what is received so far.
1355 : : // This means attackers that want to cause us to waste allocated memory are limited
1356 : : // to MAX_RESERVE_AHEAD above the largest allowed message contents size, and to
1357 : : // MAX_RESERVE_AHEAD more than they've actually sent us.
1358 [ + - ]: 64138 : size_t alloc_add = std::min(max_read, msg_bytes.size() + MAX_RESERVE_AHEAD);
1359 : 64138 : m_recv_buffer.reserve(m_recv_buffer.size() + alloc_add);
1360 : 64138 : break;
1361 : : }
1362 : 0 : case RecvState::APP_READY:
1363 : : // The buffer is empty in this state.
1364 : 0 : Assume(m_recv_buffer.empty());
1365 : 0 : break;
1366 : 0 : case RecvState::V1:
1367 : : // Should have bailed out above.
1368 : 0 : Assume(false);
1369 : 0 : break;
1370 : : }
1371 : : }
1372 : :
1373 : : // Can't read more than provided input.
1374 [ + + ]: 4214356 : max_read = std::min(msg_bytes.size(), max_read);
1375 : : // Copy data to buffer.
1376 : 4214356 : m_recv_buffer.insert(m_recv_buffer.end(), UCharCast(msg_bytes.data()), UCharCast(msg_bytes.data() + max_read));
1377 [ + + + + : 4214356 : msg_bytes = msg_bytes.subspan(max_read);
- - + ]
1378 : :
1379 : : // Process data in the buffer.
1380 [ + + + + : 4214356 : switch (m_recv_state) {
- - + ]
1381 : 1880 : case RecvState::KEY_MAYBE_V1:
1382 : 1880 : ProcessReceivedMaybeV1Bytes();
1383 [ + + ]: 1880 : if (m_recv_state == RecvState::V1) return true;
1384 : : break;
1385 : :
1386 : 3198 : case RecvState::KEY:
1387 [ + - ]: 3198 : if (!ProcessReceivedKeyBytes()) return false;
1388 : : break;
1389 : :
1390 : 4090349 : case RecvState::GARB_GARBTERM:
1391 [ + - ]: 4090349 : if (!ProcessReceivedGarbageBytes()) return false;
1392 : : break;
1393 : :
1394 : 90513 : case RecvState::VERSION:
1395 : 90513 : case RecvState::APP:
1396 [ + - ]: 90513 : if (!ProcessReceivedPacketBytes()) return false;
1397 : : break;
1398 : :
1399 : : case RecvState::APP_READY:
1400 : : return true;
1401 : :
1402 : 0 : case RecvState::V1:
1403 : : // We should have bailed out before.
1404 : 0 : Assume(false);
1405 : 0 : break;
1406 : : }
1407 : : // Make sure we have made progress before continuing.
1408 : 4185435 : Assume(max_read > 0);
1409 : : }
1410 : :
1411 : : return true;
1412 : 85906 : }
1413 : :
1414 : 29801 : std::optional<std::string> V2Transport::GetMessageType(std::span<const uint8_t>& contents) noexcept
1415 : : {
1416 [ - + ]: 29801 : if (contents.size() == 0) return std::nullopt; // Empty contents
1417 [ + + ]: 29801 : uint8_t first_byte = contents[0];
1418 [ + + ]: 29801 : contents = contents.subspan(1); // Strip first byte.
1419 : :
1420 [ + + ]: 29801 : if (first_byte != 0) {
1421 : : // Short (1 byte) encoding.
1422 [ + - ]: 23387 : if (first_byte < std::size(V2_MESSAGE_IDS)) {
1423 : : // Valid short message id.
1424 : 23387 : return V2_MESSAGE_IDS[first_byte];
1425 : : } else {
1426 : : // Unknown short message id.
1427 : 0 : return std::nullopt;
1428 : : }
1429 : : }
1430 : :
1431 [ + - ]: 6414 : if (contents.size() < CMessageHeader::MESSAGE_TYPE_SIZE) {
1432 : 0 : return std::nullopt; // Long encoding needs 12 message type bytes.
1433 : : }
1434 : :
1435 : : size_t msg_type_len{0};
1436 [ + + + + ]: 47614 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE && contents[msg_type_len] != 0) {
1437 : : // Verify that message type bytes before the first 0x00 are in range.
1438 [ - + + - ]: 41200 : if (contents[msg_type_len] < ' ' || contents[msg_type_len] > 0x7F) {
1439 : 0 : return {};
1440 : : }
1441 : 41200 : ++msg_type_len;
1442 : : }
1443 : 6414 : std::string ret{reinterpret_cast<const char*>(contents.data()), msg_type_len};
1444 [ + + ]: 42182 : while (msg_type_len < CMessageHeader::MESSAGE_TYPE_SIZE) {
1445 : : // Verify that message type bytes after the first 0x00 are also 0x00.
1446 [ - + ]: 35768 : if (contents[msg_type_len] != 0) return {};
1447 : 35768 : ++msg_type_len;
1448 : : }
1449 : : // Strip message type bytes of contents.
1450 : 6414 : contents = contents.subspan(CMessageHeader::MESSAGE_TYPE_SIZE);
1451 : 6414 : return ret;
1452 : 6414 : }
1453 : :
1454 : 38657 : CNetMessage V2Transport::GetReceivedMessage(std::chrono::microseconds time, bool& reject_message) noexcept
1455 : : {
1456 : 38657 : AssertLockNotHeld(m_recv_mutex);
1457 : 38657 : LOCK(m_recv_mutex);
1458 [ + + ]: 38657 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetReceivedMessage(time, reject_message);
1459 : :
1460 : 29801 : Assume(m_recv_state == RecvState::APP_READY);
1461 : 29801 : std::span<const uint8_t> contents{m_recv_decode_buffer};
1462 : 29801 : auto msg_type = GetMessageType(contents);
1463 : 29801 : CNetMessage msg{DataStream{}};
1464 : : // Note that BIP324Cipher::EXPANSION also includes the length descriptor size.
1465 [ + - ]: 29801 : msg.m_raw_message_size = m_recv_decode_buffer.size() + BIP324Cipher::EXPANSION;
1466 [ + - ]: 29801 : if (msg_type) {
1467 : 29801 : reject_message = false;
1468 : 29801 : msg.m_type = std::move(*msg_type);
1469 : 29801 : msg.m_time = time;
1470 : 29801 : msg.m_message_size = contents.size();
1471 : 29801 : msg.m_recv.resize(contents.size());
1472 : 29801 : std::copy(contents.begin(), contents.end(), UCharCast(msg.m_recv.data()));
1473 : : } else {
1474 [ # # ]: 0 : LogDebug(BCLog::NET, "V2 transport error: invalid message type (%u bytes contents), peer=%d\n", m_recv_decode_buffer.size(), m_nodeid);
1475 : 0 : reject_message = true;
1476 : : }
1477 : 29801 : ClearShrink(m_recv_decode_buffer);
1478 : 29801 : SetReceiveState(RecvState::APP);
1479 : :
1480 : 29801 : return msg;
1481 : 29801 : }
1482 : :
1483 : 152869 : bool V2Transport::SetMessageToSend(CSerializedNetMsg& msg) noexcept
1484 : : {
1485 : 152869 : AssertLockNotHeld(m_send_mutex);
1486 : 152869 : LOCK(m_send_mutex);
1487 [ + + ]: 152869 : if (m_send_state == SendState::V1) return m_v1_fallback.SetMessageToSend(msg);
1488 : : // We only allow adding a new message to be sent when in the READY state (so the packet cipher
1489 : : // is available) and the send buffer is empty. This limits the number of messages in the send
1490 : : // buffer to just one, and leaves the responsibility for queueing them up to the caller.
1491 [ + + + + ]: 144889 : if (!(m_send_state == SendState::READY && m_send_buffer.empty())) return false;
1492 : : // Construct contents (encoding message type + payload).
1493 : 29801 : std::vector<uint8_t> contents;
1494 : 29801 : auto short_message_id = V2_MESSAGE_MAP(msg.m_type);
1495 [ + + ]: 29801 : if (short_message_id) {
1496 : 23387 : contents.resize(1 + msg.data.size());
1497 : 23387 : contents[0] = *short_message_id;
1498 : 23387 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1);
1499 : : } else {
1500 : : // Initialize with zeroes, and then write the message type string starting at offset 1.
1501 : : // This means contents[0] and the unused positions in contents[1..13] remain 0x00.
1502 : 6414 : contents.resize(1 + CMessageHeader::MESSAGE_TYPE_SIZE + msg.data.size(), 0);
1503 : 6414 : std::copy(msg.m_type.begin(), msg.m_type.end(), contents.data() + 1);
1504 : 6414 : std::copy(msg.data.begin(), msg.data.end(), contents.begin() + 1 + CMessageHeader::MESSAGE_TYPE_SIZE);
1505 : : }
1506 : : // Construct ciphertext in send buffer.
1507 : 29801 : m_send_buffer.resize(contents.size() + BIP324Cipher::EXPANSION);
1508 : 29801 : m_cipher.Encrypt(MakeByteSpan(contents), {}, false, MakeWritableByteSpan(m_send_buffer));
1509 : 29801 : m_send_type = msg.m_type;
1510 : : // Release memory
1511 : 29801 : ClearShrink(msg.data);
1512 : 29801 : return true;
1513 : 29801 : }
1514 : :
1515 : 1175756 : Transport::BytesToSend V2Transport::GetBytesToSend(bool have_next_message) const noexcept
1516 : : {
1517 : 1175756 : AssertLockNotHeld(m_send_mutex);
1518 : 1175756 : LOCK(m_send_mutex);
1519 [ + + ]: 1175756 : if (m_send_state == SendState::V1) return m_v1_fallback.GetBytesToSend(have_next_message);
1520 : :
1521 [ + + ]: 1030290 : if (m_send_state == SendState::MAYBE_V1) Assume(m_send_buffer.empty());
1522 : 1030290 : Assume(m_send_pos <= m_send_buffer.size());
1523 : 1030290 : return {
1524 [ + + ]: 1030290 : std::span{m_send_buffer}.subspan(m_send_pos),
1525 : : // We only have more to send after the current m_send_buffer if there is a (next)
1526 : : // message to be sent, and we're capable of sending packets. */
1527 [ + + + + ]: 1030290 : have_next_message && m_send_state == SendState::READY,
1528 : 1030290 : m_send_type
1529 : 1030290 : };
1530 : 1175756 : }
1531 : :
1532 : 134273 : void V2Transport::MarkBytesSent(size_t bytes_sent) noexcept
1533 : : {
1534 : 134273 : AssertLockNotHeld(m_send_mutex);
1535 : 134273 : LOCK(m_send_mutex);
1536 [ + + + - ]: 134273 : if (m_send_state == SendState::V1) return m_v1_fallback.MarkBytesSent(bytes_sent);
1537 : :
1538 [ + + + + : 118203 : if (m_send_state == SendState::AWAITING_KEY && m_send_pos == 0 && bytes_sent > 0) {
+ - ]
1539 [ - + ]: 1244 : LogDebug(BCLog::NET, "start sending v2 handshake to peer=%d\n", m_nodeid);
1540 : : }
1541 : :
1542 : 118203 : m_send_pos += bytes_sent;
1543 : 118203 : Assume(m_send_pos <= m_send_buffer.size());
1544 [ + + ]: 118203 : if (m_send_pos >= CMessageHeader::HEADER_SIZE) {
1545 : 81227 : m_sent_v1_header_worth = true;
1546 : : }
1547 : : // Wipe the buffer when everything is sent.
1548 [ + + ]: 118203 : if (m_send_pos == m_send_buffer.size()) {
1549 : 32760 : m_send_pos = 0;
1550 : 32760 : ClearShrink(m_send_buffer);
1551 : : }
1552 : 134273 : }
1553 : :
1554 : 0 : bool V2Transport::ShouldReconnectV1() const noexcept
1555 : : {
1556 : 0 : AssertLockNotHeld(m_send_mutex);
1557 : 0 : AssertLockNotHeld(m_recv_mutex);
1558 : : // Only outgoing connections need reconnection.
1559 [ # # ]: 0 : if (!m_initiating) return false;
1560 : :
1561 : 0 : LOCK(m_recv_mutex);
1562 : : // We only reconnect in the very first state and when the receive buffer is empty. Together
1563 : : // these conditions imply nothing has been received so far.
1564 [ # # ]: 0 : if (m_recv_state != RecvState::KEY) return false;
1565 [ # # ]: 0 : if (!m_recv_buffer.empty()) return false;
1566 : : // Check if we've sent enough for the other side to disconnect us (if it was V1).
1567 : 0 : LOCK(m_send_mutex);
1568 [ # # ]: 0 : return m_sent_v1_header_worth;
1569 : 0 : }
1570 : :
1571 : 0 : size_t V2Transport::GetSendMemoryUsage() const noexcept
1572 : : {
1573 : 0 : AssertLockNotHeld(m_send_mutex);
1574 : 0 : LOCK(m_send_mutex);
1575 [ # # ]: 0 : if (m_send_state == SendState::V1) return m_v1_fallback.GetSendMemoryUsage();
1576 : :
1577 [ # # ]: 0 : return sizeof(m_send_buffer) + memusage::DynamicUsage(m_send_buffer);
1578 : 0 : }
1579 : :
1580 : 3004 : Transport::Info V2Transport::GetInfo() const noexcept
1581 : : {
1582 : 3004 : AssertLockNotHeld(m_recv_mutex);
1583 : 3004 : LOCK(m_recv_mutex);
1584 [ + + ]: 3004 : if (m_recv_state == RecvState::V1) return m_v1_fallback.GetInfo();
1585 : :
1586 [ + + ]: 2499 : Transport::Info info;
1587 : :
1588 : : // Do not report v2 and session ID until the version packet has been received
1589 : : // and verified (confirming that the other side very likely has the same keys as us).
1590 [ + + ]: 2499 : if (m_recv_state != RecvState::KEY_MAYBE_V1 && m_recv_state != RecvState::KEY &&
1591 : : m_recv_state != RecvState::GARB_GARBTERM && m_recv_state != RecvState::VERSION) {
1592 : 2268 : info.transport_type = TransportProtocolType::V2;
1593 : 2268 : info.session_id = uint256(MakeUCharSpan(m_cipher.GetSessionID()));
1594 : : } else {
1595 : 231 : info.transport_type = TransportProtocolType::DETECTING;
1596 : : }
1597 : :
1598 : 2499 : return info;
1599 : 3004 : }
1600 : :
1601 : 105680 : std::pair<size_t, bool> CConnman::SocketSendData(CNode& node) const
1602 : : {
1603 : 105680 : auto it = node.vSendMsg.begin();
1604 : 105680 : size_t nSentSize = 0;
1605 : 105680 : bool data_left{false}; //!< second return value (whether unsent data remains)
1606 : 105680 : std::optional<bool> expected_more;
1607 : :
1608 : 265974 : while (true) {
1609 [ + + ]: 265974 : if (it != node.vSendMsg.end()) {
1610 : : // If possible, move one message from the send queue to the transport. This fails when
1611 : : // there is an existing message still being sent, or (for v2 transports) when the
1612 : : // handshake has not yet completed.
1613 : 105680 : size_t memusage = it->GetMemoryUsage();
1614 [ + - ]: 105680 : if (node.m_transport->SetMessageToSend(*it)) {
1615 : : // Update memory usage of send buffer (as *it will be deleted).
1616 : 105680 : node.m_send_memusage -= memusage;
1617 : 105680 : ++it;
1618 : : }
1619 : : }
1620 [ + + ]: 265974 : const auto& [data, more, msg_type] = node.m_transport->GetBytesToSend(it != node.vSendMsg.end());
1621 : : // We rely on the 'more' value returned by GetBytesToSend to correctly predict whether more
1622 : : // bytes are still to be sent, to correctly set the MSG_MORE flag. As a sanity check,
1623 : : // verify that the previously returned 'more' was correct.
1624 [ + + ]: 265974 : if (expected_more.has_value()) Assume(!data.empty() == *expected_more);
1625 [ + + ]: 265974 : expected_more = more;
1626 [ + + ]: 265974 : data_left = !data.empty(); // will be overwritten on next loop if all of data gets sent
1627 : 265974 : int nBytes = 0;
1628 [ + + ]: 265974 : if (!data.empty()) {
1629 : 179415 : LOCK(node.m_sock_mutex);
1630 : : // There is no socket in case we've already disconnected, or in test cases without
1631 : : // real connections. In these cases, we bail out immediately and just leave things
1632 : : // in the send queue and transport.
1633 [ + + ]: 179415 : if (!node.m_sock) {
1634 : : break;
1635 : : }
1636 : 171218 : int flags = MSG_NOSIGNAL | MSG_DONTWAIT;
1637 : : #ifdef MSG_MORE
1638 [ + + ]: 171218 : if (more) {
1639 : 80029 : flags |= MSG_MORE;
1640 : : }
1641 : : #endif
1642 [ + - + - ]: 171218 : nBytes = node.m_sock->Send(reinterpret_cast<const char*>(data.data()), data.size(), flags);
1643 : 8197 : }
1644 [ + + ]: 171218 : if (nBytes > 0) {
1645 : 167948 : node.m_last_send = GetTime<std::chrono::seconds>();
1646 : 167948 : node.nSendBytes += nBytes;
1647 : : // Notify transport that bytes have been processed.
1648 : 167948 : node.m_transport->MarkBytesSent(nBytes);
1649 : : // Update statistics per message type.
1650 [ + + ]: 167948 : if (!msg_type.empty()) { // don't report v2 handshake bytes for now
1651 : 163645 : node.AccountForSentBytes(msg_type, nBytes);
1652 : : }
1653 : 167948 : nSentSize += nBytes;
1654 [ + + ]: 167948 : if ((size_t)nBytes != data.size()) {
1655 : : // could not send full message; stop sending more
1656 : : break;
1657 : : }
1658 : : } else {
1659 [ + + ]: 89829 : if (nBytes < 0) {
1660 : : // error
1661 : 2609 : int nErr = WSAGetLastError();
1662 [ + + + + ]: 2609 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
1663 [ - + - - : 2137 : LogDebug(BCLog::NET, "socket send error, %s: %s\n", node.DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
- - ]
1664 : 2137 : node.CloseSocketDisconnect();
1665 : : }
1666 : : }
1667 : : break;
1668 : : }
1669 : : }
1670 : :
1671 [ + - ]: 105680 : node.fPauseSend = node.m_send_memusage + node.m_transport->GetSendMemoryUsage() > nSendBufferMaxSize;
1672 : :
1673 [ + - ]: 105680 : if (it == node.vSendMsg.end()) {
1674 [ - + ]: 105680 : assert(node.m_send_memusage == 0);
1675 : : }
1676 : 105680 : node.vSendMsg.erase(node.vSendMsg.begin(), it);
1677 : 105680 : return {nSentSize, data_left};
1678 : : }
1679 : :
1680 : : /** Try to find a connection to evict when the node is full.
1681 : : * Extreme care must be taken to avoid opening the node to attacker
1682 : : * triggered network partitioning.
1683 : : * The strategy used here is to protect a small number of peers
1684 : : * for each of several distinct characteristics which are difficult
1685 : : * to forge. In order to partition a node the attacker must be
1686 : : * simultaneously better at all of them than honest peers.
1687 : : */
1688 : 0 : bool CConnman::AttemptToEvictConnection()
1689 : : {
1690 : 0 : std::vector<NodeEvictionCandidate> vEvictionCandidates;
1691 : 0 : {
1692 : :
1693 [ # # ]: 0 : LOCK(m_nodes_mutex);
1694 [ # # ]: 0 : for (const CNode* node : m_nodes) {
1695 [ # # ]: 0 : if (node->fDisconnect)
1696 : 0 : continue;
1697 : 0 : NodeEvictionCandidate candidate{
1698 : 0 : .id = node->GetId(),
1699 : : .m_connected = node->m_connected,
1700 : 0 : .m_min_ping_time = node->m_min_ping_time,
1701 : 0 : .m_last_block_time = node->m_last_block_time,
1702 : 0 : .m_last_tx_time = node->m_last_tx_time,
1703 [ # # ]: 0 : .fRelevantServices = node->m_has_all_wanted_services,
1704 : 0 : .m_relay_txs = node->m_relays_txs.load(),
1705 : 0 : .fBloomFilter = node->m_bloom_filter_loaded.load(),
1706 : 0 : .nKeyedNetGroup = node->nKeyedNetGroup,
1707 : 0 : .prefer_evict = node->m_prefer_evict,
1708 [ # # ]: 0 : .m_is_local = node->addr.IsLocal(),
1709 : 0 : .m_network = node->ConnectedThroughNetwork(),
1710 : 0 : .m_noban = node->HasPermission(NetPermissionFlags::NoBan),
1711 : 0 : .m_conn_type = node->m_conn_type,
1712 [ # # # # : 0 : };
# # ]
1713 [ # # ]: 0 : vEvictionCandidates.push_back(candidate);
1714 : : }
1715 : 0 : }
1716 [ # # ]: 0 : const std::optional<NodeId> node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates));
1717 [ # # ]: 0 : if (!node_id_to_evict) {
1718 : : return false;
1719 : : }
1720 [ # # ]: 0 : LOCK(m_nodes_mutex);
1721 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1722 [ # # ]: 0 : if (pnode->GetId() == *node_id_to_evict) {
1723 [ # # # # : 0 : LogDebug(BCLog::NET, "selected %s connection for eviction, %s", pnode->ConnectionTypeAsString(), pnode->DisconnectMsg(fLogIPs));
# # # # ]
1724 : : TRACEPOINT(net, evicted_inbound_connection,
1725 : : pnode->GetId(),
1726 : : pnode->m_addr_name.c_str(),
1727 : : pnode->ConnectionTypeAsString().c_str(),
1728 : : pnode->ConnectedThroughNetwork(),
1729 : 0 : Ticks<std::chrono::seconds>(pnode->m_connected));
1730 : 0 : pnode->fDisconnect = true;
1731 : 0 : return true;
1732 : : }
1733 : : }
1734 : : return false;
1735 : 0 : }
1736 : :
1737 : 0 : void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
1738 : 0 : struct sockaddr_storage sockaddr;
1739 : 0 : socklen_t len = sizeof(sockaddr);
1740 : 0 : auto sock = hListenSocket.sock->Accept((struct sockaddr*)&sockaddr, &len);
1741 : :
1742 [ # # ]: 0 : if (!sock) {
1743 : 0 : const int nErr = WSAGetLastError();
1744 [ # # ]: 0 : if (nErr != WSAEWOULDBLOCK) {
1745 [ # # # # ]: 0 : LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
1746 : : }
1747 : 0 : return;
1748 : : }
1749 : :
1750 [ # # ]: 0 : CService addr;
1751 [ # # # # ]: 0 : if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr, len)) {
1752 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Warning, "Unknown socket family\n");
# # ]
1753 : : } else {
1754 [ # # ]: 0 : addr = MaybeFlipIPv6toCJDNS(addr);
1755 : : }
1756 : :
1757 [ # # # # ]: 0 : const CService addr_bind{MaybeFlipIPv6toCJDNS(GetBindAddress(*sock))};
1758 : :
1759 : 0 : NetPermissionFlags permission_flags = NetPermissionFlags::None;
1760 [ # # ]: 0 : hListenSocket.AddSocketPermissionFlags(permission_flags);
1761 : :
1762 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(sock), permission_flags, addr_bind, addr);
1763 : 0 : }
1764 : :
1765 : 0 : void CConnman::CreateNodeFromAcceptedSocket(std::unique_ptr<Sock>&& sock,
1766 : : NetPermissionFlags permission_flags,
1767 : : const CService& addr_bind,
1768 : : const CService& addr)
1769 : : {
1770 : 0 : int nInbound = 0;
1771 : :
1772 : 0 : AddWhitelistPermissionFlags(permission_flags, addr, vWhitelistedRangeIncoming);
1773 : :
1774 : 0 : {
1775 : 0 : LOCK(m_nodes_mutex);
1776 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
1777 [ # # ]: 0 : if (pnode->IsInboundConn()) nInbound++;
1778 : : }
1779 : 0 : }
1780 : :
1781 [ # # ]: 0 : if (!fNetworkActive) {
1782 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToStringAddrPort());
1783 : 0 : return;
1784 : : }
1785 : :
1786 [ # # ]: 0 : if (!sock->IsSelectable()) {
1787 [ # # ]: 0 : LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToStringAddrPort());
1788 : 0 : return;
1789 : : }
1790 : :
1791 : : // According to the internet TCP_NODELAY is not carried into accepted sockets
1792 : : // on all platforms. Set it again here just to be sure.
1793 : 0 : const int on{1};
1794 [ # # ]: 0 : if (sock->SetSockOpt(IPPROTO_TCP, TCP_NODELAY, &on, sizeof(on)) == SOCKET_ERROR) {
1795 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s: unable to set TCP_NODELAY, continuing anyway\n",
1796 : : addr.ToStringAddrPort());
1797 : : }
1798 : :
1799 : : // Don't accept connections from banned peers.
1800 [ # # # # ]: 0 : bool banned = m_banman && m_banman->IsBanned(addr);
1801 [ # # # # ]: 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && banned)
1802 : : {
1803 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToStringAddrPort());
1804 : 0 : return;
1805 : : }
1806 : :
1807 : : // Only accept connections from discouraged peers if our inbound slots aren't (almost) full.
1808 [ # # # # ]: 0 : bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
1809 [ # # # # : 0 : if (!NetPermissions::HasFlag(permission_flags, NetPermissionFlags::NoBan) && nInbound + 1 >= m_max_inbound && discouraged)
# # ]
1810 : : {
1811 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToStringAddrPort());
1812 : 0 : return;
1813 : : }
1814 : :
1815 [ # # ]: 0 : if (nInbound >= m_max_inbound)
1816 : : {
1817 [ # # ]: 0 : if (!AttemptToEvictConnection()) {
1818 : : // No connection to evict, disconnect the new connection
1819 [ # # ]: 0 : LogDebug(BCLog::NET, "failed to find an eviction candidate - connection dropped (full)\n");
1820 : 0 : return;
1821 : : }
1822 : : }
1823 : :
1824 : 0 : NodeId id = GetNewNodeId();
1825 : 0 : uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
1826 : :
1827 : 0 : const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end();
1828 : : // The V2Transport transparently falls back to V1 behavior when an incoming V1 connection is
1829 : : // detected, so use it whenever we signal NODE_P2P_V2.
1830 : 0 : ServiceFlags local_services = GetLocalServices();
1831 : 0 : const bool use_v2transport(local_services & NODE_P2P_V2);
1832 : :
1833 : 0 : CNode* pnode = new CNode(id,
1834 : : std::move(sock),
1835 [ # # ]: 0 : CAddress{addr, NODE_NONE},
1836 : : CalculateKeyedNetGroup(addr),
1837 : : nonce,
1838 : : addr_bind,
1839 : : /*addrNameIn=*/"",
1840 : : ConnectionType::INBOUND,
1841 : : inbound_onion,
1842 [ # # ]: 0 : CNodeOptions{
1843 : : .permission_flags = permission_flags,
1844 : : .prefer_evict = discouraged,
1845 : 0 : .recv_flood_size = nReceiveFloodSize,
1846 : : .use_v2transport = use_v2transport,
1847 [ # # # # : 0 : });
# # # # ]
1848 : 0 : pnode->AddRef();
1849 : 0 : m_msgproc->InitializeNode(*pnode, local_services);
1850 : 0 : {
1851 : 0 : LOCK(m_nodes_mutex);
1852 [ # # ]: 0 : m_nodes.push_back(pnode);
1853 : 0 : }
1854 [ # # # # ]: 0 : LogDebug(BCLog::NET, "connection from %s accepted\n", addr.ToStringAddrPort());
1855 : : TRACEPOINT(net, inbound_connection,
1856 : : pnode->GetId(),
1857 : : pnode->m_addr_name.c_str(),
1858 : : pnode->ConnectionTypeAsString().c_str(),
1859 : : pnode->ConnectedThroughNetwork(),
1860 : 0 : GetNodeCount(ConnectionDirection::In));
1861 : :
1862 : : // We received a new connection, harvest entropy from the time (and our peer count)
1863 : 0 : RandAddEvent((uint32_t)id);
1864 : : }
1865 : :
1866 : 0 : bool CConnman::AddConnection(const std::string& address, ConnectionType conn_type, bool use_v2transport = false)
1867 : : {
1868 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
1869 : 0 : std::optional<int> max_connections;
1870 [ # # # # ]: 0 : switch (conn_type) {
1871 : : case ConnectionType::INBOUND:
1872 : : case ConnectionType::MANUAL:
1873 : : return false;
1874 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
1875 : 0 : max_connections = m_max_outbound_full_relay;
1876 : 0 : break;
1877 : 0 : case ConnectionType::BLOCK_RELAY:
1878 : 0 : max_connections = m_max_outbound_block_relay;
1879 : 0 : break;
1880 : : // no limit for ADDR_FETCH because -seednode has no limit either
1881 : : case ConnectionType::ADDR_FETCH:
1882 : : break;
1883 : : // no limit for FEELER connections since they're short-lived
1884 : : case ConnectionType::FEELER:
1885 : : break;
1886 : : } // no default case, so the compiler can warn about missing cases
1887 : :
1888 : : // Count existing connections
1889 [ # # # # ]: 0 : int existing_connections = WITH_LOCK(m_nodes_mutex,
1890 : : return std::count_if(m_nodes.begin(), m_nodes.end(), [conn_type](CNode* node) { return node->m_conn_type == conn_type; }););
1891 : :
1892 : : // Max connections of specified type already exist
1893 [ # # ]: 0 : if (max_connections != std::nullopt && existing_connections >= max_connections) return false;
1894 : :
1895 : : // Max total outbound connections already exist
1896 : 0 : CSemaphoreGrant grant(*semOutbound, true);
1897 [ # # ]: 0 : if (!grant) return false;
1898 : :
1899 [ # # # # ]: 0 : OpenNetworkConnection(CAddress(), false, std::move(grant), address.c_str(), conn_type, /*use_v2transport=*/use_v2transport);
1900 : 0 : return true;
1901 : : }
1902 : :
1903 : 0 : void CConnman::DisconnectNodes()
1904 : : {
1905 : 0 : AssertLockNotHeld(m_nodes_mutex);
1906 : 0 : AssertLockNotHeld(m_reconnections_mutex);
1907 : :
1908 : : // Use a temporary variable to accumulate desired reconnections, so we don't need
1909 : : // m_reconnections_mutex while holding m_nodes_mutex.
1910 [ # # ]: 0 : decltype(m_reconnections) reconnections_to_add;
1911 : :
1912 : 0 : {
1913 [ # # ]: 0 : LOCK(m_nodes_mutex);
1914 : :
1915 [ # # ]: 0 : const bool network_active{fNetworkActive};
1916 [ # # ]: 0 : if (!network_active) {
1917 : : // Disconnect any connected nodes
1918 [ # # ]: 0 : for (CNode* pnode : m_nodes) {
1919 [ # # ]: 0 : if (!pnode->fDisconnect) {
1920 [ # # # # : 0 : LogDebug(BCLog::NET, "Network not active, %s\n", pnode->DisconnectMsg(fLogIPs));
# # # # ]
1921 : 0 : pnode->fDisconnect = true;
1922 : : }
1923 : : }
1924 : : }
1925 : :
1926 : : // Disconnect unused nodes
1927 [ # # ]: 0 : std::vector<CNode*> nodes_copy = m_nodes;
1928 [ # # ]: 0 : for (CNode* pnode : nodes_copy)
1929 : : {
1930 [ # # ]: 0 : if (pnode->fDisconnect)
1931 : : {
1932 : : // remove from m_nodes
1933 : 0 : m_nodes.erase(remove(m_nodes.begin(), m_nodes.end(), pnode), m_nodes.end());
1934 : :
1935 : : // Add to reconnection list if appropriate. We don't reconnect right here, because
1936 : : // the creation of a connection is a blocking operation (up to several seconds),
1937 : : // and we don't want to hold up the socket handler thread for that long.
1938 [ # # # # ]: 0 : if (network_active && pnode->m_transport->ShouldReconnectV1()) {
1939 : 0 : reconnections_to_add.push_back({
1940 : 0 : .addr_connect = pnode->addr,
1941 [ # # ]: 0 : .grant = std::move(pnode->grantOutbound),
1942 : 0 : .destination = pnode->m_dest,
1943 : 0 : .conn_type = pnode->m_conn_type,
1944 : : .use_v2transport = false});
1945 [ # # # # : 0 : LogDebug(BCLog::NET, "retrying with v1 transport protocol for peer=%d\n", pnode->GetId());
# # ]
1946 : : }
1947 : :
1948 : : // release outbound grant (if any)
1949 : 0 : pnode->grantOutbound.Release();
1950 : :
1951 : : // close socket and cleanup
1952 [ # # ]: 0 : pnode->CloseSocketDisconnect();
1953 : :
1954 : : // update connection count by network
1955 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) --m_network_conn_counts[pnode->addr.GetNetwork()];
1956 : :
1957 : : // hold in disconnected pool until all refs are released
1958 [ # # ]: 0 : pnode->Release();
1959 [ # # ]: 0 : m_nodes_disconnected.push_back(pnode);
1960 : : }
1961 : : }
1962 [ # # ]: 0 : }
1963 : 0 : {
1964 : : // Delete disconnected nodes
1965 [ # # ]: 0 : std::list<CNode*> nodes_disconnected_copy = m_nodes_disconnected;
1966 [ # # ]: 0 : for (CNode* pnode : nodes_disconnected_copy)
1967 : : {
1968 : : // Destroy the object only after other threads have stopped using it.
1969 [ # # ]: 0 : if (pnode->GetRefCount() <= 0) {
1970 : 0 : m_nodes_disconnected.remove(pnode);
1971 [ # # ]: 0 : DeleteNode(pnode);
1972 : : }
1973 : : }
1974 : 0 : }
1975 : 0 : {
1976 : : // Move entries from reconnections_to_add to m_reconnections.
1977 [ # # ]: 0 : LOCK(m_reconnections_mutex);
1978 [ # # ]: 0 : m_reconnections.splice(m_reconnections.end(), std::move(reconnections_to_add));
1979 : 0 : }
1980 [ # # # # : 0 : }
# # ]
1981 : :
1982 : 0 : void CConnman::NotifyNumConnectionsChanged()
1983 : : {
1984 : 0 : size_t nodes_size;
1985 : 0 : {
1986 : 0 : LOCK(m_nodes_mutex);
1987 [ # # ]: 0 : nodes_size = m_nodes.size();
1988 : 0 : }
1989 [ # # ]: 0 : if(nodes_size != nPrevNodeCount) {
1990 : 0 : nPrevNodeCount = nodes_size;
1991 [ # # ]: 0 : if (m_client_interface) {
1992 : 0 : m_client_interface->NotifyNumConnectionsChanged(nodes_size);
1993 : : }
1994 : : }
1995 : 0 : }
1996 : :
1997 : 758147 : bool CConnman::ShouldRunInactivityChecks(const CNode& node, std::chrono::seconds now) const
1998 : : {
1999 : 758147 : return node.m_connected + m_peer_connect_timeout < now;
2000 : : }
2001 : :
2002 : 0 : bool CConnman::InactivityCheck(const CNode& node) const
2003 : : {
2004 : : // Tests that see disconnects after using mocktime can start nodes with a
2005 : : // large timeout. For example, -peertimeout=999999999.
2006 : 0 : const auto now{GetTime<std::chrono::seconds>()};
2007 : 0 : const auto last_send{node.m_last_send.load()};
2008 : 0 : const auto last_recv{node.m_last_recv.load()};
2009 : :
2010 [ # # ]: 0 : if (!ShouldRunInactivityChecks(node, now)) return false;
2011 : :
2012 [ # # ]: 0 : bool has_received{last_recv.count() != 0};
2013 : 0 : bool has_sent{last_send.count() != 0};
2014 : :
2015 [ # # ]: 0 : if (!has_received || !has_sent) {
2016 [ # # ]: 0 : std::string has_never;
2017 [ # # # # ]: 0 : if (!has_received) has_never += ", never received from peer";
2018 [ # # # # ]: 0 : if (!has_sent) has_never += ", never sent to peer";
2019 [ # # # # : 0 : LogDebug(BCLog::NET,
# # # # ]
2020 : : "socket no message in first %i seconds%s, %s\n",
2021 : : count_seconds(m_peer_connect_timeout),
2022 : : has_never,
2023 : : node.DisconnectMsg(fLogIPs)
2024 : : );
2025 : 0 : return true;
2026 : 0 : }
2027 : :
2028 [ # # ]: 0 : if (now > last_send + TIMEOUT_INTERVAL) {
2029 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2030 : : "socket sending timeout: %is, %s\n", count_seconds(now - last_send),
2031 : : node.DisconnectMsg(fLogIPs)
2032 : : );
2033 : 0 : return true;
2034 : : }
2035 : :
2036 [ # # ]: 0 : if (now > last_recv + TIMEOUT_INTERVAL) {
2037 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2038 : : "socket receive timeout: %is, %s\n", count_seconds(now - last_recv),
2039 : : node.DisconnectMsg(fLogIPs)
2040 : : );
2041 : 0 : return true;
2042 : : }
2043 : :
2044 [ # # ]: 0 : if (!node.fSuccessfullyConnected) {
2045 [ # # ]: 0 : if (node.m_transport->GetInfo().transport_type == TransportProtocolType::DETECTING) {
2046 [ # # # # ]: 0 : LogDebug(BCLog::NET, "V2 handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2047 : : } else {
2048 [ # # # # ]: 0 : LogDebug(BCLog::NET, "version handshake timeout, %s\n", node.DisconnectMsg(fLogIPs));
2049 : : }
2050 : 0 : return true;
2051 : : }
2052 : :
2053 : : return false;
2054 : : }
2055 : :
2056 : 0 : Sock::EventsPerSock CConnman::GenerateWaitSockets(std::span<CNode* const> nodes)
2057 : : {
2058 : 0 : Sock::EventsPerSock events_per_sock;
2059 : :
2060 [ # # ]: 0 : for (const ListenSocket& hListenSocket : vhListenSocket) {
2061 [ # # ]: 0 : events_per_sock.emplace(hListenSocket.sock, Sock::Events{Sock::RECV});
2062 : : }
2063 : :
2064 [ # # ]: 0 : for (CNode* pnode : nodes) {
2065 [ # # ]: 0 : bool select_recv = !pnode->fPauseRecv;
2066 : 0 : bool select_send;
2067 : 0 : {
2068 [ # # ]: 0 : LOCK(pnode->cs_vSend);
2069 : : // Sending is possible if either there are bytes to send right now, or if there will be
2070 : : // once a potential message from vSendMsg is handed to the transport. GetBytesToSend
2071 : : // determines both of these in a single call.
2072 [ # # ]: 0 : const auto& [to_send, more, _msg_type] = pnode->m_transport->GetBytesToSend(!pnode->vSendMsg.empty());
2073 [ # # # # : 0 : select_send = !to_send.empty() || more;
# # ]
2074 : 0 : }
2075 [ # # ]: 0 : if (!select_recv && !select_send) continue;
2076 : :
2077 [ # # ]: 0 : LOCK(pnode->m_sock_mutex);
2078 [ # # ]: 0 : if (pnode->m_sock) {
2079 [ # # # # ]: 0 : Sock::Event event = (select_send ? Sock::SEND : 0) | (select_recv ? Sock::RECV : 0);
2080 [ # # ]: 0 : events_per_sock.emplace(pnode->m_sock, Sock::Events{event});
2081 : : }
2082 : 0 : }
2083 : :
2084 : 0 : return events_per_sock;
2085 : 0 : }
2086 : :
2087 : 0 : void CConnman::SocketHandler()
2088 : : {
2089 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2090 : :
2091 [ # # ]: 0 : Sock::EventsPerSock events_per_sock;
2092 : :
2093 : 0 : {
2094 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/false};
2095 : :
2096 : 0 : const auto timeout = std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS);
2097 : :
2098 : : // Check for the readiness of the already connected sockets and the
2099 : : // listening sockets in one call ("readiness" as in poll(2) or
2100 : : // select(2)). If none are ready, wait for a short while and return
2101 : : // empty sets.
2102 [ # # ]: 0 : events_per_sock = GenerateWaitSockets(snap.Nodes());
2103 [ # # # # : 0 : if (events_per_sock.empty() || !events_per_sock.begin()->first->WaitMany(timeout, events_per_sock)) {
# # ]
2104 [ # # ]: 0 : interruptNet.sleep_for(timeout);
2105 : : }
2106 : :
2107 : : // Service (send/receive) each of the already connected nodes.
2108 [ # # ]: 0 : SocketHandlerConnected(snap.Nodes(), events_per_sock);
2109 : 0 : }
2110 : :
2111 : : // Accept new connections from listening sockets.
2112 [ # # ]: 0 : SocketHandlerListening(events_per_sock);
2113 : 0 : }
2114 : :
2115 : 0 : void CConnman::SocketHandlerConnected(const std::vector<CNode*>& nodes,
2116 : : const Sock::EventsPerSock& events_per_sock)
2117 : : {
2118 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2119 : :
2120 [ # # ]: 0 : for (CNode* pnode : nodes) {
2121 [ # # ]: 0 : if (interruptNet)
2122 : : return;
2123 : :
2124 : : //
2125 : : // Receive
2126 : : //
2127 : 0 : bool recvSet = false;
2128 : 0 : bool sendSet = false;
2129 : 0 : bool errorSet = false;
2130 : 0 : {
2131 : 0 : LOCK(pnode->m_sock_mutex);
2132 [ # # ]: 0 : if (!pnode->m_sock) {
2133 [ # # ]: 0 : continue;
2134 : : }
2135 [ # # # # ]: 0 : const auto it = events_per_sock.find(pnode->m_sock);
2136 [ # # # # ]: 0 : if (it != events_per_sock.end()) {
2137 : 0 : recvSet = it->second.occurred & Sock::RECV;
2138 : 0 : sendSet = it->second.occurred & Sock::SEND;
2139 : 0 : errorSet = it->second.occurred & Sock::ERR;
2140 : : }
2141 : 0 : }
2142 : :
2143 [ # # ]: 0 : if (sendSet) {
2144 : : // Send data
2145 [ # # # # ]: 0 : auto [bytes_sent, data_left] = WITH_LOCK(pnode->cs_vSend, return SocketSendData(*pnode));
2146 [ # # ]: 0 : if (bytes_sent) {
2147 : 0 : RecordBytesSent(bytes_sent);
2148 : :
2149 : : // If both receiving and (non-optimistic) sending were possible, we first attempt
2150 : : // sending. If that succeeds, but does not fully drain the send queue, do not
2151 : : // attempt to receive. This avoids needlessly queueing data if the remote peer
2152 : : // is slow at receiving data, by means of TCP flow control. We only do this when
2153 : : // sending actually succeeded to make sure progress is always made; otherwise a
2154 : : // deadlock would be possible when both sides have data to send, but neither is
2155 : : // receiving.
2156 [ # # ]: 0 : if (data_left) recvSet = false;
2157 : : }
2158 : : }
2159 : :
2160 [ # # ]: 0 : if (recvSet || errorSet)
2161 : : {
2162 : : // typical socket buffer is 8K-64K
2163 : 0 : uint8_t pchBuf[0x10000];
2164 : 0 : int nBytes = 0;
2165 : 0 : {
2166 : 0 : LOCK(pnode->m_sock_mutex);
2167 [ # # ]: 0 : if (!pnode->m_sock) {
2168 [ # # ]: 0 : continue;
2169 : : }
2170 [ # # # # ]: 0 : nBytes = pnode->m_sock->Recv(pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
2171 : 0 : }
2172 [ # # ]: 0 : if (nBytes > 0)
2173 : : {
2174 : 0 : bool notify = false;
2175 [ # # ]: 0 : if (!pnode->ReceiveMsgBytes({pchBuf, (size_t)nBytes}, notify)) {
2176 [ # # # # ]: 0 : LogDebug(BCLog::NET,
2177 : : "receiving message bytes failed, %s\n",
2178 : : pnode->DisconnectMsg(fLogIPs)
2179 : : );
2180 : 0 : pnode->CloseSocketDisconnect();
2181 : : }
2182 : 0 : RecordBytesRecv(nBytes);
2183 [ # # ]: 0 : if (notify) {
2184 : 0 : pnode->MarkReceivedMsgsForProcessing();
2185 : 0 : WakeMessageHandler();
2186 : : }
2187 : : }
2188 [ # # ]: 0 : else if (nBytes == 0)
2189 : : {
2190 : : // socket closed gracefully
2191 [ # # ]: 0 : if (!pnode->fDisconnect) {
2192 [ # # # # ]: 0 : LogDebug(BCLog::NET, "socket closed, %s\n", pnode->DisconnectMsg(fLogIPs));
2193 : : }
2194 : 0 : pnode->CloseSocketDisconnect();
2195 : : }
2196 [ # # ]: 0 : else if (nBytes < 0)
2197 : : {
2198 : : // error
2199 : 0 : int nErr = WSAGetLastError();
2200 [ # # # # ]: 0 : if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
2201 : : {
2202 [ # # ]: 0 : if (!pnode->fDisconnect) {
2203 [ # # # # : 0 : LogDebug(BCLog::NET, "socket recv error, %s: %s\n", pnode->DisconnectMsg(fLogIPs), NetworkErrorString(nErr));
# # ]
2204 : : }
2205 : 0 : pnode->CloseSocketDisconnect();
2206 : : }
2207 : : }
2208 : : }
2209 : :
2210 [ # # ]: 0 : if (InactivityCheck(*pnode)) pnode->fDisconnect = true;
2211 : : }
2212 : : }
2213 : :
2214 : 0 : void CConnman::SocketHandlerListening(const Sock::EventsPerSock& events_per_sock)
2215 : : {
2216 [ # # ]: 0 : for (const ListenSocket& listen_socket : vhListenSocket) {
2217 [ # # ]: 0 : if (interruptNet) {
2218 : : return;
2219 : : }
2220 [ # # # # ]: 0 : const auto it = events_per_sock.find(listen_socket.sock);
2221 [ # # # # ]: 0 : if (it != events_per_sock.end() && it->second.occurred & Sock::RECV) {
2222 : 0 : AcceptConnection(listen_socket);
2223 : : }
2224 : : }
2225 : : }
2226 : :
2227 : 0 : void CConnman::ThreadSocketHandler()
2228 : : {
2229 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
2230 : :
2231 [ # # ]: 0 : while (!interruptNet)
2232 : : {
2233 : 0 : DisconnectNodes();
2234 : 0 : NotifyNumConnectionsChanged();
2235 : 0 : SocketHandler();
2236 : : }
2237 : 0 : }
2238 : :
2239 : 0 : void CConnman::WakeMessageHandler()
2240 : : {
2241 : 0 : {
2242 : 0 : LOCK(mutexMsgProc);
2243 [ # # ]: 0 : fMsgProcWake = true;
2244 : 0 : }
2245 : 0 : condMsgProc.notify_one();
2246 : 0 : }
2247 : :
2248 : 0 : void CConnman::ThreadDNSAddressSeed()
2249 : : {
2250 : 0 : int outbound_connection_count = 0;
2251 : :
2252 [ # # # # ]: 0 : if (!gArgs.GetArgs("-seednode").empty()) {
2253 : 0 : auto start = NodeClock::now();
2254 : 0 : constexpr std::chrono::seconds SEEDNODE_TIMEOUT = 30s;
2255 : 0 : LogPrintf("-seednode enabled. Trying the provided seeds for %d seconds before defaulting to the dnsseeds.\n", SEEDNODE_TIMEOUT.count());
2256 [ # # ]: 0 : while (!interruptNet) {
2257 [ # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2258 : : return;
2259 : :
2260 : : // Abort if we have spent enough time without reaching our target.
2261 : : // Giving seed nodes 30 seconds so this does not become a race against fixedseeds (which triggers after 1 min)
2262 [ # # ]: 0 : if (NodeClock::now() > start + SEEDNODE_TIMEOUT) {
2263 : 0 : LogPrintf("Couldn't connect to enough peers via seed nodes. Handing fetch logic to the DNS seeds.\n");
2264 : 0 : break;
2265 : : }
2266 : :
2267 : 0 : outbound_connection_count = GetFullOutboundConnCount();
2268 [ # # ]: 0 : if (outbound_connection_count >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2269 : 0 : LogPrintf("P2P peers available. Finished fetching data from seed nodes.\n");
2270 : 0 : break;
2271 : : }
2272 : : }
2273 : : }
2274 : :
2275 : 0 : FastRandomContext rng;
2276 [ # # ]: 0 : std::vector<std::string> seeds = m_params.DNSSeeds();
2277 : 0 : std::shuffle(seeds.begin(), seeds.end(), rng);
2278 : 0 : int seeds_right_now = 0; // Number of seeds left before testing if we have enough connections
2279 : :
2280 [ # # # # : 0 : if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
# # ]
2281 : : // When -forcednsseed is provided, query all.
2282 : 0 : seeds_right_now = seeds.size();
2283 [ # # # # ]: 0 : } else if (addrman.Size() == 0) {
2284 : : // If we have no known peers, query all.
2285 : : // This will occur on the first run, or if peers.dat has been
2286 : : // deleted.
2287 : 0 : seeds_right_now = seeds.size();
2288 : : }
2289 : :
2290 : : // Proceed with dnsseeds if seednodes hasn't reached the target or if forcednsseed is set
2291 [ # # ]: 0 : if (outbound_connection_count < SEED_OUTBOUND_CONNECTION_THRESHOLD || seeds_right_now) {
2292 : : // goal: only query DNS seed if address need is acute
2293 : : // * If we have a reasonable number of peers in addrman, spend
2294 : : // some time trying them first. This improves user privacy by
2295 : : // creating fewer identifying DNS requests, reduces trust by
2296 : : // giving seeds less influence on the network topology, and
2297 : : // reduces traffic to the seeds.
2298 : : // * When querying DNS seeds query a few at once, this ensures
2299 : : // that we don't give DNS seeds the ability to eclipse nodes
2300 : : // that query them.
2301 : : // * If we continue having problems, eventually query all the
2302 : : // DNS seeds, and if that fails too, also try the fixed seeds.
2303 : : // (done in ThreadOpenConnections)
2304 : 0 : int found = 0;
2305 [ # # # # ]: 0 : const std::chrono::seconds seeds_wait_time = (addrman.Size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS);
2306 : :
2307 [ # # ]: 0 : for (const std::string& seed : seeds) {
2308 [ # # ]: 0 : if (seeds_right_now == 0) {
2309 : 0 : seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
2310 : :
2311 [ # # # # ]: 0 : if (addrman.Size() > 0) {
2312 [ # # ]: 0 : LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count());
2313 : 0 : std::chrono::seconds to_wait = seeds_wait_time;
2314 [ # # ]: 0 : while (to_wait.count() > 0) {
2315 : : // if sleeping for the MANY_PEERS interval, wake up
2316 : : // early to see if we have enough peers and can stop
2317 : : // this thread entirely freeing up its resources
2318 : 0 : std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
2319 [ # # # # ]: 0 : if (!interruptNet.sleep_for(w)) return;
2320 [ # # ]: 0 : to_wait -= w;
2321 : :
2322 [ # # # # ]: 0 : if (GetFullOutboundConnCount() >= SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2323 [ # # ]: 0 : if (found > 0) {
2324 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2325 [ # # ]: 0 : LogPrintf("P2P peers available. Finished DNS seeding.\n");
2326 : : } else {
2327 [ # # ]: 0 : LogPrintf("P2P peers available. Skipped DNS seeding.\n");
2328 : : }
2329 : 0 : return;
2330 : : }
2331 : : }
2332 : : }
2333 : : }
2334 : :
2335 [ # # # # ]: 0 : if (interruptNet) return;
2336 : :
2337 : : // hold off on querying seeds if P2P network deactivated
2338 [ # # ]: 0 : if (!fNetworkActive) {
2339 [ # # ]: 0 : LogPrintf("Waiting for network to be reactivated before querying DNS seeds.\n");
2340 : 0 : do {
2341 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::seconds{1})) return;
2342 [ # # ]: 0 : } while (!fNetworkActive);
2343 : : }
2344 : :
2345 [ # # ]: 0 : LogPrintf("Loading addresses from DNS seed %s\n", seed);
2346 : : // If -proxy is in use, we make an ADDR_FETCH connection to the DNS resolved peer address
2347 : : // for the base dns seed domain in chainparams
2348 [ # # # # ]: 0 : if (HaveNameProxy()) {
2349 [ # # ]: 0 : AddAddrFetch(seed);
2350 : : } else {
2351 : 0 : std::vector<CAddress> vAdd;
2352 : 0 : constexpr ServiceFlags requiredServiceBits{SeedsServiceFlags()};
2353 [ # # ]: 0 : std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
2354 [ # # ]: 0 : CNetAddr resolveSource;
2355 [ # # # # ]: 0 : if (!resolveSource.SetInternal(host)) {
2356 : 0 : continue;
2357 : : }
2358 : : // Limit number of IPs learned from a single DNS seed. This limit exists to prevent the results from
2359 : : // one DNS seed from dominating AddrMan. Note that the number of results from a UDP DNS query is
2360 : : // bounded to 33 already, but it is possible for it to use TCP where a larger number of results can be
2361 : : // returned.
2362 : 0 : unsigned int nMaxIPs = 32;
2363 [ # # # # ]: 0 : const auto addresses{LookupHost(host, nMaxIPs, true)};
2364 [ # # ]: 0 : if (!addresses.empty()) {
2365 [ # # ]: 0 : for (const CNetAddr& ip : addresses) {
2366 [ # # ]: 0 : CAddress addr = CAddress(CService(ip, m_params.GetDefaultPort()), requiredServiceBits);
2367 : 0 : addr.nTime = rng.rand_uniform_delay(Now<NodeSeconds>() - 3 * 24h, -4 * 24h); // use a random age between 3 and 7 days old
2368 [ # # ]: 0 : vAdd.push_back(addr);
2369 : 0 : found++;
2370 : 0 : }
2371 [ # # ]: 0 : addrman.Add(vAdd, resolveSource);
2372 : : } else {
2373 : : // If the seed does not support a subdomain with our desired service bits,
2374 : : // we make an ADDR_FETCH connection to the DNS resolved peer address for the
2375 : : // base dns seed domain in chainparams
2376 [ # # ]: 0 : AddAddrFetch(seed);
2377 : : }
2378 : 0 : }
2379 : 0 : --seeds_right_now;
2380 : : }
2381 [ # # ]: 0 : LogPrintf("%d addresses found from DNS seeds\n", found);
2382 : : } else {
2383 [ # # ]: 0 : LogPrintf("Skipping DNS seeds. Enough peers have been found\n");
2384 : : }
2385 : 0 : }
2386 : :
2387 : 0 : void CConnman::DumpAddresses()
2388 : : {
2389 : 0 : const auto start{SteadyClock::now()};
2390 : :
2391 : 0 : DumpPeerAddresses(::gArgs, addrman);
2392 : :
2393 [ # # ]: 0 : LogDebug(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n",
2394 : : addrman.Size(), Ticks<std::chrono::milliseconds>(SteadyClock::now() - start));
2395 : 0 : }
2396 : :
2397 : 0 : void CConnman::ProcessAddrFetch()
2398 : : {
2399 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2400 [ # # ]: 0 : std::string strDest;
2401 : 0 : {
2402 [ # # ]: 0 : LOCK(m_addr_fetches_mutex);
2403 [ # # ]: 0 : if (m_addr_fetches.empty())
2404 [ # # ]: 0 : return;
2405 [ # # ]: 0 : strDest = m_addr_fetches.front();
2406 [ # # ]: 0 : m_addr_fetches.pop_front();
2407 : 0 : }
2408 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2409 : : // peer doesn't support it or immediately disconnects us for another reason.
2410 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2411 [ # # ]: 0 : CAddress addr;
2412 : 0 : CSemaphoreGrant grant(*semOutbound, /*fTry=*/true);
2413 [ # # ]: 0 : if (grant) {
2414 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), strDest.c_str(), ConnectionType::ADDR_FETCH, use_v2transport);
2415 : : }
2416 : 0 : }
2417 : :
2418 : 1697 : bool CConnman::GetTryNewOutboundPeer() const
2419 : : {
2420 : 1697 : return m_try_another_outbound_peer;
2421 : : }
2422 : :
2423 : 17225 : void CConnman::SetTryNewOutboundPeer(bool flag)
2424 : : {
2425 : 17225 : m_try_another_outbound_peer = flag;
2426 [ - + - - ]: 17225 : LogDebug(BCLog::NET, "setting try another outbound peer=%s\n", flag ? "true" : "false");
2427 : 17225 : }
2428 : :
2429 : 0 : void CConnman::StartExtraBlockRelayPeers()
2430 : : {
2431 [ # # ]: 0 : LogDebug(BCLog::NET, "enabling extra block-relay-only peers\n");
2432 : 0 : m_start_extra_block_relay_peers = true;
2433 : 0 : }
2434 : :
2435 : : // Return the number of outbound connections that are full relay (not blocks only)
2436 : 0 : int CConnman::GetFullOutboundConnCount() const
2437 : : {
2438 : 0 : int nRelevant = 0;
2439 : 0 : {
2440 : 0 : LOCK(m_nodes_mutex);
2441 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2442 [ # # # # ]: 0 : if (pnode->fSuccessfullyConnected && pnode->IsFullOutboundConn()) ++nRelevant;
2443 : : }
2444 : 0 : }
2445 : 0 : return nRelevant;
2446 : : }
2447 : :
2448 : : // Return the number of peers we have over our outbound connection limit
2449 : : // Exclude peers that are marked for disconnect, or are going to be
2450 : : // disconnected soon (eg ADDR_FETCH and FEELER)
2451 : : // Also exclude peers that haven't finished initial connection handshake yet
2452 : : // (so that we don't decide we're over our desired connection limit, and then
2453 : : // evict some peer that has finished the handshake)
2454 : 1697 : int CConnman::GetExtraFullOutboundCount() const
2455 : : {
2456 : 1697 : int full_outbound_peers = 0;
2457 : 1697 : {
2458 : 1697 : LOCK(m_nodes_mutex);
2459 [ + + ]: 17881 : for (const CNode* pnode : m_nodes) {
2460 [ - + - - : 16184 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) {
- - ]
2461 : 0 : ++full_outbound_peers;
2462 : : }
2463 : : }
2464 : 1697 : }
2465 [ + - ]: 1697 : return std::max(full_outbound_peers - m_max_outbound_full_relay, 0);
2466 : : }
2467 : :
2468 : 0 : int CConnman::GetExtraBlockRelayCount() const
2469 : : {
2470 : 0 : int block_relay_peers = 0;
2471 : 0 : {
2472 : 0 : LOCK(m_nodes_mutex);
2473 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2474 [ # # # # : 0 : if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) {
# # ]
2475 : 0 : ++block_relay_peers;
2476 : : }
2477 : : }
2478 : 0 : }
2479 [ # # ]: 0 : return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
2480 : : }
2481 : :
2482 : 0 : std::unordered_set<Network> CConnman::GetReachableEmptyNetworks() const
2483 : : {
2484 : 0 : std::unordered_set<Network> networks{};
2485 [ # # ]: 0 : for (int n = 0; n < NET_MAX; n++) {
2486 : 0 : enum Network net = (enum Network)n;
2487 [ # # ]: 0 : if (net == NET_UNROUTABLE || net == NET_INTERNAL) continue;
2488 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && addrman.Size(net, std::nullopt) == 0) {
# # # # ]
2489 [ # # ]: 0 : networks.insert(net);
2490 : : }
2491 : : }
2492 : 0 : return networks;
2493 : 0 : }
2494 : :
2495 : 0 : bool CConnman::MultipleManualOrFullOutboundConns(Network net) const
2496 : : {
2497 : 0 : AssertLockHeld(m_nodes_mutex);
2498 : 0 : return m_network_conn_counts[net] > 1;
2499 : : }
2500 : :
2501 : 0 : bool CConnman::MaybePickPreferredNetwork(std::optional<Network>& network)
2502 : : {
2503 : 0 : std::array<Network, 5> nets{NET_IPV4, NET_IPV6, NET_ONION, NET_I2P, NET_CJDNS};
2504 : 0 : std::shuffle(nets.begin(), nets.end(), FastRandomContext());
2505 : :
2506 : 0 : LOCK(m_nodes_mutex);
2507 [ # # ]: 0 : for (const auto net : nets) {
2508 [ # # # # : 0 : if (g_reachable_nets.Contains(net) && m_network_conn_counts[net] == 0 && addrman.Size(net) != 0) {
# # # # #
# ]
2509 : 0 : network = net;
2510 : 0 : return true;
2511 : : }
2512 : : }
2513 : :
2514 : : return false;
2515 : 0 : }
2516 : :
2517 : 0 : void CConnman::ThreadOpenConnections(const std::vector<std::string> connect, std::span<const std::string> seed_nodes)
2518 : : {
2519 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2520 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2521 : 0 : FastRandomContext rng;
2522 : : // Connect to specific addresses
2523 [ # # ]: 0 : if (!connect.empty())
2524 : : {
2525 : : // Attempt v2 connection if we support v2 - we'll reconnect with v1 if our
2526 : : // peer doesn't support it or immediately disconnects us for another reason.
2527 [ # # ]: 0 : const bool use_v2transport(GetLocalServices() & NODE_P2P_V2);
2528 : 0 : for (int64_t nLoop = 0;; nLoop++)
2529 : : {
2530 [ # # ]: 0 : for (const std::string& strAddr : connect)
2531 : : {
2532 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2533 [ # # ]: 0 : OpenNetworkConnection(addr, false, {}, strAddr.c_str(), ConnectionType::MANUAL, /*use_v2transport=*/use_v2transport);
2534 [ # # # # ]: 0 : for (int i = 0; i < 10 && i < nLoop; i++)
2535 : : {
2536 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2537 : 0 : return;
2538 : : }
2539 : 0 : }
2540 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2541 : : return;
2542 [ # # ]: 0 : PerformReconnections();
2543 : 0 : }
2544 : : }
2545 : :
2546 : : // Initiate network connections
2547 : 0 : auto start = GetTime<std::chrono::microseconds>();
2548 : :
2549 : : // Minimum time before next feeler connection (in microseconds).
2550 : 0 : auto next_feeler = start + rng.rand_exp_duration(FEELER_INTERVAL);
2551 : 0 : auto next_extra_block_relay = start + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2552 [ # # ]: 0 : auto next_extra_network_peer{start + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL)};
2553 [ # # # # ]: 0 : const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
2554 [ # # # # ]: 0 : bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
2555 [ # # # # ]: 0 : const bool use_seednodes{!gArgs.GetArgs("-seednode").empty()};
2556 : :
2557 : 0 : auto seed_node_timer = NodeClock::now();
2558 [ # # # # : 0 : bool add_addr_fetch{addrman.Size() == 0 && !seed_nodes.empty()};
# # ]
2559 : 0 : constexpr std::chrono::seconds ADD_NEXT_SEEDNODE = 10s;
2560 : :
2561 [ # # ]: 0 : if (!add_fixed_seeds) {
2562 [ # # ]: 0 : LogPrintf("Fixed seeds are disabled\n");
2563 : : }
2564 : :
2565 [ # # # # ]: 0 : while (!interruptNet)
2566 : : {
2567 [ # # ]: 0 : if (add_addr_fetch) {
2568 : 0 : add_addr_fetch = false;
2569 : 0 : const auto& seed{SpanPopBack(seed_nodes)};
2570 [ # # ]: 0 : AddAddrFetch(seed);
2571 : :
2572 [ # # # # ]: 0 : if (addrman.Size() == 0) {
2573 [ # # ]: 0 : LogInfo("Empty addrman, adding seednode (%s) to addrfetch\n", seed);
2574 : : } else {
2575 [ # # ]: 0 : LogInfo("Couldn't connect to peers from addrman after %d seconds. Adding seednode (%s) to addrfetch\n", ADD_NEXT_SEEDNODE.count(), seed);
2576 : : }
2577 : : }
2578 : :
2579 [ # # ]: 0 : ProcessAddrFetch();
2580 : :
2581 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
2582 : : return;
2583 : :
2584 [ # # ]: 0 : PerformReconnections();
2585 : :
2586 : 0 : CSemaphoreGrant grant(*semOutbound);
2587 [ # # # # ]: 0 : if (interruptNet)
2588 : : return;
2589 : :
2590 [ # # ]: 0 : const std::unordered_set<Network> fixed_seed_networks{GetReachableEmptyNetworks()};
2591 [ # # # # ]: 0 : if (add_fixed_seeds && !fixed_seed_networks.empty()) {
2592 : : // When the node starts with an empty peers.dat, there are a few other sources of peers before
2593 : : // we fallback on to fixed seeds: -dnsseed, -seednode, -addnode
2594 : : // If none of those are available, we fallback on to fixed seeds immediately, else we allow
2595 : : // 60 seconds for any of those sources to populate addrman.
2596 : 0 : bool add_fixed_seeds_now = false;
2597 : : // It is cheapest to check if enough time has passed first.
2598 [ # # ]: 0 : if (GetTime<std::chrono::seconds>() > start + std::chrono::minutes{1}) {
2599 : 0 : add_fixed_seeds_now = true;
2600 [ # # ]: 0 : LogPrintf("Adding fixed seeds as 60 seconds have passed and addrman is empty for at least one reachable network\n");
2601 : : }
2602 : :
2603 : : // Perform cheap checks before locking a mutex.
2604 [ # # ]: 0 : else if (!dnsseed && !use_seednodes) {
2605 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
2606 [ # # ]: 0 : if (m_added_node_params.empty()) {
2607 : 0 : add_fixed_seeds_now = true;
2608 [ # # ]: 0 : LogPrintf("Adding fixed seeds as -dnsseed=0 (or IPv4/IPv6 connections are disabled via -onlynet) and neither -addnode nor -seednode are provided\n");
2609 : : }
2610 : 0 : }
2611 : :
2612 [ # # ]: 0 : if (add_fixed_seeds_now) {
2613 [ # # ]: 0 : std::vector<CAddress> seed_addrs{ConvertSeeds(m_params.FixedSeeds())};
2614 : : // We will not make outgoing connections to peers that are unreachable
2615 : : // (e.g. because of -onlynet configuration).
2616 : : // Therefore, we do not add them to addrman in the first place.
2617 : : // In case previously unreachable networks become reachable
2618 : : // (e.g. in case of -onlynet changes by the user), fixed seeds will
2619 : : // be loaded only for networks for which we have no addresses.
2620 [ # # ]: 0 : seed_addrs.erase(std::remove_if(seed_addrs.begin(), seed_addrs.end(),
2621 : 0 : [&fixed_seed_networks](const CAddress& addr) { return fixed_seed_networks.count(addr.GetNetwork()) == 0; }),
2622 [ # # ]: 0 : seed_addrs.end());
2623 [ # # ]: 0 : CNetAddr local;
2624 [ # # # # ]: 0 : local.SetInternal("fixedseeds");
2625 [ # # ]: 0 : addrman.Add(seed_addrs, local);
2626 : 0 : add_fixed_seeds = false;
2627 [ # # ]: 0 : LogPrintf("Added %d fixed seeds from reachable networks.\n", seed_addrs.size());
2628 : 0 : }
2629 : : }
2630 : :
2631 : : //
2632 : : // Choose an address to connect to based on most recently seen
2633 : : //
2634 [ # # ]: 0 : CAddress addrConnect;
2635 : :
2636 : : // Only connect out to one peer per ipv4/ipv6 network group (/16 for IPv4).
2637 : 0 : int nOutboundFullRelay = 0;
2638 : 0 : int nOutboundBlockRelay = 0;
2639 : 0 : int outbound_privacy_network_peers = 0;
2640 [ # # ]: 0 : std::set<std::vector<unsigned char>> outbound_ipv46_peer_netgroups;
2641 : :
2642 : 0 : {
2643 [ # # ]: 0 : LOCK(m_nodes_mutex);
2644 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2645 [ # # ]: 0 : if (pnode->IsFullOutboundConn()) nOutboundFullRelay++;
2646 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) nOutboundBlockRelay++;
2647 : :
2648 : : // Make sure our persistent outbound slots to ipv4/ipv6 peers belong to different netgroups.
2649 [ # # ]: 0 : switch (pnode->m_conn_type) {
2650 : : // We currently don't take inbound connections into account. Since they are
2651 : : // free to make, an attacker could make them to prevent us from connecting to
2652 : : // certain peers.
2653 : : case ConnectionType::INBOUND:
2654 : : // Short-lived outbound connections should not affect how we select outbound
2655 : : // peers from addrman.
2656 : : case ConnectionType::ADDR_FETCH:
2657 : : case ConnectionType::FEELER:
2658 : : break;
2659 : 0 : case ConnectionType::MANUAL:
2660 : 0 : case ConnectionType::OUTBOUND_FULL_RELAY:
2661 : 0 : case ConnectionType::BLOCK_RELAY:
2662 : 0 : const CAddress address{pnode->addr};
2663 [ # # # # : 0 : if (address.IsTor() || address.IsI2P() || address.IsCJDNS()) {
# # ]
2664 : : // Since our addrman-groups for these networks are
2665 : : // random, without relation to the route we
2666 : : // take to connect to these peers or to the
2667 : : // difficulty in obtaining addresses with diverse
2668 : : // groups, we don't worry about diversity with
2669 : : // respect to our addrman groups when connecting to
2670 : : // these networks.
2671 : 0 : ++outbound_privacy_network_peers;
2672 : : } else {
2673 [ # # # # ]: 0 : outbound_ipv46_peer_netgroups.insert(m_netgroupman.GetGroup(address));
2674 : : }
2675 : : } // no default case, so the compiler can warn about missing cases
2676 : : }
2677 : 0 : }
2678 : :
2679 [ # # # # ]: 0 : if (!seed_nodes.empty() && nOutboundFullRelay < SEED_OUTBOUND_CONNECTION_THRESHOLD) {
2680 [ # # ]: 0 : if (NodeClock::now() > seed_node_timer + ADD_NEXT_SEEDNODE) {
2681 : 0 : seed_node_timer = NodeClock::now();
2682 : 0 : add_addr_fetch = true;
2683 : : }
2684 : : }
2685 : :
2686 : 0 : ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
2687 : 0 : auto now = GetTime<std::chrono::microseconds>();
2688 : 0 : bool anchor = false;
2689 : 0 : bool fFeeler = false;
2690 : 0 : std::optional<Network> preferred_net;
2691 : :
2692 : : // Determine what type of connection to open. Opening
2693 : : // BLOCK_RELAY connections to addresses from anchors.dat gets the highest
2694 : : // priority. Then we open OUTBOUND_FULL_RELAY priority until we
2695 : : // meet our full-relay capacity. Then we open BLOCK_RELAY connection
2696 : : // until we hit our block-relay-only peer limit.
2697 : : // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
2698 : : // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
2699 : : // these conditions are met, check to see if it's time to try an extra
2700 : : // block-relay-only peer (to confirm our tip is current, see below) or the next_feeler
2701 : : // timer to decide if we should open a FEELER.
2702 : :
2703 [ # # # # ]: 0 : if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) {
2704 : : conn_type = ConnectionType::BLOCK_RELAY;
2705 : : anchor = true;
2706 [ # # ]: 0 : } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
2707 : : // OUTBOUND_FULL_RELAY
2708 [ # # ]: 0 : } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
2709 : : conn_type = ConnectionType::BLOCK_RELAY;
2710 [ # # # # ]: 0 : } else if (GetTryNewOutboundPeer()) {
2711 : : // OUTBOUND_FULL_RELAY
2712 [ # # # # ]: 0 : } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) {
2713 : : // Periodically connect to a peer (using regular outbound selection
2714 : : // methodology from addrman) and stay connected long enough to sync
2715 : : // headers, but not much else.
2716 : : //
2717 : : // Then disconnect the peer, if we haven't learned anything new.
2718 : : //
2719 : : // The idea is to make eclipse attacks very difficult to pull off,
2720 : : // because every few minutes we're finding a new peer to learn headers
2721 : : // from.
2722 : : //
2723 : : // This is similar to the logic for trying extra outbound (full-relay)
2724 : : // peers, except:
2725 : : // - we do this all the time on an exponential timer, rather than just when
2726 : : // our tip is stale
2727 : : // - we potentially disconnect our next-youngest block-relay-only peer, if our
2728 : : // newest block-relay-only peer delivers a block more recently.
2729 : : // See the eviction logic in net_processing.cpp.
2730 : : //
2731 : : // Because we can promote these connections to block-relay-only
2732 : : // connections, they do not get their own ConnectionType enum
2733 : : // (similar to how we deal with extra outbound peers).
2734 : 0 : next_extra_block_relay = now + rng.rand_exp_duration(EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
2735 : 0 : conn_type = ConnectionType::BLOCK_RELAY;
2736 [ # # ]: 0 : } else if (now > next_feeler) {
2737 : 0 : next_feeler = now + rng.rand_exp_duration(FEELER_INTERVAL);
2738 : 0 : conn_type = ConnectionType::FEELER;
2739 : 0 : fFeeler = true;
2740 [ # # ]: 0 : } else if (nOutboundFullRelay == m_max_outbound_full_relay &&
2741 [ # # ]: 0 : m_max_outbound_full_relay == MAX_OUTBOUND_FULL_RELAY_CONNECTIONS &&
2742 [ # # # # : 0 : now > next_extra_network_peer &&
# # ]
2743 [ # # ]: 0 : MaybePickPreferredNetwork(preferred_net)) {
2744 : : // Full outbound connection management: Attempt to get at least one
2745 : : // outbound peer from each reachable network by making extra connections
2746 : : // and then protecting "only" peers from a network during outbound eviction.
2747 : : // This is not attempted if the user changed -maxconnections to a value
2748 : : // so low that less than MAX_OUTBOUND_FULL_RELAY_CONNECTIONS are made,
2749 : : // to prevent interactions with otherwise protected outbound peers.
2750 : 0 : next_extra_network_peer = now + rng.rand_exp_duration(EXTRA_NETWORK_PEER_INTERVAL);
2751 : : } else {
2752 : : // skip to next iteration of while loop
2753 : 0 : continue;
2754 : : }
2755 : :
2756 [ # # ]: 0 : addrman.ResolveCollisions();
2757 : :
2758 : 0 : const auto current_time{NodeClock::now()};
2759 : 0 : int nTries = 0;
2760 [ # # ]: 0 : const auto reachable_nets{g_reachable_nets.All()};
2761 : :
2762 [ # # # # ]: 0 : while (!interruptNet)
2763 : : {
2764 [ # # # # ]: 0 : if (anchor && !m_anchors.empty()) {
2765 : 0 : const CAddress addr = m_anchors.back();
2766 : 0 : m_anchors.pop_back();
2767 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr) || !g_reachable_nets.Contains(addr) ||
# # # # #
# # # #
# ]
2768 [ # # # # : 0 : !m_msgproc->HasAllDesirableServiceFlags(addr.nServices) ||
# # ]
2769 [ # # ]: 0 : outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) continue;
2770 : 0 : addrConnect = addr;
2771 [ # # # # : 0 : LogDebug(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2772 : 0 : break;
2773 : 0 : }
2774 : :
2775 : : // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
2776 : : // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
2777 : : // already-connected network ranges, ...) before trying new addrman addresses.
2778 : 0 : nTries++;
2779 [ # # ]: 0 : if (nTries > 100)
2780 : : break;
2781 : :
2782 [ # # ]: 0 : CAddress addr;
2783 : 0 : NodeSeconds addr_last_try{0s};
2784 : :
2785 [ # # ]: 0 : if (fFeeler) {
2786 : : // First, try to get a tried table collision address. This returns
2787 : : // an empty (invalid) address if there are no collisions to try.
2788 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
2789 : :
2790 [ # # # # ]: 0 : if (!addr.IsValid()) {
2791 : : // No tried table collisions. Select a new table address
2792 : : // for our feeler.
2793 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2794 [ # # # # ]: 0 : } else if (AlreadyConnectedToAddress(addr)) {
2795 : : // If test-before-evict logic would have us connect to a
2796 : : // peer that we're already connected to, just mark that
2797 : : // address as Good(). We won't be able to initiate the
2798 : : // connection anyway, so this avoids inadvertently evicting
2799 : : // a currently-connected peer.
2800 [ # # ]: 0 : addrman.Good(addr);
2801 : : // Select a new table address for our feeler instead.
2802 [ # # ]: 0 : std::tie(addr, addr_last_try) = addrman.Select(true, reachable_nets);
2803 : : }
2804 : : } else {
2805 : : // Not a feeler
2806 : : // If preferred_net has a value set, pick an extra outbound
2807 : : // peer from that network. The eviction logic in net_processing
2808 : : // ensures that a peer from another network will be evicted.
2809 [ # # ]: 0 : std::tie(addr, addr_last_try) = preferred_net.has_value()
2810 [ # # # # : 0 : ? addrman.Select(false, {*preferred_net})
# # # # #
# ]
2811 [ # # ]: 0 : : addrman.Select(false, reachable_nets);
2812 : : }
2813 : :
2814 : : // Require outbound IPv4/IPv6 connections, other than feelers, to be to distinct network groups
2815 [ # # # # : 0 : if (!fFeeler && outbound_ipv46_peer_netgroups.count(m_netgroupman.GetGroup(addr))) {
# # # # ]
2816 : 0 : continue;
2817 : : }
2818 : :
2819 : : // if we selected an invalid or local address, restart
2820 [ # # # # : 0 : if (!addr.IsValid() || IsLocal(addr)) {
# # # # ]
2821 : : break;
2822 : : }
2823 : :
2824 [ # # # # ]: 0 : if (!g_reachable_nets.Contains(addr)) {
2825 : 0 : continue;
2826 : : }
2827 : :
2828 : : // only consider very recently tried nodes after 30 failed attempts
2829 [ # # # # ]: 0 : if (current_time - addr_last_try < 10min && nTries < 30) {
2830 : 0 : continue;
2831 : : }
2832 : :
2833 : : // for non-feelers, require all the services we'll want,
2834 : : // for feelers, only require they be a full node (only because most
2835 : : // SPV clients don't have a good address DB available)
2836 [ # # # # : 0 : if (!fFeeler && !m_msgproc->HasAllDesirableServiceFlags(addr.nServices)) {
# # ]
2837 : 0 : continue;
2838 [ # # # # ]: 0 : } else if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
2839 : 0 : continue;
2840 : : }
2841 : :
2842 : : // Do not connect to bad ports, unless 50 invalid addresses have been selected already.
2843 [ # # # # : 0 : if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) {
# # # # #
# # # ]
2844 : 0 : continue;
2845 : : }
2846 : :
2847 : : // Do not make automatic outbound connections to addnode peers, to
2848 : : // not use our limited outbound slots for them and to ensure
2849 : : // addnode connections benefit from their intended protections.
2850 [ # # # # ]: 0 : if (AddedNodesContain(addr)) {
2851 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Debug, "Not making automatic %s%s connection to %s peer selected for manual (addnode) connection%s\n",
# # # # #
# # # # #
# # # # #
# # # # #
# # ]
2852 : : preferred_net.has_value() ? "network-specific " : "",
2853 : : ConnectionTypeAsString(conn_type), GetNetworkName(addr.GetNetwork()),
2854 : : fLogIPs ? strprintf(": %s", addr.ToStringAddrPort()) : "");
2855 : 0 : continue;
2856 : : }
2857 : :
2858 : 0 : addrConnect = addr;
2859 : : break;
2860 : 0 : }
2861 : :
2862 [ # # # # ]: 0 : if (addrConnect.IsValid()) {
2863 [ # # ]: 0 : if (fFeeler) {
2864 : : // Add small amount of random noise before connection to avoid synchronization.
2865 [ # # # # ]: 0 : if (!interruptNet.sleep_for(rng.rand_uniform_duration<CThreadInterrupt::Clock>(FEELER_SLEEP_WINDOW))) {
2866 : 0 : return;
2867 : : }
2868 [ # # # # : 0 : LogDebug(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToStringAddrPort());
# # # # ]
2869 : : }
2870 : :
2871 [ # # # # : 0 : if (preferred_net != std::nullopt) LogDebug(BCLog::NET, "Making network specific connection to %s on %s.\n", addrConnect.ToStringAddrPort(), GetNetworkName(preferred_net.value()));
# # # # #
# # # #
# ]
2872 : :
2873 : : // Record addrman failure attempts when node has at least 2 persistent outbound connections to peers with
2874 : : // different netgroups in ipv4/ipv6 networks + all peers in Tor/I2P/CJDNS networks.
2875 : : // Don't record addrman failure attempts when node is offline. This can be identified since all local
2876 : : // network connections (if any) belong in the same netgroup, and the size of `outbound_ipv46_peer_netgroups` would only be 1.
2877 [ # # ]: 0 : const bool count_failures{((int)outbound_ipv46_peer_netgroups.size() + outbound_privacy_network_peers) >= std::min(m_max_automatic_connections - 1, 2)};
2878 : : // Use BIP324 transport when both us and them have NODE_V2_P2P set.
2879 [ # # ]: 0 : const bool use_v2transport(addrConnect.nServices & GetLocalServices() & NODE_P2P_V2);
2880 [ # # ]: 0 : OpenNetworkConnection(addrConnect, count_failures, std::move(grant), /*strDest=*/nullptr, conn_type, use_v2transport);
2881 : : }
2882 : 0 : }
2883 : 0 : }
2884 : :
2885 : 0 : std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const
2886 : : {
2887 : 0 : std::vector<CAddress> ret;
2888 [ # # ]: 0 : LOCK(m_nodes_mutex);
2889 [ # # ]: 0 : for (const CNode* pnode : m_nodes) {
2890 [ # # ]: 0 : if (pnode->IsBlockOnlyConn()) {
2891 [ # # ]: 0 : ret.push_back(pnode->addr);
2892 : : }
2893 : : }
2894 : :
2895 [ # # ]: 0 : return ret;
2896 : 0 : }
2897 : :
2898 : 1699 : std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo(bool include_connected) const
2899 : : {
2900 : 1699 : std::vector<AddedNodeInfo> ret;
2901 : :
2902 [ + - ]: 1699 : std::list<AddedNodeParams> lAddresses(0);
2903 : 1699 : {
2904 [ + - ]: 1699 : LOCK(m_added_nodes_mutex);
2905 [ + - ]: 1699 : ret.reserve(m_added_node_params.size());
2906 [ + - ]: 1699 : std::copy(m_added_node_params.cbegin(), m_added_node_params.cend(), std::back_inserter(lAddresses));
2907 : 0 : }
2908 : :
2909 : :
2910 : : // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
2911 [ + - ]: 1699 : std::map<CService, bool> mapConnected;
2912 : 1699 : std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
2913 : 1699 : {
2914 [ + - ]: 1699 : LOCK(m_nodes_mutex);
2915 [ + + ]: 17883 : for (const CNode* pnode : m_nodes) {
2916 [ + - + + ]: 16184 : if (pnode->addr.IsValid()) {
2917 [ + - ]: 13652 : mapConnected[pnode->addr] = pnode->IsInboundConn();
2918 : : }
2919 [ + - ]: 16184 : std::string addrName{pnode->m_addr_name};
2920 [ + - ]: 16184 : if (!addrName.empty()) {
2921 [ + - ]: 16184 : mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast<const CService&>(pnode->addr));
2922 : : }
2923 : 16184 : }
2924 : 0 : }
2925 : :
2926 [ + + ]: 14428 : for (const auto& addr : lAddresses) {
2927 [ + - + - : 25458 : CService service{MaybeFlipIPv6toCJDNS(LookupNumeric(addr.m_added_node, GetDefaultPort(addr.m_added_node)))};
+ - + - ]
2928 [ + - + - ]: 12729 : AddedNodeInfo addedNode{addr, CService(), false, false};
2929 [ + - + + ]: 12729 : if (service.IsValid()) {
2930 : : // strAddNode is an IP:port
2931 [ + - ]: 679 : auto it = mapConnected.find(service);
2932 [ + + ]: 679 : if (it != mapConnected.end()) {
2933 [ + + ]: 23 : if (!include_connected) {
2934 : 10 : continue;
2935 : : }
2936 : 13 : addedNode.resolvedAddress = service;
2937 : 13 : addedNode.fConnected = true;
2938 : 13 : addedNode.fInbound = it->second;
2939 : : }
2940 : : } else {
2941 : : // strAddNode is a name
2942 : 12050 : auto it = mapConnectedByName.find(addr.m_added_node);
2943 [ + + ]: 12050 : if (it != mapConnectedByName.end()) {
2944 [ + + ]: 294 : if (!include_connected) {
2945 : 130 : continue;
2946 : : }
2947 : 164 : addedNode.resolvedAddress = it->second.second;
2948 : 164 : addedNode.fConnected = true;
2949 : 164 : addedNode.fInbound = it->second.first;
2950 : : }
2951 : : }
2952 [ + - ]: 12589 : ret.emplace_back(std::move(addedNode));
2953 : 12729 : }
2954 : :
2955 : 1699 : return ret;
2956 : 1699 : }
2957 : :
2958 : 0 : void CConnman::ThreadOpenAddedConnections()
2959 : : {
2960 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2961 : 0 : AssertLockNotHeld(m_reconnections_mutex);
2962 : 0 : while (true)
2963 : : {
2964 : 0 : CSemaphoreGrant grant(*semAddnode);
2965 [ # # ]: 0 : std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo(/*include_connected=*/false);
2966 : 0 : bool tried = false;
2967 [ # # ]: 0 : for (const AddedNodeInfo& info : vInfo) {
2968 [ # # ]: 0 : if (!grant) {
2969 : : // If we've used up our semaphore and need a new one, let's not wait here since while we are waiting
2970 : : // the addednodeinfo state might change.
2971 : : break;
2972 : : }
2973 : 0 : tried = true;
2974 [ # # ]: 0 : CAddress addr(CService(), NODE_NONE);
2975 [ # # ]: 0 : OpenNetworkConnection(addr, false, std::move(grant), info.m_params.m_added_node.c_str(), ConnectionType::MANUAL, info.m_params.m_use_v2transport);
2976 [ # # # # ]: 0 : if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
2977 : 0 : grant = CSemaphoreGrant(*semAddnode, /*fTry=*/true);
2978 : 0 : }
2979 : : // See if any reconnections are desired.
2980 [ # # ]: 0 : PerformReconnections();
2981 : : // Retry every 60 seconds if a connection was attempted, otherwise two seconds
2982 [ # # # # : 0 : if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
# # ]
2983 : : return;
2984 : 0 : }
2985 : : }
2986 : :
2987 : : // if successful, this moves the passed grant to the constructed node
2988 : 0 : void CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant&& grant_outbound, const char *pszDest, ConnectionType conn_type, bool use_v2transport)
2989 : : {
2990 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
2991 [ # # ]: 0 : assert(conn_type != ConnectionType::INBOUND);
2992 : :
2993 : : //
2994 : : // Initiate outbound network connection
2995 : : //
2996 [ # # ]: 0 : if (interruptNet) {
2997 : : return;
2998 : : }
2999 [ # # ]: 0 : if (!fNetworkActive) {
3000 : : return;
3001 : : }
3002 [ # # ]: 0 : if (!pszDest) {
3003 [ # # # # : 0 : bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect));
# # ]
3004 [ # # # # : 0 : if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) {
# # ]
3005 : 0 : return;
3006 : : }
3007 [ # # # # ]: 0 : } else if (FindNode(std::string(pszDest)))
3008 : : return;
3009 : :
3010 [ # # ]: 0 : CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type, use_v2transport);
3011 : :
3012 [ # # ]: 0 : if (!pnode)
3013 : : return;
3014 : 0 : pnode->grantOutbound = std::move(grant_outbound);
3015 : :
3016 : 0 : m_msgproc->InitializeNode(*pnode, m_local_services);
3017 : 0 : {
3018 : 0 : LOCK(m_nodes_mutex);
3019 [ # # ]: 0 : m_nodes.push_back(pnode);
3020 : :
3021 : : // update connection count by network
3022 [ # # # # ]: 0 : if (pnode->IsManualOrFullOutboundConn()) ++m_network_conn_counts[pnode->addr.GetNetwork()];
3023 : 0 : }
3024 : :
3025 : : TRACEPOINT(net, outbound_connection,
3026 : : pnode->GetId(),
3027 : : pnode->m_addr_name.c_str(),
3028 : : pnode->ConnectionTypeAsString().c_str(),
3029 : : pnode->ConnectedThroughNetwork(),
3030 : 0 : GetNodeCount(ConnectionDirection::Out));
3031 : : }
3032 : :
3033 : : Mutex NetEventsInterface::g_msgproc_mutex;
3034 : :
3035 : 0 : void CConnman::ThreadMessageHandler()
3036 : : {
3037 : 0 : LOCK(NetEventsInterface::g_msgproc_mutex);
3038 : :
3039 [ # # ]: 0 : while (!flagInterruptMsgProc)
3040 : : {
3041 : 0 : bool fMoreWork = false;
3042 : :
3043 : 0 : {
3044 : : // Randomize the order in which we process messages from/to our peers.
3045 : : // This prevents attacks in which an attacker exploits having multiple
3046 : : // consecutive connections in the m_nodes list.
3047 [ # # ]: 0 : const NodesSnapshot snap{*this, /*shuffle=*/true};
3048 : :
3049 [ # # ]: 0 : for (CNode* pnode : snap.Nodes()) {
3050 [ # # ]: 0 : if (pnode->fDisconnect)
3051 : 0 : continue;
3052 : :
3053 : : // Receive messages
3054 [ # # ]: 0 : bool fMoreNodeWork = m_msgproc->ProcessMessages(pnode, flagInterruptMsgProc);
3055 [ # # # # ]: 0 : fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
3056 [ # # ]: 0 : if (flagInterruptMsgProc)
3057 : : return;
3058 : : // Send messages
3059 [ # # ]: 0 : m_msgproc->SendMessages(pnode);
3060 : :
3061 [ # # ]: 0 : if (flagInterruptMsgProc)
3062 : : return;
3063 : : }
3064 [ # # ]: 0 : }
3065 : :
3066 [ # # ]: 0 : WAIT_LOCK(mutexMsgProc, lock);
3067 [ # # ]: 0 : if (!fMoreWork) {
3068 [ # # # # ]: 0 : condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED(mutexMsgProc) { return fMsgProcWake; });
3069 : : }
3070 [ # # ]: 0 : fMsgProcWake = false;
3071 : 0 : }
3072 : 0 : }
3073 : :
3074 : 0 : void CConnman::ThreadI2PAcceptIncoming()
3075 : : {
3076 : 0 : static constexpr auto err_wait_begin = 1s;
3077 : 0 : static constexpr auto err_wait_cap = 5min;
3078 : 0 : auto err_wait = err_wait_begin;
3079 : :
3080 : 0 : bool advertising_listen_addr = false;
3081 : 0 : i2p::Connection conn;
3082 : :
3083 : 0 : auto SleepOnFailure = [&]() {
3084 : 0 : interruptNet.sleep_for(err_wait);
3085 [ # # ]: 0 : if (err_wait < err_wait_cap) {
3086 : 0 : err_wait += 1s;
3087 : : }
3088 : 0 : };
3089 : :
3090 [ # # # # ]: 0 : while (!interruptNet) {
3091 : :
3092 [ # # # # ]: 0 : if (!m_i2p_sam_session->Listen(conn)) {
3093 [ # # # # : 0 : if (advertising_listen_addr && conn.me.IsValid()) {
# # ]
3094 [ # # ]: 0 : RemoveLocal(conn.me);
3095 : : advertising_listen_addr = false;
3096 : : }
3097 [ # # ]: 0 : SleepOnFailure();
3098 : 0 : continue;
3099 : : }
3100 : :
3101 [ # # ]: 0 : if (!advertising_listen_addr) {
3102 [ # # ]: 0 : AddLocal(conn.me, LOCAL_MANUAL);
3103 : : advertising_listen_addr = true;
3104 : : }
3105 : :
3106 [ # # # # ]: 0 : if (!m_i2p_sam_session->Accept(conn)) {
3107 [ # # ]: 0 : SleepOnFailure();
3108 : 0 : continue;
3109 : : }
3110 : :
3111 [ # # ]: 0 : CreateNodeFromAcceptedSocket(std::move(conn.sock), NetPermissionFlags::None, conn.me, conn.peer);
3112 : :
3113 : 0 : err_wait = err_wait_begin;
3114 : : }
3115 : 0 : }
3116 : :
3117 : 0 : bool CConnman::BindListenPort(const CService& addrBind, bilingual_str& strError, NetPermissionFlags permissions)
3118 : : {
3119 : 0 : int nOne = 1;
3120 : :
3121 : : // Create socket for listening for incoming connections
3122 : 0 : struct sockaddr_storage sockaddr;
3123 : 0 : socklen_t len = sizeof(sockaddr);
3124 [ # # ]: 0 : if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
3125 : : {
3126 [ # # # # ]: 0 : strError = Untranslated(strprintf("Bind address family for %s not supported", addrBind.ToStringAddrPort()));
3127 [ # # ]: 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
3128 : 0 : return false;
3129 : : }
3130 : :
3131 : 0 : std::unique_ptr<Sock> sock = CreateSock(addrBind.GetSAFamily(), SOCK_STREAM, IPPROTO_TCP);
3132 [ # # ]: 0 : if (!sock) {
3133 [ # # # # : 0 : strError = Untranslated(strprintf("Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())));
# # ]
3134 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3135 : 0 : return false;
3136 : : }
3137 : :
3138 : : // Allow binding if the port is still in TIME_WAIT state after
3139 : : // the program was closed and restarted.
3140 [ # # # # ]: 0 : if (sock->SetSockOpt(SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3141 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting SO_REUSEADDR on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3142 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3143 : : }
3144 : :
3145 : : // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
3146 : : // and enable it by default or not. Try to enable it, if possible.
3147 [ # # ]: 0 : if (addrBind.IsIPv6()) {
3148 : : #ifdef IPV6_V6ONLY
3149 [ # # # # ]: 0 : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)) == SOCKET_ERROR) {
3150 [ # # # # : 0 : strError = Untranslated(strprintf("Error setting IPV6_V6ONLY on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
# # ]
3151 [ # # ]: 0 : LogPrintf("%s\n", strError.original);
3152 : : }
3153 : : #endif
3154 : : #ifdef WIN32
3155 : : int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
3156 : : if (sock->SetSockOpt(IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)) == SOCKET_ERROR) {
3157 : : strError = Untranslated(strprintf("Error setting IPV6_PROTECTION_LEVEL on socket: %s, continuing anyway", NetworkErrorString(WSAGetLastError())));
3158 : : LogPrintf("%s\n", strError.original);
3159 : : }
3160 : : #endif
3161 : : }
3162 : :
3163 [ # # # # ]: 0 : if (sock->Bind(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
3164 : 0 : int nErr = WSAGetLastError();
3165 [ # # ]: 0 : if (nErr == WSAEADDRINUSE)
3166 [ # # # # ]: 0 : strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToStringAddrPort(), CLIENT_NAME);
3167 : : else
3168 [ # # # # : 0 : strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToStringAddrPort(), NetworkErrorString(nErr));
# # ]
3169 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3170 : 0 : return false;
3171 : : }
3172 [ # # # # ]: 0 : LogPrintf("Bound to %s\n", addrBind.ToStringAddrPort());
3173 : :
3174 : : // Listen for incoming connections
3175 [ # # # # ]: 0 : if (sock->Listen(SOMAXCONN) == SOCKET_ERROR)
3176 : : {
3177 [ # # # # ]: 0 : strError = strprintf(_("Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
3178 [ # # # # : 0 : LogPrintLevel(BCLog::NET, BCLog::Level::Error, "%s\n", strError.original);
# # ]
3179 : 0 : return false;
3180 : : }
3181 : :
3182 [ # # ]: 0 : vhListenSocket.emplace_back(std::move(sock), permissions);
3183 : : return true;
3184 : 0 : }
3185 : :
3186 : 0 : void Discover()
3187 : : {
3188 [ # # ]: 0 : if (!fDiscover)
3189 : : return;
3190 : :
3191 [ # # ]: 0 : for (const CNetAddr &addr: GetLocalAddresses()) {
3192 [ # # # # ]: 0 : if (AddLocal(addr, LOCAL_IF))
3193 [ # # # # ]: 0 : LogPrintf("%s: %s\n", __func__, addr.ToStringAddr());
3194 : 0 : }
3195 : : }
3196 : :
3197 : 4118 : void CConnman::SetNetworkActive(bool active)
3198 : : {
3199 : 4118 : LogPrintf("%s: %s\n", __func__, active);
3200 : :
3201 [ + + ]: 4118 : if (fNetworkActive == active) {
3202 : : return;
3203 : : }
3204 : :
3205 [ - + ]: 2899 : fNetworkActive = active;
3206 : :
3207 [ - + ]: 2899 : if (m_client_interface) {
3208 : 0 : m_client_interface->NotifyNetworkActiveChanged(fNetworkActive);
3209 : : }
3210 : : }
3211 : :
3212 : 1721 : CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In, AddrMan& addrman_in,
3213 : 1721 : const NetGroupManager& netgroupman, const CChainParams& params, bool network_active)
3214 : 1721 : : addrman(addrman_in)
3215 [ + - ]: 1721 : , m_netgroupman{netgroupman}
3216 : 1721 : , nSeed0(nSeed0In)
3217 : 1721 : , nSeed1(nSeed1In)
3218 [ + - + - : 1721 : , m_params(params)
+ - + - ]
3219 : : {
3220 [ + - ]: 1721 : SetTryNewOutboundPeer(false);
3221 : :
3222 : 1721 : Options connOptions;
3223 [ + - ]: 1721 : Init(connOptions);
3224 [ + - ]: 1721 : SetNetworkActive(network_active);
3225 : 1721 : }
3226 : :
3227 : 0 : NodeId CConnman::GetNewNodeId()
3228 : : {
3229 : 0 : return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
3230 : : }
3231 : :
3232 : 6077 : uint16_t CConnman::GetDefaultPort(Network net) const
3233 : : {
3234 [ + + ]: 6077 : return net == NET_I2P ? I2P_SAM31_PORT : m_params.GetDefaultPort();
3235 : : }
3236 : :
3237 : 438701 : uint16_t CConnman::GetDefaultPort(const std::string& addr) const
3238 : : {
3239 : 438701 : CNetAddr a;
3240 [ + - + + : 438701 : return a.SetSpecial(addr) ? GetDefaultPort(a.GetNetwork()) : m_params.GetDefaultPort();
+ - + - ]
3241 : 438701 : }
3242 : :
3243 : 0 : bool CConnman::Bind(const CService& addr_, unsigned int flags, NetPermissionFlags permissions)
3244 : : {
3245 : 0 : const CService addr{MaybeFlipIPv6toCJDNS(addr_)};
3246 : :
3247 [ # # ]: 0 : bilingual_str strError;
3248 [ # # # # ]: 0 : if (!BindListenPort(addr, strError, permissions)) {
3249 [ # # # # ]: 0 : if ((flags & BF_REPORT_ERROR) && m_client_interface) {
3250 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(strError, "", CClientUIInterface::MSG_ERROR);
3251 : : }
3252 : 0 : return false;
3253 : : }
3254 : :
3255 [ # # # # : 0 : if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !NetPermissions::HasFlag(permissions, NetPermissionFlags::NoBan)) {
# # # # #
# ]
3256 [ # # ]: 0 : AddLocal(addr, LOCAL_BIND);
3257 : : }
3258 : :
3259 : : return true;
3260 : 0 : }
3261 : :
3262 : 0 : bool CConnman::InitBinds(const Options& options)
3263 : : {
3264 [ # # ]: 0 : for (const auto& addrBind : options.vBinds) {
3265 [ # # ]: 0 : if (!Bind(addrBind, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3266 : : return false;
3267 : : }
3268 : : }
3269 [ # # ]: 0 : for (const auto& addrBind : options.vWhiteBinds) {
3270 [ # # ]: 0 : if (!Bind(addrBind.m_service, BF_REPORT_ERROR, addrBind.m_flags)) {
3271 : : return false;
3272 : : }
3273 : : }
3274 [ # # ]: 0 : for (const auto& addr_bind : options.onion_binds) {
3275 [ # # ]: 0 : if (!Bind(addr_bind, BF_REPORT_ERROR | BF_DONT_ADVERTISE, NetPermissionFlags::None)) {
3276 : : return false;
3277 : : }
3278 : : }
3279 [ # # ]: 0 : if (options.bind_on_any) {
3280 : : // Don't consider errors to bind on IPv6 "::" fatal because the host OS
3281 : : // may not have IPv6 support and the user did not explicitly ask us to
3282 : : // bind on that.
3283 : 0 : const CService ipv6_any{in6_addr(IN6ADDR_ANY_INIT), GetListenPort()}; // ::
3284 [ # # ]: 0 : Bind(ipv6_any, BF_NONE, NetPermissionFlags::None);
3285 : :
3286 : 0 : struct in_addr inaddr_any;
3287 : 0 : inaddr_any.s_addr = htonl(INADDR_ANY);
3288 [ # # # # ]: 0 : const CService ipv4_any{inaddr_any, GetListenPort()}; // 0.0.0.0
3289 [ # # # # ]: 0 : if (!Bind(ipv4_any, BF_REPORT_ERROR, NetPermissionFlags::None)) {
3290 : 0 : return false;
3291 : : }
3292 : 0 : }
3293 : : return true;
3294 : : }
3295 : :
3296 : 0 : bool CConnman::Start(CScheduler& scheduler, const Options& connOptions)
3297 : : {
3298 : 0 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3299 : 0 : Init(connOptions);
3300 : :
3301 [ # # # # ]: 0 : if (fListen && !InitBinds(connOptions)) {
3302 [ # # ]: 0 : if (m_client_interface) {
3303 [ # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3304 [ # # ]: 0 : _("Failed to listen on any port. Use -listen=0 if you want this."),
3305 : : "", CClientUIInterface::MSG_ERROR);
3306 : : }
3307 : 0 : return false;
3308 : : }
3309 : :
3310 : 0 : Proxy i2p_sam;
3311 [ # # # # : 0 : if (GetProxy(NET_I2P, i2p_sam) && connOptions.m_i2p_accept_incoming) {
# # ]
3312 [ # # # # ]: 0 : m_i2p_sam_session = std::make_unique<i2p::sam::Session>(gArgs.GetDataDirNet() / "i2p_private_key",
3313 [ # # ]: 0 : i2p_sam, &interruptNet);
3314 : : }
3315 : :
3316 : : // Randomize the order in which we may query seednode to potentially prevent connecting to the same one every restart (and signal that we have restarted)
3317 [ # # ]: 0 : std::vector<std::string> seed_nodes = connOptions.vSeedNodes;
3318 [ # # ]: 0 : if (!seed_nodes.empty()) {
3319 : 0 : std::shuffle(seed_nodes.begin(), seed_nodes.end(), FastRandomContext{});
3320 : : }
3321 : :
3322 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3323 : : // Load addresses from anchors.dat
3324 [ # # # # : 0 : m_anchors = ReadAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
# # ]
3325 [ # # ]: 0 : if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3326 [ # # ]: 0 : m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3327 : : }
3328 [ # # ]: 0 : LogPrintf("%i block-relay-only anchors will be tried for connections.\n", m_anchors.size());
3329 : : }
3330 : :
3331 [ # # ]: 0 : if (m_client_interface) {
3332 [ # # # # ]: 0 : m_client_interface->InitMessage(_("Starting network threads…"));
3333 : : }
3334 : :
3335 : 0 : fAddressesInitialized = true;
3336 : :
3337 [ # # ]: 0 : if (semOutbound == nullptr) {
3338 : : // initialize semaphore
3339 [ # # # # ]: 0 : semOutbound = std::make_unique<CSemaphore>(std::min(m_max_automatic_outbound, m_max_automatic_connections));
3340 : : }
3341 [ # # ]: 0 : if (semAddnode == nullptr) {
3342 : : // initialize semaphore
3343 [ # # ]: 0 : semAddnode = std::make_unique<CSemaphore>(m_max_addnode);
3344 : : }
3345 : :
3346 : : //
3347 : : // Start threads
3348 : : //
3349 [ # # ]: 0 : assert(m_msgproc);
3350 [ # # ]: 0 : interruptNet.reset();
3351 [ # # ]: 0 : flagInterruptMsgProc = false;
3352 : :
3353 : 0 : {
3354 [ # # ]: 0 : LOCK(mutexMsgProc);
3355 [ # # ]: 0 : fMsgProcWake = false;
3356 : 0 : }
3357 : :
3358 : : // Send and receive from sockets, accept connections
3359 [ # # ]: 0 : threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); });
3360 : :
3361 [ # # # # : 0 : if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED))
# # ]
3362 [ # # ]: 0 : LogPrintf("DNS seeding disabled\n");
3363 : : else
3364 [ # # ]: 0 : threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); });
3365 : :
3366 : : // Initiate manual connections
3367 [ # # ]: 0 : threadOpenAddedConnections = std::thread(&util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
3368 : :
3369 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) {
3370 [ # # ]: 0 : if (m_client_interface) {
3371 [ # # # # ]: 0 : m_client_interface->ThreadSafeMessageBox(
3372 [ # # ]: 0 : _("Cannot provide specific connections and have addrman find outgoing connections at the same time."),
3373 : : "", CClientUIInterface::MSG_ERROR);
3374 : : }
3375 : 0 : return false;
3376 : : }
3377 [ # # # # ]: 0 : if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) {
3378 : 0 : threadOpenConnections = std::thread(
3379 [ # # ]: 0 : &util::TraceThread, "opencon",
3380 [ # # # # : 0 : [this, connect = connOptions.m_specified_outgoing, seed_nodes = std::move(seed_nodes)] { ThreadOpenConnections(connect, seed_nodes); });
# # ]
3381 : : }
3382 : :
3383 : : // Process messages
3384 [ # # ]: 0 : threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); });
3385 : :
3386 [ # # ]: 0 : if (m_i2p_sam_session) {
3387 : 0 : threadI2PAcceptIncoming =
3388 [ # # ]: 0 : std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); });
3389 : : }
3390 : :
3391 : : // Dump network addresses
3392 [ # # ]: 0 : scheduler.scheduleEvery([this] { DumpAddresses(); }, DUMP_PEERS_INTERVAL);
3393 : :
3394 : : // Run the ASMap Health check once and then schedule it to run every 24h.
3395 [ # # # # ]: 0 : if (m_netgroupman.UsingASMap()) {
3396 [ # # ]: 0 : ASMapHealthCheck();
3397 [ # # ]: 0 : scheduler.scheduleEvery([this] { ASMapHealthCheck(); }, ASMAP_HEALTH_CHECK_INTERVAL);
3398 : : }
3399 : :
3400 : : return true;
3401 : 0 : }
3402 : :
3403 : : class CNetCleanup
3404 : : {
3405 : : public:
3406 : : CNetCleanup() = default;
3407 : :
3408 : 220 : ~CNetCleanup()
3409 : : {
3410 : : #ifdef WIN32
3411 : : // Shutdown Windows Sockets
3412 : : WSACleanup();
3413 : : #endif
3414 : 220 : }
3415 : : };
3416 : : static CNetCleanup instance_of_cnetcleanup;
3417 : :
3418 : 1721 : void CConnman::Interrupt()
3419 : : {
3420 : 1721 : {
3421 : 1721 : LOCK(mutexMsgProc);
3422 [ + - ]: 1721 : flagInterruptMsgProc = true;
3423 : 1721 : }
3424 : 1721 : condMsgProc.notify_all();
3425 : :
3426 : 1721 : interruptNet();
3427 : 1721 : g_socks5_interrupt();
3428 : :
3429 [ - + ]: 1721 : if (semOutbound) {
3430 [ # # ]: 0 : for (int i=0; i<m_max_automatic_outbound; i++) {
3431 : 0 : semOutbound->post();
3432 : : }
3433 : : }
3434 : :
3435 [ - + ]: 1721 : if (semAddnode) {
3436 [ # # ]: 0 : for (int i=0; i<m_max_addnode; i++) {
3437 : 0 : semAddnode->post();
3438 : : }
3439 : : }
3440 : 1721 : }
3441 : :
3442 : 1721 : void CConnman::StopThreads()
3443 : : {
3444 [ - + ]: 1721 : if (threadI2PAcceptIncoming.joinable()) {
3445 : 0 : threadI2PAcceptIncoming.join();
3446 : : }
3447 [ - + ]: 1721 : if (threadMessageHandler.joinable())
3448 : 0 : threadMessageHandler.join();
3449 [ - + ]: 1721 : if (threadOpenConnections.joinable())
3450 : 0 : threadOpenConnections.join();
3451 [ - + ]: 1721 : if (threadOpenAddedConnections.joinable())
3452 : 0 : threadOpenAddedConnections.join();
3453 [ - + ]: 1721 : if (threadDNSAddressSeed.joinable())
3454 : 0 : threadDNSAddressSeed.join();
3455 [ - + ]: 1721 : if (threadSocketHandler.joinable())
3456 : 0 : threadSocketHandler.join();
3457 : 1721 : }
3458 : :
3459 : 8381 : void CConnman::StopNodes()
3460 : : {
3461 [ - + ]: 8381 : if (fAddressesInitialized) {
3462 : 0 : DumpAddresses();
3463 : 0 : fAddressesInitialized = false;
3464 : :
3465 [ # # ]: 0 : if (m_use_addrman_outgoing) {
3466 : : // Anchor connections are only dumped during clean shutdown.
3467 : 0 : std::vector<CAddress> anchors_to_dump = GetCurrentBlockRelayOnlyConns();
3468 [ # # ]: 0 : if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
3469 [ # # ]: 0 : anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
3470 : : }
3471 [ # # # # : 0 : DumpAnchors(gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump);
# # ]
3472 : 0 : }
3473 : : }
3474 : :
3475 : : // Delete peer connections.
3476 : 8381 : std::vector<CNode*> nodes;
3477 [ + - + - ]: 16762 : WITH_LOCK(m_nodes_mutex, nodes.swap(m_nodes));
3478 [ + + ]: 19085 : for (CNode* pnode : nodes) {
3479 [ + - - + : 10704 : LogDebug(BCLog::NET, "Stopping node, %s", pnode->DisconnectMsg(fLogIPs));
- - - - ]
3480 [ + - ]: 10704 : pnode->CloseSocketDisconnect();
3481 [ + - ]: 10704 : DeleteNode(pnode);
3482 : : }
3483 : :
3484 [ - + ]: 8381 : for (CNode* pnode : m_nodes_disconnected) {
3485 [ # # ]: 0 : DeleteNode(pnode);
3486 : : }
3487 : 8381 : m_nodes_disconnected.clear();
3488 : 8381 : vhListenSocket.clear();
3489 [ - + ]: 8381 : semOutbound.reset();
3490 [ - + ]: 8381 : semAddnode.reset();
3491 : 8381 : }
3492 : :
3493 : 10704 : void CConnman::DeleteNode(CNode* pnode)
3494 : : {
3495 [ - + ]: 10704 : assert(pnode);
3496 : 10704 : m_msgproc->FinalizeNode(*pnode);
3497 : 10704 : delete pnode;
3498 : 10704 : }
3499 : :
3500 : 1721 : CConnman::~CConnman()
3501 : : {
3502 : 1721 : Interrupt();
3503 : 1721 : Stop();
3504 : 1721 : }
3505 : :
3506 : 73981 : std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional<Network> network, const bool filtered) const
3507 : : {
3508 : 73981 : std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct, network, filtered);
3509 [ - + ]: 73981 : if (m_banman) {
3510 [ # # ]: 0 : addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
3511 [ # # # # ]: 0 : [this](const CAddress& addr){return m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr);}),
3512 [ # # ]: 0 : addresses.end());
3513 : : }
3514 : 73981 : return addresses;
3515 : 0 : }
3516 : :
3517 : 5105 : std::vector<CAddress> CConnman::GetAddresses(CNode& requestor, size_t max_addresses, size_t max_pct)
3518 : : {
3519 : 5105 : auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
3520 [ + - ]: 5105 : uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
3521 [ + - + - : 5105 : .Write(requestor.ConnectedThroughNetwork())
+ - ]
3522 [ + - + + ]: 5105 : .Write(local_socket_bytes)
3523 : : // For outbound connections, the port of the bound address is randomly
3524 : : // assigned by the OS and would therefore not be useful for seeding.
3525 [ + + + - : 5105 : .Write(requestor.IsInboundConn() ? requestor.addrBind.GetPort() : 0)
+ - ]
3526 [ + - ]: 5105 : .Finalize();
3527 : 5105 : const auto current_time = GetTime<std::chrono::microseconds>();
3528 [ + - ]: 5105 : auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
3529 [ + + ]: 5105 : CachedAddrResponse& cache_entry = r.first->second;
3530 [ + + ]: 5105 : if (cache_entry.m_cache_entry_expiration < current_time) { // If emplace() added new one it has expiration 0.
3531 [ + - ]: 689 : cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /*network=*/std::nullopt);
3532 : : // Choosing a proper cache lifetime is a trade-off between the privacy leak minimization
3533 : : // and the usefulness of ADDR responses to honest users.
3534 : : //
3535 : : // Longer cache lifetime makes it more difficult for an attacker to scrape
3536 : : // enough AddrMan data to maliciously infer something useful.
3537 : : // By the time an attacker scraped enough AddrMan records, most of
3538 : : // the records should be old enough to not leak topology info by
3539 : : // e.g. analyzing real-time changes in timestamps.
3540 : : //
3541 : : // It takes only several hundred requests to scrape everything from an AddrMan containing 100,000 nodes,
3542 : : // so ~24 hours of cache lifetime indeed makes the data less inferable by the time
3543 : : // most of it could be scraped (considering that timestamps are updated via
3544 : : // ADDR self-announcements and when nodes communicate).
3545 : : // We also should be robust to those attacks which may not require scraping *full* victim's AddrMan
3546 : : // (because even several timestamps of the same handful of nodes may leak privacy).
3547 : : //
3548 : : // On the other hand, longer cache lifetime makes ADDR responses
3549 : : // outdated and less useful for an honest requestor, e.g. if most nodes
3550 : : // in the ADDR response are no longer active.
3551 : : //
3552 : : // However, the churn in the network is known to be rather low. Since we consider
3553 : : // nodes to be "terrible" (see IsTerrible()) if the timestamps are older than 30 days,
3554 : : // max. 24 hours of "penalty" due to cache shouldn't make any meaningful difference
3555 : : // in terms of the freshness of the response.
3556 : 689 : cache_entry.m_cache_entry_expiration = current_time +
3557 : 689 : 21h + FastRandomContext().randrange<std::chrono::microseconds>(6h);
3558 : : }
3559 [ + - ]: 5105 : return cache_entry.m_addrs_response_cache;
3560 : 5105 : }
3561 : :
3562 : 89216 : bool CConnman::AddNode(const AddedNodeParams& add)
3563 : : {
3564 [ + - + - ]: 89216 : const CService resolved(LookupNumeric(add.m_added_node, GetDefaultPort(add.m_added_node)));
3565 [ + - ]: 89216 : const bool resolved_is_valid{resolved.IsValid()};
3566 : :
3567 [ + - ]: 89216 : LOCK(m_added_nodes_mutex);
3568 [ + + ]: 6771865 : for (const auto& it : m_added_node_params) {
3569 [ + + + + : 7418249 : if (add.m_added_node == it.m_added_node || (resolved_is_valid && resolved == LookupNumeric(it.m_added_node, GetDefaultPort(it.m_added_node)))) return false;
+ - + - +
- + - + +
+ + + + -
- - - ]
3570 : : }
3571 : :
3572 [ + - ]: 27128 : m_added_node_params.push_back(add);
3573 : : return true;
3574 : 89216 : }
3575 : :
3576 : 51277 : bool CConnman::RemoveAddedNode(const std::string& strNode)
3577 : : {
3578 : 51277 : LOCK(m_added_nodes_mutex);
3579 [ + + ]: 1504483 : for (auto it = m_added_node_params.begin(); it != m_added_node_params.end(); ++it) {
3580 [ + + ]: 1467605 : if (strNode == it->m_added_node) {
3581 : 14399 : m_added_node_params.erase(it);
3582 : 14399 : return true;
3583 : : }
3584 : : }
3585 : : return false;
3586 : 51277 : }
3587 : :
3588 : 0 : bool CConnman::AddedNodesContain(const CAddress& addr) const
3589 : : {
3590 : 0 : AssertLockNotHeld(m_added_nodes_mutex);
3591 : 0 : const std::string addr_str{addr.ToStringAddr()};
3592 [ # # ]: 0 : const std::string addr_port_str{addr.ToStringAddrPort()};
3593 [ # # ]: 0 : LOCK(m_added_nodes_mutex);
3594 [ # # ]: 0 : return (m_added_node_params.size() < 24 // bound the query to a reasonable limit
3595 [ # # # # ]: 0 : && std::any_of(m_added_node_params.cbegin(), m_added_node_params.cend(),
3596 [ # # # # : 0 : [&](const auto& p) { return p.m_added_node == addr_str || p.m_added_node == addr_port_str; }));
# # ]
3597 : 0 : }
3598 : :
3599 : 2593 : size_t CConnman::GetNodeCount(ConnectionDirection flags) const
3600 : : {
3601 : 2593 : LOCK(m_nodes_mutex);
3602 [ + + ]: 2593 : if (flags == ConnectionDirection::Both) // Shortcut if we want total
3603 : 743 : return m_nodes.size();
3604 : :
3605 : 1850 : int nNum = 0;
3606 [ + + ]: 75294 : for (const auto& pnode : m_nodes) {
3607 [ + + + + ]: 146137 : if (flags & (pnode->IsInboundConn() ? ConnectionDirection::In : ConnectionDirection::Out)) {
3608 : 798 : nNum++;
3609 : : }
3610 : : }
3611 : :
3612 : 1850 : return nNum;
3613 : 2593 : }
3614 : :
3615 : :
3616 : 0 : std::map<CNetAddr, LocalServiceInfo> CConnman::getNetLocalAddresses() const
3617 : : {
3618 : 0 : LOCK(g_maplocalhost_mutex);
3619 [ # # # # ]: 0 : return mapLocalHost;
3620 : 0 : }
3621 : :
3622 : 29094 : uint32_t CConnman::GetMappedAS(const CNetAddr& addr) const
3623 : : {
3624 : 29094 : return m_netgroupman.GetMappedAS(addr);
3625 : : }
3626 : :
3627 : 1698 : void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats) const
3628 : : {
3629 : 1698 : vstats.clear();
3630 : 1698 : LOCK(m_nodes_mutex);
3631 [ + - ]: 1698 : vstats.reserve(m_nodes.size());
3632 [ + + ]: 17882 : for (CNode* pnode : m_nodes) {
3633 [ + - ]: 16184 : vstats.emplace_back();
3634 [ + - ]: 16184 : pnode->CopyStats(vstats.back());
3635 [ + - ]: 16184 : vstats.back().m_mapped_as = GetMappedAS(pnode->addr);
3636 : : }
3637 : 1698 : }
3638 : :
3639 : 27305 : bool CConnman::DisconnectNode(const std::string& strNode)
3640 : : {
3641 : 27305 : LOCK(m_nodes_mutex);
3642 [ + - + + ]: 27305 : if (CNode* pnode = FindNode(strNode)) {
3643 [ + - - + : 351 : LogDebug(BCLog::NET, "disconnect by address%s match, %s", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->DisconnectMsg(fLogIPs));
- - - - -
- - - -
- ]
3644 : 351 : pnode->fDisconnect = true;
3645 : 351 : return true;
3646 : : }
3647 : : return false;
3648 : 27305 : }
3649 : :
3650 : 30169 : bool CConnman::DisconnectNode(const CSubNet& subnet)
3651 : : {
3652 : 30169 : bool disconnected = false;
3653 : 30169 : LOCK(m_nodes_mutex);
3654 [ + + ]: 458990 : for (CNode* pnode : m_nodes) {
3655 [ + - + + ]: 428821 : if (subnet.Match(pnode->addr)) {
3656 [ + - - + : 1662 : LogDebug(BCLog::NET, "disconnect by subnet%s match, %s", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->DisconnectMsg(fLogIPs));
- - - - -
- - - - -
- - - - -
- ]
3657 : 1662 : pnode->fDisconnect = true;
3658 : 1662 : disconnected = true;
3659 : : }
3660 : : }
3661 [ + - ]: 30169 : return disconnected;
3662 : 30169 : }
3663 : :
3664 : 24295 : bool CConnman::DisconnectNode(const CNetAddr& addr)
3665 : : {
3666 [ + - ]: 24295 : return DisconnectNode(CSubNet(addr));
3667 : : }
3668 : :
3669 : 39165 : bool CConnman::DisconnectNode(NodeId id)
3670 : : {
3671 : 39165 : LOCK(m_nodes_mutex);
3672 [ + + ]: 1880884 : for(CNode* pnode : m_nodes) {
3673 [ + + ]: 1848770 : if (id == pnode->GetId()) {
3674 [ + - - + : 7051 : LogDebug(BCLog::NET, "disconnect by id, %s", pnode->DisconnectMsg(fLogIPs));
- - - - ]
3675 : 7051 : pnode->fDisconnect = true;
3676 : 7051 : return true;
3677 : : }
3678 : : }
3679 : : return false;
3680 : 39165 : }
3681 : :
3682 : 0 : void CConnman::RecordBytesRecv(uint64_t bytes)
3683 : : {
3684 : 0 : nTotalBytesRecv += bytes;
3685 : 0 : }
3686 : :
3687 : 94500 : void CConnman::RecordBytesSent(uint64_t bytes)
3688 : : {
3689 : 94500 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3690 : 94500 : LOCK(m_total_bytes_sent_mutex);
3691 : :
3692 : 94500 : nTotalBytesSent += bytes;
3693 : :
3694 : 94500 : const auto now = GetTime<std::chrono::seconds>();
3695 [ + + ]: 94500 : if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now)
3696 : : {
3697 : : // timeframe expired, reset cycle
3698 : 232 : nMaxOutboundCycleStartTime = now;
3699 : 232 : nMaxOutboundTotalBytesSentInCycle = 0;
3700 : : }
3701 : :
3702 [ + - ]: 94500 : nMaxOutboundTotalBytesSentInCycle += bytes;
3703 : 94500 : }
3704 : :
3705 : 1698 : uint64_t CConnman::GetMaxOutboundTarget() const
3706 : : {
3707 : 1698 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3708 : 1698 : LOCK(m_total_bytes_sent_mutex);
3709 [ + - ]: 1698 : return nMaxOutboundLimit;
3710 : 1698 : }
3711 : :
3712 : 1698 : std::chrono::seconds CConnman::GetMaxOutboundTimeframe() const
3713 : : {
3714 : 1698 : return MAX_UPLOAD_TIMEFRAME;
3715 : : }
3716 : :
3717 : 1698 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() const
3718 : : {
3719 : 1698 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3720 : 1698 : LOCK(m_total_bytes_sent_mutex);
3721 [ + - ]: 1698 : return GetMaxOutboundTimeLeftInCycle_();
3722 : 1698 : }
3723 : :
3724 : 44259 : std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle_() const
3725 : : {
3726 : 44259 : AssertLockHeld(m_total_bytes_sent_mutex);
3727 : :
3728 [ + + ]: 44259 : if (nMaxOutboundLimit == 0)
3729 : 702 : return 0s;
3730 : :
3731 [ + + ]: 43557 : if (nMaxOutboundCycleStartTime.count() == 0)
3732 : 33248 : return MAX_UPLOAD_TIMEFRAME;
3733 : :
3734 : 10309 : const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
3735 : 10309 : const auto now = GetTime<std::chrono::seconds>();
3736 [ - + ]: 10309 : return (cycleEndTime < now) ? 0s : cycleEndTime - now;
3737 : : }
3738 : :
3739 : 46995 : bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) const
3740 : : {
3741 : 46995 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3742 : 46995 : LOCK(m_total_bytes_sent_mutex);
3743 [ + + ]: 46995 : if (nMaxOutboundLimit == 0)
3744 : : return false;
3745 : :
3746 [ + + ]: 43241 : if (historicalBlockServingLimit)
3747 : : {
3748 : : // keep a large enough buffer to at least relay each block once
3749 [ + - ]: 42561 : const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle_();
3750 : 42561 : const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * MAX_BLOCK_SERIALIZED_SIZE;
3751 [ + + + + ]: 42561 : if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
3752 : 772 : return true;
3753 : : }
3754 [ + + ]: 680 : else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
3755 : 214 : return true;
3756 : :
3757 : : return false;
3758 : 46995 : }
3759 : :
3760 : 1698 : uint64_t CConnman::GetOutboundTargetBytesLeft() const
3761 : : {
3762 : 1698 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3763 : 1698 : LOCK(m_total_bytes_sent_mutex);
3764 [ + + ]: 1698 : if (nMaxOutboundLimit == 0)
3765 : : return 0;
3766 : :
3767 [ + + ]: 996 : return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
3768 : 1698 : }
3769 : :
3770 : 1698 : uint64_t CConnman::GetTotalBytesRecv() const
3771 : : {
3772 : 1698 : return nTotalBytesRecv;
3773 : : }
3774 : :
3775 : 1698 : uint64_t CConnman::GetTotalBytesSent() const
3776 : : {
3777 : 1698 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3778 : 1698 : LOCK(m_total_bytes_sent_mutex);
3779 [ + - ]: 1698 : return nTotalBytesSent;
3780 : 1698 : }
3781 : :
3782 : 5142 : ServiceFlags CConnman::GetLocalServices() const
3783 : : {
3784 : 5142 : return m_local_services;
3785 : : }
3786 : :
3787 : 30354 : static std::unique_ptr<Transport> MakeTransport(NodeId id, bool use_v2transport, bool inbound) noexcept
3788 : : {
3789 [ - + ]: 30354 : if (use_v2transport) {
3790 [ # # ]: 0 : return std::make_unique<V2Transport>(id, /*initiating=*/!inbound);
3791 : : } else {
3792 [ - + ]: 30354 : return std::make_unique<V1Transport>(id);
3793 : : }
3794 : : }
3795 : :
3796 : 30354 : CNode::CNode(NodeId idIn,
3797 : : std::shared_ptr<Sock> sock,
3798 : : const CAddress& addrIn,
3799 : : uint64_t nKeyedNetGroupIn,
3800 : : uint64_t nLocalHostNonceIn,
3801 : : const CService& addrBindIn,
3802 : : const std::string& addrNameIn,
3803 : : ConnectionType conn_type_in,
3804 : : bool inbound_onion,
3805 : 30354 : CNodeOptions&& node_opts)
3806 : 30354 : : m_transport{MakeTransport(idIn, node_opts.use_v2transport, conn_type_in == ConnectionType::INBOUND)},
3807 : 30354 : m_permission_flags{node_opts.permission_flags},
3808 [ + + ]: 30354 : m_sock{sock},
3809 : 30354 : m_connected{GetTime<std::chrono::seconds>()},
3810 : 30354 : addr{addrIn},
3811 : 30354 : addrBind{addrBindIn},
3812 [ + + + - : 30354 : m_addr_name{addrNameIn.empty() ? addr.ToStringAddrPort() : addrNameIn},
+ - ]
3813 [ + - ]: 30354 : m_dest(addrNameIn),
3814 : 30354 : m_inbound_onion{inbound_onion},
3815 [ + - ]: 30354 : m_prefer_evict{node_opts.prefer_evict},
3816 : 30354 : nKeyedNetGroup{nKeyedNetGroupIn},
3817 [ + - ]: 30354 : m_conn_type{conn_type_in},
3818 : 30354 : id{idIn},
3819 : 30354 : nLocalHostNonce{nLocalHostNonceIn},
3820 [ + - ]: 30354 : m_recv_flood_size{node_opts.recv_flood_size},
3821 [ + - + - : 60708 : m_i2p_sam_session{std::move(node_opts.i2p_sam_session)}
+ + ]
3822 : : {
3823 [ + + + - ]: 30354 : if (inbound_onion) assert(conn_type_in == ConnectionType::INBOUND);
3824 : :
3825 [ + + ]: 1092744 : for (const auto& msg : ALL_NET_MESSAGE_TYPES) {
3826 [ + - ]: 1062390 : mapRecvBytesPerMsgType[msg] = 0;
3827 : : }
3828 [ + - ]: 30354 : mapRecvBytesPerMsgType[NET_MESSAGE_TYPE_OTHER] = 0;
3829 : :
3830 [ - + ]: 30354 : if (fLogIPs) {
3831 [ # # # # : 0 : LogDebug(BCLog::NET, "Added connection to %s peer=%d\n", m_addr_name, id);
# # ]
3832 : : } else {
3833 [ + - - + : 30354 : LogDebug(BCLog::NET, "Added connection peer=%d\n", id);
- - ]
3834 : : }
3835 [ - - ]: 30354 : }
3836 : :
3837 : 80236 : void CNode::MarkReceivedMsgsForProcessing()
3838 : : {
3839 : 80236 : AssertLockNotHeld(m_msg_process_queue_mutex);
3840 : :
3841 : 80236 : size_t nSizeAdded = 0;
3842 [ + + ]: 160472 : for (const auto& msg : vRecvMsg) {
3843 : : // vRecvMsg contains only completed CNetMessage
3844 : : // the single possible partially deserialized message are held by TransportDeserializer
3845 : 80236 : nSizeAdded += msg.GetMemoryUsage();
3846 : : }
3847 : :
3848 : 80236 : LOCK(m_msg_process_queue_mutex);
3849 : 80236 : m_msg_process_queue.splice(m_msg_process_queue.end(), vRecvMsg);
3850 : 80236 : m_msg_process_queue_size += nSizeAdded;
3851 [ + - ]: 80236 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3852 : 80236 : }
3853 : :
3854 : 82377 : std::optional<std::pair<CNetMessage, bool>> CNode::PollMessage()
3855 : : {
3856 : 82377 : LOCK(m_msg_process_queue_mutex);
3857 [ + + ]: 82377 : if (m_msg_process_queue.empty()) return std::nullopt;
3858 : :
3859 : 76651 : std::list<CNetMessage> msgs;
3860 : : // Just take one message
3861 : 76651 : msgs.splice(msgs.begin(), m_msg_process_queue, m_msg_process_queue.begin());
3862 : 76651 : m_msg_process_queue_size -= msgs.front().GetMemoryUsage();
3863 : 76651 : fPauseRecv = m_msg_process_queue_size > m_recv_flood_size;
3864 : :
3865 : 153302 : return std::make_pair(std::move(msgs.front()), !m_msg_process_queue.empty());
3866 : 76651 : }
3867 : :
3868 : 502043 : bool CConnman::NodeFullyConnected(const CNode* pnode)
3869 : : {
3870 [ + - - + : 502043 : return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
- - ]
3871 : : }
3872 : :
3873 : 149926 : void CConnman::PushMessage(CNode* pnode, CSerializedNetMsg&& msg)
3874 : : {
3875 : 149926 : AssertLockNotHeld(m_total_bytes_sent_mutex);
3876 : 149926 : size_t nMessageSize = msg.data.size();
3877 [ - + ]: 149926 : LogDebug(BCLog::NET, "sending %s (%d bytes) peer=%d\n", msg.m_type, nMessageSize, pnode->GetId());
3878 [ + - - + ]: 149926 : if (gArgs.GetBoolArg("-capturemessages", false)) {
3879 : 0 : CaptureMessage(pnode->addr, msg.m_type, msg.data, /*is_incoming=*/false);
3880 : : }
3881 : :
3882 : : TRACEPOINT(net, outbound_message,
3883 : : pnode->GetId(),
3884 : : pnode->m_addr_name.c_str(),
3885 : : pnode->ConnectionTypeAsString().c_str(),
3886 : : msg.m_type.c_str(),
3887 : : msg.data.size(),
3888 : : msg.data.data()
3889 : 149926 : );
3890 : :
3891 : 149926 : size_t nBytesSent = 0;
3892 : 149926 : {
3893 : 149926 : LOCK(pnode->cs_vSend);
3894 : : // Check if the transport still has unsent bytes, and indicate to it that we're about to
3895 : : // give it a message to send.
3896 [ + + ]: 149926 : const auto& [to_send, more, _msg_type] =
3897 [ + + ]: 149926 : pnode->m_transport->GetBytesToSend(/*have_next_message=*/true);
3898 [ + + - + ]: 149926 : const bool queue_was_empty{to_send.empty() && pnode->vSendMsg.empty()};
3899 : :
3900 : : // Update memory usage of send buffer.
3901 : 149926 : pnode->m_send_memusage += msg.GetMemoryUsage();
3902 [ + - ]: 149926 : if (pnode->m_send_memusage + pnode->m_transport->GetSendMemoryUsage() > nSendBufferMaxSize) pnode->fPauseSend = true;
3903 : : // Move message to vSendMsg queue.
3904 [ + - ]: 149926 : pnode->vSendMsg.push_back(std::move(msg));
3905 : :
3906 : : // If there was nothing to send before, and there is now (predicted by the "more" value
3907 : : // returned by the GetBytesToSend call above), attempt "optimistic write":
3908 : : // because the poll/select loop may pause for SELECT_TIMEOUT_MILLISECONDS before actually
3909 : : // doing a send, try sending from the calling thread if the queue was empty before.
3910 : : // With a V1Transport, more will always be true here, because adding a message always
3911 : : // results in sendable bytes there, but with V2Transport this is not the case (it may
3912 : : // still be in the handshake).
3913 [ + + + - ]: 149926 : if (queue_was_empty && more) {
3914 [ + - ]: 105680 : std::tie(nBytesSent, std::ignore) = SocketSendData(*pnode);
3915 : : }
3916 : 149926 : }
3917 [ + + ]: 149926 : if (nBytesSent) RecordBytesSent(nBytesSent);
3918 : 149926 : }
3919 : :
3920 : 1832 : bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
3921 : : {
3922 : 1832 : CNode* found = nullptr;
3923 : 1832 : LOCK(m_nodes_mutex);
3924 [ + + ]: 36654 : for (auto&& pnode : m_nodes) {
3925 [ + + ]: 35054 : if(pnode->GetId() == id) {
3926 : : found = pnode;
3927 : : break;
3928 : : }
3929 : : }
3930 [ + + + - : 1832 : return found != nullptr && NodeFullyConnected(found) && func(found);
- + - - -
- + - ]
3931 : 1832 : }
3932 : :
3933 : 7027 : CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const
3934 : : {
3935 : 7027 : return CSipHasher(nSeed0, nSeed1).Write(id);
3936 : : }
3937 : :
3938 : 0 : uint64_t CConnman::CalculateKeyedNetGroup(const CNetAddr& address) const
3939 : : {
3940 : 0 : std::vector<unsigned char> vchNetGroup(m_netgroupman.GetGroup(address));
3941 : :
3942 [ # # # # : 0 : return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(vchNetGroup).Finalize();
# # ]
3943 : 0 : }
3944 : :
3945 : 0 : void CConnman::PerformReconnections()
3946 : : {
3947 : 0 : AssertLockNotHeld(m_reconnections_mutex);
3948 : 0 : AssertLockNotHeld(m_unused_i2p_sessions_mutex);
3949 : 0 : while (true) {
3950 : : // Move first element of m_reconnections to todo (avoiding an allocation inside the lock).
3951 [ # # ]: 0 : decltype(m_reconnections) todo;
3952 : 0 : {
3953 [ # # ]: 0 : LOCK(m_reconnections_mutex);
3954 [ # # ]: 0 : if (m_reconnections.empty()) break;
3955 [ # # ]: 0 : todo.splice(todo.end(), m_reconnections, m_reconnections.begin());
3956 : 0 : }
3957 : :
3958 [ # # ]: 0 : auto& item = *todo.begin();
3959 : 0 : OpenNetworkConnection(item.addr_connect,
3960 : : // We only reconnect if the first attempt to connect succeeded at
3961 : : // connection time, but then failed after the CNode object was
3962 : : // created. Since we already know connecting is possible, do not
3963 : : // count failure to reconnect.
3964 : : /*fCountFailure=*/false,
3965 [ # # ]: 0 : std::move(item.grant),
3966 : 0 : item.destination.empty() ? nullptr : item.destination.c_str(),
3967 : : item.conn_type,
3968 [ # # ]: 0 : item.use_v2transport);
3969 : 0 : }
3970 : 0 : }
3971 : :
3972 : 1697 : void CConnman::ASMapHealthCheck()
3973 : : {
3974 : 1697 : const std::vector<CAddress> v4_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV4, /*filtered=*/ false)};
3975 [ + - ]: 1697 : const std::vector<CAddress> v6_addrs{GetAddresses(/*max_addresses=*/ 0, /*max_pct=*/ 0, Network::NET_IPV6, /*filtered=*/ false)};
3976 : 1697 : std::vector<CNetAddr> clearnet_addrs;
3977 [ + - ]: 1697 : clearnet_addrs.reserve(v4_addrs.size() + v6_addrs.size());
3978 [ + - ]: 1697 : std::transform(v4_addrs.begin(), v4_addrs.end(), std::back_inserter(clearnet_addrs),
3979 [ + - ]: 65 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3980 [ + - ]: 1697 : std::transform(v6_addrs.begin(), v6_addrs.end(), std::back_inserter(clearnet_addrs),
3981 [ + - ]: 759 : [](const CAddress& addr) { return static_cast<CNetAddr>(addr); });
3982 [ + - ]: 1697 : m_netgroupman.ASMapHealthCheck(clearnet_addrs);
3983 : 1697 : }
3984 : :
3985 : : // Dump binary message to file, with timestamp.
3986 : 0 : static void CaptureMessageToFile(const CAddress& addr,
3987 : : const std::string& msg_type,
3988 : : std::span<const unsigned char> data,
3989 : : bool is_incoming)
3990 : : {
3991 : : // Note: This function captures the message at the time of processing,
3992 : : // not at socket receive/send time.
3993 : : // This ensures that the messages are always in order from an application
3994 : : // layer (processing) perspective.
3995 : 0 : auto now = GetTime<std::chrono::microseconds>();
3996 : :
3997 : : // Windows folder names cannot include a colon
3998 : 0 : std::string clean_addr = addr.ToStringAddrPort();
3999 : 0 : std::replace(clean_addr.begin(), clean_addr.end(), ':', '_');
4000 : :
4001 [ # # # # : 0 : fs::path base_path = gArgs.GetDataDirNet() / "message_capture" / fs::u8path(clean_addr);
# # ]
4002 [ # # ]: 0 : fs::create_directories(base_path);
4003 : :
4004 [ # # # # ]: 0 : fs::path path = base_path / (is_incoming ? "msgs_recv.dat" : "msgs_sent.dat");
4005 [ # # # # ]: 0 : AutoFile f{fsbridge::fopen(path, "ab")};
4006 : :
4007 [ # # ]: 0 : ser_writedata64(f, now.count());
4008 [ # # ]: 0 : f << std::span{msg_type};
4009 [ # # ]: 0 : for (auto i = msg_type.length(); i < CMessageHeader::MESSAGE_TYPE_SIZE; ++i) {
4010 [ # # ]: 0 : f << uint8_t{'\0'};
4011 : : }
4012 [ # # ]: 0 : uint32_t size = data.size();
4013 [ # # ]: 0 : ser_writedata32(f, size);
4014 [ # # ]: 0 : f << data;
4015 : 0 : }
4016 : :
4017 : : std::function<void(const CAddress& addr,
4018 : : const std::string& msg_type,
4019 : : std::span<const unsigned char> data,
4020 : : bool is_incoming)>
4021 : : CaptureMessage = CaptureMessageToFile;
|